
The University of Manchester Research

On crack growth in functionally graded materials

DOI:
ISRN: LTU-LIC--99/71--SE, ISSN: 1402-1757

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Jivkov, A. (1999). On crack growth in functionally graded materials. Luleå University of Technology.
https://doi.org/ISRN: LTU-LIC--99/71--SE, ISSN: 1402-1757

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://doi.org/ISRN: LTU-LIC--99/71--SE, ISSN: 1402-1757
https://www.research.manchester.ac.uk/portal/en/publications/on-crack-growth-in-functionally-graded-materials(095ac1fd-1e5d-40fa-a374-f989303b2860).html
https://doi.org/ISRN: LTU-LIC--99/71--SE, ISSN: 1402-1757


 
 

On Crack Growth in 

Functionally Graded Materials 

 
by 

Andrey P. Jivkov 

Malmö, December 1999 

 
 

Division of Solid Mechanics 

Department of Mechanical Engineering 

Luleå University of Technology 

SE-971 87 Luleå, Sweden 



 



On crack growth in functionally graded materials  iii 

Abstract 

Stress intensity factors’ behaviour is studied for long plane cracks interacting with a 

region of functionally graded elastic material. The region is assumed embedded into a 

large body treated as a homogeneous elastic continuum. The analysis is limited to small 

deviations of the graded region’s elastic modulus from that of the surrounding body 

(Poisson’s ratio is kept constant) and analytical solutions are sought using a perturbation 

technique. Emphasis is laid on the case of an infinite strip, which admits a closed form 

solution. A cosine change of the modulus of elasticity is treated, furnishing the solution 

for arbitrary variation in the form of a Fourier’s expansion. Finite element analysis is 

subsequently performed for investigating the scope of validity of the analytical solution. 

The results for a set of finite changes of the elastic modulus are compared with the 

analytical predictions, and a remarkably wide range of validity is demonstrated. New 

functions, suitable for non-homogeneous material description, are introduced to 

approach the case of non-constant Poisson’s ratio. The properties and possible 

applications of these functions are examined.   

Keywords 

Functionally graded materials, layered materials, composites, crack growth, stress 

intensity factors, perturbation technique, complex potentials, finite element method. 
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Preface 

The prospects of designing new materials with desired performances by integration of 
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“smart” materials, along with the other studies, demand an exploration of advanced 

techniques for the analysis of their mechanical behaviour. 

This thesis addresses two aspects of the wide area of mechanics of layered materials. It 

studies crack growth through a non-homogeneous layer incorporated into a 

homogeneous medium and it examines the advantages of a newly suggested functional 

description for non-homogeneous material’s characteristics. 

At the bottom of it all, how strange, hides my supervisor, Professor Per Ståhle. I am 

much obliged to him for initiating the problems on which the research was carried out. 

Words fail me to express my gratitude to him for his patience during the endless 
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I would like to extend my thanks to Professor Ali Massih, who introduced me into the 

Division and unveiled to me the remarkable power of the irreversible thermodynamics’ 

approach in solid mechanics. I promise to take advantage of it when the things go so 

complex that nothing else can help. 

Many thanks to all my colleagues at the Division of Solid Mechanics for helping me 

with anything I possibly asked them, both at work and in everyday life. Without theirs 

support my stay in this impressive but still foreign country would not be as easy as it is. 

I owe a debt of gratitude also to the secretaries at the Division of Fluid Mechanics, who 

made my life even easier. 

Not at the last place, I wish to thank my wife and my family back home for being so 

considerate with me and invariable in their support and encouragement.  

The financial support, coming from the Swedish Centre for Nuclear Technology 

(Svenskt Kärntekniskt Centrum) at KTH is also gratefully acknowledged.  
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Introduction 

To meet the demands of new technologies the engineering community is constantly 

engaged in designing new materials with required performances. One direction of work 

has been the creation of materials, which at a macro scale can be considered 

homogeneous but at a micro scale have a specific composite structure, allowing certain 

control over their mechanical, thermal and chemical properties. For some new 

applications, however, it is becoming more and more difficult to employ such macro-

scale-homogeneous materials. Examples are structural elements, which competitive 

industries require to be used at ever increasing temperatures or in more aggressive 

environments, where the intended characteristics of one or several of the material’s 

components might be strongly reduced or eventually lost. Consequently, another 

direction of work consists in joining different materials, to take advantage of their 

respective favourable properties. The boundaries between the materials may be distinct 

or diffuse with gradient transitions between one material to another. Conventionally 

these are called functionally graded materials, but when a boundary is distinct the term 

layered materials is preferred. In all cases the improvement in the material’s 

performance is paid by the initiation of non-homogeneity at a macro scale, which 

subsequently cause significant difficulties in the analytical description of the 

mechanical behaviour. 

First attempt in studying the fracture mechanics aspects of layered material addressed 

the problem of a crack existing in one of the materials of a elastic bimaterial medium 

and perpendicularly approaching the interface between the two materials (Zak and 

Williams, 1963). The interface was assumed sharp, i.e. the elastic characteristics change 

abruptly across the interface. The continuum mechanics aspects of the same problem 

were investigated simultaneously and it was shown that the stress field in such a 

bimaterial medium depends only on two parameters, composed of four material 

characteristics for the two materials (Dundurs, 1969). Generally, the two parameters can 

be chosen in many ways but one particular choice, proposed by Dundurs, has been 

widely accepted and named after him.   

Later, different treatments of the crack problem appeared in the literature, most of them 

based on integral equations for a dislocation density as the crack is presented by a 

distribution of dislocations. Closed form solutions were found for the stress around the 

crack tip when approaching an interface or free surface, and when passing the interface 

(Atkinson, 1975). The singular behaviour of the solution for a set of different cracks 

(edge, T-shaped and cross-shaped) terminating or crossing an interface, was 
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successfully investigated (Lu and Erdogan, 1983). The competition between crack 

deflection and penetration at an interface was examined (He and Hutchinson, 1989) and 

a range of interface toughness relative to the bulk material toughness is found giving a 

condition for the crack to deflect instead of to penetrate through the interface. The stress 

intensity factor and the crack opening displacement at the interface were calculated as 

functions of the distance from the crack tip to the interface and the Dundurs’ parameters 

(Romeo and Ballarini, 1996). 

The solution for the stresses around the crack tip shows that the strength of the singular 

stress field surrounding the crack tip is generally either weaker or stronger than the 

well-known square root singular field in a homogeneous material. Such strengths of the 

stress field create a phenomenon of either unboundedly growing or vanishing stress 

intensity factors KI  for a crack that approaches the interface (Schmauder and Müller, 

1991), or differently the crack at the interface becomes either unconditionally unstable 

or impossible to drive through it. A possible way to overcome this anomaly is to adopt 

some non-linearity in the process description. A number of works consider plasticity 

and analyse the interaction of the plastic zone in front of the crack tip with the interface 

(Ståhle and Shih, 1992, Romeo and Ballarini, 1993, Delfin et al., 1997, Chen and 

Atkinson, 1998, Kim et al., 1999). Another approach is to consider a model with a 

linear cohesive process region in front of the crack (Wäppling et al., 1998). For brittle 

materials, however, the predictions from this model are still unrealistic. 

If the material is brittle, for example for layers of ceramics, one relief for the problem is 

to abandon the notion of sharp (or ideal) interface. Indeed, the manufacture process of 

the layered materials exposes their components to elevated temperatures and 

considerable diffusion across the material boundaries occurs. This naturally creates 

gradients in the new material properties around the interfaces. The diffusion, clearly, 

may be used also to develop functionally graded materials with tailored material 

property distribution. 

A large class of solutions to the continuum mechanics problem of isotropic linear elastic 

medium with arbitrary changing (with respect to one co-ordinate only) elastic 

characteristics has been obtained (Abid Mian and Spencer, 1998). The approach is 

based on the concept of the “equivalent plate” – a hypothetical homogeneous plate with 

elastic properties appropriately averaging the properties of the original non-

homogeneous plate. Basic fracture mechanics concepts in graded materials, like fracture 

toughness and R-curve, have also been studied (Jin and Batra, 1996).  
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The problem of a crack existing in a functionally graded material has been considered in 

several works, basically after a choice of a particular function describing the variation 

of the modulus of elasticity, while the change in Poisson’s ratio has been neglected. 

Crack propagation has been studied in a material with exponential variation of elastic 

modulus with respect to one co-ordinate (Atkinson and List, 1978) and it has been 

shown that this is the only choice, which yields steady state solutions. Further, it has 

been shown (Delale and Erdogan, 1983) that an exponential variation with respect to 

one or both plane co-ordinates is the only choice which converts the differential 

equation for the plane problem into one with constant coefficients. In the same paper, 

the conventional square-root singularity is demonstrated for the accepted type of 

gradient function and the stress intensity factors are calculated. Other works (Erdogan et 

al., 1991, Erdogan, 1995) have studied the problem for a crack approaching and 

penetrating an interface between homogeneous and functionally graded materials. It has 

been proven there, that the phenomenon of either infinite or vanishing stress intensity 

factors is no longer present, as far as jumps in the material property distribution are not 

allowed.  

The last two mentioned works investigate the stress field and the performance of the 

stress intensity factor in a sense which might be called “local”, because the crack tip is 

interacting only with the interface between constant and functionally graded material. 

Distinctly, this thesis deals with a more “global” behaviour, where a whole layer of 

graded material is incorporated into a homogeneous media and the crack is considered 

passing through the entire composition. In the beginning of the study the layer is 

assumed to have a gradient in the elastic modulus alone, while the changes in the 

Poisson’s ratio are neglected. Analytical solutions for the stress intensity factors 

behaviour are found for quite a general class of functions describing the elastic modulus 

gradient. They are consequently compared with results obtained by the finite element 

method simulations and the range of validity of the analytical solution is established. 

For many materials a constant Poisson’s ratio is quite an acceptable assumption, as 

commented in most of the quoted papers. There might be cases, however, when the 

changes in the Poisson’s ratio are significant enough not to be discarded. If this have to 

be taken into account the gradient of the ratio enters into the problem formulation as a 

second function.  There is one choice (among many) of two new functions, dependent 

on the elastic modulus and Poisson’s ratio variations, which is introduced in the work as 

having certain advantages to all the other possible choices. These functions give the 

possibility for better formulations in a future work on layers with material gradients. 
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The thesis 

Think about a two-dimensional homogeneous isotropic linear elastic body and a layer of 

a different material included into the body. The geometry and the characteristic lengths 

are shown schematically in Figure 1. The modulus of elasticity of the composed body is 

expressed with the formula E = E 0 1 + ∆ψ X1( )[ ], where E0  is the modulus of the 

homogeneous body, ∆  is a coefficient and ψ  is a function of one argument. Certain 

restrictions are imposed on the coefficient and the function to build an analytical 

solution. For example, the condition ∆ <<1 is required for the analytical treatment, 

while for the finite element solutions ∆  might assume finite values. Similarly, the 

analytical derivation demands ψ  to be a bounded continuos function with a first 

derivative being a function of bounded variation. In addition the function must vanish at 

the two ends of the layer, such that the transition from the one material to the other 

constitutes no jump in the elastic modulus. For a more thorough description of these 

prerequisites, consult Paper A. At these stage of the study the Poisson’s ratio, ν , is 

assumed constant within the entire composite body. The possibility for considering a 

variation of ν  will be discussed at a later stage in this thesis. 

Figure 1. A crack interacting with a layer of functionally graded modulus of elasticity 
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Consider in addition a large crack, right tip of which is interfering with the strip. The 

crack surfaces are presumed traction free and the body is subjected remotely to a 

uniformly distributed load, which is perpendicular to the crack plane (see Figure 1).  

The model, outlined shortly, constitutes a small perturbation of the elastic modulus of 

the homogeneous body. If the modulus of elasticity of the composed body is written in 

the form E = E 0 + ∆ E1 E1 = E0 ⋅ψ X1( )( ), then the perturbation method (see for 

example Bush, 1992) allows one to assume that all the field variables can be expressed 

in the same way. Upper index zero will then denote the zero order solution (of the 

unperturbed problem) and upper index one will denote the first order solution for the 

respective variable. Evidently, the stress intensity factor for the composed problem can 

be written KI = KI
0 + ∆KI

1 , where KI
0  is the stress intensity factor for the homogeneous 

problem (caused by the stress field σ ij
0 ), and KI

1  - the stress intensity factor caused by 

the stress field σ ij
1 . 

The deviation of the stress intensity factor for the perturbed problem, KI , from the 

stress intensity factor for the unperturbed one, KI
0 , as a function of the crack tip position 

is of primary interest in this thesis. This function, expressed in a form not dependent on 

the magnitude of the perturbation coefficient, will be called stress intensity response: 

(1) Π d( )=
1

∆
⋅

KI

KI
0 −1

 
 
  

 
 = sgn ∆( ) KI

1

KI
0  

Essential part of the analysis is the use of the method of complex potentials 

(Muskhelishvili, 1963). Paper A has to be consulted for the full derivation. It is 

demonstrated there, that the solution for any function (under the imposed restrictions) 

may be written as: 

(2) Π d( )= sgn ∆( )⋅ κ
1 +κ

⋅ ψ d( )−
1

2
Ψ d( ) 

 
 
 

, 

where κ = 3 − 4ν  for plain strain and κ = 3 −ν( ) 1+ ν( ) for generalised plain stress 

conditions respectively, and Ψ d( )  is the Hilbert transform of the function ψ x( ). 

A trial function ψ  in a form of truncated cosine, or one half-wave is adopted: 

(3) ψ ξ( )= cos
π
2

⋅ξ 
 

 
 ⋅

1 +sgn 1 − ξ( )
2

,  where ξ =
x

s
 

The result for the stress intensity response is analytically derived: 
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(4) Π1 γ( ) = sgn ∆( ) κ
2 1 +κ( ) cos

π
2

γ 
 

 
 1 + sgn 1− γ( )[ ]− H γ( ) 

 
 

 
 
 

, where γ =
d

s
 

The lower index one, attached to the function above, designates that the solution applies 

to one half-wave change of modulus of elasticity, and H γ( )  stays for the Hilbert 

transform of this half-wave, which utilises cosine and sine integrals: 

(5) 

H γ( ) = 1
π

⋅ cos
π
2

γ 
 

 
 ⋅ Ci

π
2

1− γ 
 

 
 − Ci

π
2

1+ γ 
 

 
 

 
  

 
  

−

−
1

π
⋅sin

π
2

γ 
 

 
 ⋅ sgn(1− γ ) ⋅ Si

π
2

1− γ 
 

 
 + sgn(1+ γ ) ⋅ Si

π
2

1+ γ 
 

 
 

 
  

 
  

 

Figure 2 displays the graphs of the trial function and the result Π1 γ( ), with a negative 

perturbation coefficient assumed for definiteness. Note that if a positive perturbation 

coefficient is to be used, both graphs will be symmetric to the plotted ones with respect 

to γ -axis. 

Figure 2. Modulus of elasticity variation and produced stress intensity response 
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Paper B reports the support for the analytical solution supplied by finite element method 

(FEM) simulations of the posed problem. The FEM experiments have been performed 

using ABAQUS program. The layer has been created by the procedure for user’s 

definition of a material (UMAT). Important feature of such a formulation is that it 

allows the permanent use of the initial geometry and crack configuration, while the strip 

is forced to change position for each simulation. As a matter of fact, the designed 

UMAT procedure permits to model an inclusion of arbitrary shape and arbitrary change 

of material characteristics. However, it has been used for modelling a layer with a 

change of elastic modulus as shown in Fig. 2, serving the purposes of Paper B. The 

complete description of the mesh and the calculation procedure should be found there. 

The displacement field defined by the homogeneous problem stress intensity factor, KI
0 , 

has been imposed as a boundary condition along the edge of the mesh. This 

approximation is claimed reasonable, because the layer’s width is comparable to the 

node distances at the mesh boundary. Additional discussion on the matter is to be found 

in Paper B. 

The stress intensity factor of the composed problem, for any given position of the layer 

relative to the crack tip, is calculated using the vertical displacements, u2 , based on the 

first ten nodes behind the crack tip along the crack plane. The graphical procedure, 

explained thoroughly in the paper, can be summarised in the following form: 

(6) KI
FEM = lim

r→0
c r( )⋅ u2 r( )

r
= c r = 0( )⋅ lim

r→ 0

u2 r( )
r

  

where r  denotes the distance from the crack tip to the respective node and c r( ) is a 
parameter generally depending on the material characteristics at that node. In a limit, 
c r = 0( ) is a constant depending on the modulus of elasticity at the crack tip, E r = 0( ), 
and Poisson’s ratio. The stress intensity factor found by this procedure can be 
conventionally written as KI

FEM = KI
0 + ∆KI

1 , where KI
0  is the factor obtained when 

∆ = 0. In order to compare numerical and analytical results, an expression 

corresponding to (1) is constructed, namely Π FEM γ( ) =
1

∆
KI

FEM

KI
0 −1

 
 
  

 
 .  

Computational results confirm qualitatively the characteristic form of the response 

function (see Figures 5a and 5b in Paper B). The indefiniteness of the perturbation 

coefficient in the analytical solution makes the estimation of its validity range a 

substantially important task. Therefore, the numerical experiments aimed basically at 

evaluating the deviation (error) of the analytical prediction from the finite element 

results, obtained for finite values of the perturbation coefficient. The criteria for 

closeness between Π1 γ( ) and Π FEM γ( )  curves is chosen to be the difference between 
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their minimal (for ∆ < 0 ) or maximal (for ∆ > 0 ) values, which corresponds to the well-

known L∞-norm in functional spaces. The experiments are performed for a set of values 

of the perturbation coefficient, namely ∆ = −0.9,−0.5, −0.1,−0.01,0.01,0.1,0.5,0.9. The 

relative errors in the analytical solution minimum and maximum with respect to the 

FEM results are plotted in Fig.6 of Paper B. Because of the computational errors in the 

numerical results, additional reasoning is used to improve the error estimate for the 

analytical solution (see again Paper B). 

The range of validity of the analytical solution is found to be surprisingly wide. For 

example, if an error of 5% is acceptable for certain applications, then the analytical 

solution is applicable for variations of the modulus of elasticity as large as about 40% 

for negative and about 60% for positive perturbation coefficient. Such variations would 

cause a maximal drop of around 28% or an increase of around 42% of the stress 

intensity factor respectively. 

It is further demonstrated in Paper A, that the result (4) permits the solution for arbitrary 

number of half-waves with altering signs to be expressed in the form 

(7) Π N γ( ) = −1( )n+1

n=1

N

∑ Π1 γn
N( ) 

provided that the pattern of half-waves begins and ends at zero. This allows the 

response function for an arbitrary bounded variation of the elastic modulus to be 

expressed in the following trigonometric Fourier series: 

(8) Π γ( ) = aN ⋅Π 2 N+1 γ( )⋅ cos 2N + 1( )πγ
2

 
 

 
 

+ bN ⋅Π 2 N γ( )⋅sin 2N
πγ
2

 
 

 
 N =1

∞

∑
N =0

∞

∑  

where the coefficients are calculated with the formulas: 

(9) 

aN = ψ γ( )⋅ cos 2N +1( )π γ
2

 
 

 
 
dγ

−1

1

∫

bN = ψ γ( )⋅sin 2N
π γ
2

 
 

 
 
dγ

−1

1

∫
 

It is worth noting that ψ γ( )  is no longer required to be a continuous function. At the 

points of discontinuity of the elastic modulus, the result (8) will not converge, but it will 

be point-wise convergent for any other fixed point. Physically, it is hardly possible that 

a change of the elastic modulus is discontinuous, which will lead to a truncated series 



Thesis 

On crack growth in functionally graded materials   9 

expansion in the form (8), providing a nice connection between the model and the real 

situations. 

Further in the studies, the possibilities of having non-constant Poisson’s ratio are 

explored. Two functions, Γ1  and Γ2 , dependent on both elastic modulus and Poisson’s 

ratio changes, are formally introduced with the help of differential relations: 

(10a) dΓ1 =
κ −1

κ +1
⋅ d ln

µ
κ −1

=
1

2
1 − ˆ ν ( )⋅ d ln

ˆ E 

1− ˆ ν 
 

(10b) dΓ2 =
2

κ +1
⋅ d ln µ =

1

2
1 + ˆ ν ( )⋅ d ln

ˆ E 

1 + ˆ ν 
 

Paper C explains the physical interpretation of these differentials as dimensionless 

quantities measuring the tendency of change of some material properties, compliances 

or stiffnesses, with respect to one chosen property. 

The modified modulus of elasticity and Poisson’s ratio, used in (10) are given by: 

(11) ˆ E , ˆ ν ( )=
E,ν( ) planestress

E

1− ν 2 ,
ν

1 −ν
 
 

 
 plane strain

 

 
 

 
 

 

In the case of discontinuous change of elastic characteristics, i.e. sharp boundary 

between two elastic materials, the introduced functions degenerate to constants, which 

are linear combinations of Dundurs’ parameters α ,β : 

(12) Γ1 = 2β  and Γ2 = 2 α − β( ) 

This proposes the idea that the similarity between the two functions and Dundurs’ 

parameters might be deeper. Indeed, a study of their properties shows many interesting 

features. A notion of separable functions is introduced in the paper to indicate the 

possibility each one of them to be written as a full differential of some expression not 

explicitly dependent on the other. It turns out that the differentials of the functions Γ1  

and Γ2  are not separable and it is shown that this is an intrinsic feature of the functions 

adequate for gradient material description. This mutual dependence between two 

“permissible” functions arises from the consistency of the “measure” used to grade the 
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tendencies of change of the different compliances or stiffnesses. If different scaling is 

used for different parameters, the result will be an inapplicable couple of functions. 

The inadequacy of separable functions arises from the fact, that they would describe, for 

example, a stress state, which could be identical to another state with generally different 

material characteristics. This situation may be avoided by using the introduced 

functions or any other non-separable couple, and it repeats the property of Dundurs’ 

parameters. Hence the two functions are called intrinsic for a given material. 

In regard to this property, it is important to describe the class of functional changes of 

the material parameters, say E  and ν , corresponding to (or induced by) a given set of 

intrinsic functions. In the case of plane stress these classes of equivalence or of self-

similar stress fields are derived: 

(13) 

E x( ) = exp d Γ1 + Γ2( )∫ + k1[ ]= K1 ⋅ E f x( )

ν x( ) = E x( )⋅ d Γ1 − Γ2( )
E x( )∫ + k2

 

  
 

  
= ν f x( )+ K2 ⋅ E f x( )

 

The constants K1, K2  in (13) may be arbitrary, at least mathematically, although physics 

impose restrictions on their values.  The functions E f x( ),ν f x( ) are some fundamental 

solutions to the integrals.  

Quite an interesting conclusion can be drawn from (13). If the solution to some problem 

is found for one choice of elastic modulus variation and constant Poisson’s ratio, then it 

must apply for identical shape of change, not necessarily same magnitude, of both 

characteristics. This should be true for the solutions found by different authors for 

exponential change of E  and constant ν , and also for the cosine change of E  and 

constant ν  treated in Paper A. Equations (16) suggest also a natural division of the 

functionally graded materials into two classes. All materials with constant, or changing 

proportionally to elastic modulus Poisson’s ratio, will belong to the first class and can 

be called uni-functional materials. Clearly, this class is achieved with constant 

fundamental function for ν . The second class covers all other materials with variations 

of ν  not proportional to the change of E . This class is established with non-constant 

fundamental function for ν  and the materials belonging to it can be called bi-functional.  

Actually, most of the imaginable materials can be thought as uni-functional and thus the 

assumption of constant ν  will prove correct. If there exists a bi-functional material, the 

analysis must employ the introduced intrinsic functions in more complex way. It is 

shown in Paper C how the functions will enter, for example, the equilibrium equations. 
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If the elastic properties vary in one direction, say x , than the only stress, which 

experiences change of its value (due to properties change) will be σy  and it is given by: 

(14) dσ y = σ x + σ y( )⋅ dΓ1 − σ x −σ y( )⋅ dΓ2  

The increment of σy  given by (14) will enter as an additional term in the equilibrium 

equations for the non-homogeneous continuum, turning them into a system of 

differential equations with variable coefficients. It is difficult to see a solution to this 

system in the general case, but an attempt combining the technique from Paper A and 

the discussion from Paper C deserves additional work.  



12   On crack growth in functionally graded materials 
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Abstract — Stress intensity factors are calculated for long plane cracks with one tip interacting with a 

region of graded elastic properties. The material outside the region is assumed to be homogeneous and the 

material in the graded region to have continuous change of modulus of elasticity. The analysis is limited 

to small differences between stiffness of the surrounding body and of the graded region. Changes of 

Poisson’s ratio are neglected. The body is assumed to be large as compared with the linear extent of the 

graded region. The crack tip, including the graded region, is assumed embedded in a square root singular 

stress field. Thus, a boundary layer solution is obtained with remote boundary conditions given by the 

stress intensity factor KI . Solutions are given for rectangular regions but the limiting case of an infinite 

strip is devoted special interest. For a strip region with arbitrary variation of the modulus of elasticity an 

analytical solution is given in terms of the function describing the variation and its Hilbert’s transform. 

Further, a particular primer is solved, allowing the solution for arbitrary variation to be found in the form 

of a Fourier’s expansion. An interesting feature of the solution, supporting previously obtained results, is 

that the stress intensity factor remains finite and does neither vanish nor become unbounded as in the case 

where modulus of elasticity posses jumps. The solution is compared with numerical results for finite 

changes of modulus of elasticity and is shown to have a surprisingly large range of validity. If an error of 

5% is tolerated, modulus of elasticity may drop by around 40% or increase with around 60%. 

Keywords — elastic material, inhomogeneous material, functionally graded material, layered material, 

crack growth, stress intensity factor 

 
1. Introduction 

Functional layers and protective coatings are increasingly used to improve mechanical, 

thermal and chemical performance of tools and devices. The bonding between 

dissimilar materials defines interfaces, which may have fixed or spatially varying 
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mechanical characteristics. As an example, fatigue cracks are attracted by a bimaterial 

interface to a weaker or softer material. Contrary to that fatigue cracks are deflected by 

a bimaterial interface to a stiffer or harder material. Thus a layer of soft or weak 

material will attract and trap fatigue cracks (Suresh et al., 1992). Another example is the 

improved wear resistance that successfully has been obtained by applying hard coating 

surfaces to tools. At wear the mechanisms for formation of fragments (debris) of the 

brittle coating is important in the understanding of the wear behaviour. Knowledge of 

initiation of flaws, formation of cracks and their subsequent growth will provide a full 

picture of the mechanisms. Here the effect of material changes on the crack tip driving 

force is of interest. 

The problem for a cracked material attached to an elastic solid was first treated by Zak 

and Williams (1963) and consequently by Erdogan and Gupta (1975), Atkinson (1975), 

Lu and Erdogan (1983), He and Hutchinson (1989) and Romeo and Ballarini (1996). A 

series expansion for the stresses around the crack tip was deduced. One result of the 

analysis was that the strength of the singular stress field surrounding the crack tip is 

generally weaker or stronger than the well-known square root singular field. This causes 

analytical difficulties whereas it leads to either infinite or vanishing stress intensity 

factors KI  for a crack that approaches the interface (Schmauder and Müller, 1991). The 

prediction from that is that the crack either become unconditionally unstable or 

impossible to drive through the interface. One remedy to that is to consider the linear 

extent of the crack tip process region. However for brittle material predictions still 

become unrealistic (Wäppling et al., 1998). 

Modern processes for diffusive or evaporative applications of thin layers to surfaces and 

thin internal layers in structures have provided possibilities to manufacture layers of 

size of few atomic distances. In conjunction with manufacturing of electronic devises 

the technique introduces new possibilities to increase the lifetime of components. 

During their production, as they are exposed to elevated temperatures, considerable 

diffusion across the material boundaries occurs, naturally creating material properties 

gradients. This might question the assumption regarding a distinct bimaterial interface. 

Further the diffusion may be taken advantage of, since graded materials with tailored 

material property distribution may be developed.  

The fracture mechanics aspects of functionally graded materials have been also dealt 

with in a number of works. Exponential spatial variation of the elastic modulus has been 

assumed in the analysis by Atkinson and List (1978), and Delale and Erdogan (1983). 

Further it has been shown (Erdogan et al., 1991, Erdogan, 1995) that assuming a 

“smooth” material property distribution at the interface between a material with 
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constant properties and a functionally graded material, the anomalous behaviour of the 

stress state is eliminated. That is, the phenomenon of either infinite or vanishing stress 

intensity factors is no longer valid, as far as jumps in the material property distribution 

are not present.  

In the present paper a graded material with a continuously varying stiffness is studied. A 

crack approaching, penetrating and passing a region of graded material is considered. 

The graded region is considered to have a rectangular shape with arbitrary sides, but 

special interest is devoted to a strip shaped layer with a material gradient only in the 

direction perpendicular to the extent of the strip. The analysis is divided into three main 

parts. In section 3 the solution for a crack interacting with a rectangular region with a 

material gradient in direction parallel to the crack plane is derived. The result for an 

infinite strip is shown to be a linear combination of the gradient function and its 

Hilbert’s transform. In section 4 a particular choice of the gradient function is 

considered and the analytical solution for this case is compared to numerical results 

from FEM calculations (Jivkov and Ståhle, 1999). A very good agreement is shown for 

large range of gradient magnitudes. Finally, in section 5 it is demonstrated how this 

special choice of the gradient function allows the result for an arbitrary function to be 

written in the form of a trigonometric series expansion. 

 
2. Model description 

Consider an infinite two-dimensional homogeneous isotropic linear elastic body with a 

modulus of elasticity E0  and a Poisson’s ratio ν . A rectangular region of a different 

material is introduced into the body. A co-ordinate system X1, X2( ) is initiated, such that 

the rectangle occupies a domain of the plane given by X1 < s, X2 < b : s,b ∈ R+{ }  

(see Figure 1). 

Suppose that the body is subjected remotely (at infinity) to a uniformly distributed load 

of intensity σ , which is perpendicular to the X1 -axis, i.e. σ22
∞ = σ , while σ11

∞ = σ12
∞ = 0 .  

Consider further a large crack existing into the body and occupying the domain 

X1 < d , X2 = 0 : d ∈ R{ } . In this description, obviously, d is the abscissa of the right tip 

of the crack with respect to the introduced co-ordinate system. It can also be thought of 

as the oriented distance from the central line, X1 = 0, of the rectangular region to the 

crack tip: d  is negative when the crack tip is approaching or penetrating the region up 

to its central line and positive after that. It must be remarked that the notion of largeness 

in the crack description expresses only the assumption that the crack length is much 

larger than the other characteristic length parameters, namely s, b, d . 
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In addition, the origin of a second co-ordinate system x1,x2( ) is attached to the right tip 
of the crack. Note that the relation between the two co-ordinate systems is given by the 
transforms x1 = X1 − d  and x2 = X2 .  

The crack surfaces are presumed traction free, i.e. σ22 x1, x2( )= σ12 x1,x2( )= 0  whenever 
x1 < 0, x2 = 0 . 

Finally, suppose that the material of the rectangular region has the same Poisson’s ratio, 

ν , as the surrounding body and a modulus of elasticity, E , changing only with respect 

to the co-ordinate X1  according to the formula E = E 0 1 + ∆ψ X1( )[ ]. Here ∆  is a 

coefficient, which may take positive or negative values under the requirement ∆ <<1.  

Further, ψ  may be any bounded continuous function of one argument with the 

following properties (see Fig.2): 

(1a) 
ψ X1( )≠ 0, for X1 < s

ψ X1( )= 0, for X1 ≥ s
 

(1b) Max
X1 ∈ R

ψ X1( ){ } ≤ 1 

(1c) ′ ψ X1( ) is a function of bounded variation, i.e. the derivative exists and is 
continuous everywhere except possibly at points of a set of measure zero, where 
it might have at most jumps. At these points the derivative is additionally 

defined to have the values ′ ψ X1 −( )= lim
t→ 0
t< 0

ψ X1 + t( )−ψ X1( )
t

 from the left and 

Figure 1. A crack close to a region with spatially changing modulus of elasticity 

s

x2

x1, X1

d

E0, ν
E0[1+∆.ψ(X1)]

X2

σ

σ

b
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′ ψ X1 +( )= lim
t→ 0
t> 0

ψ X1 + t( )−ψ X1( )
t

 from the right of the points respectively. This 

ensures the first derivative is integrable. 

With these assumptions the formula describes a small perturbation of the elastic 

modulus of the initial body. The modulus of elasticity of the new body with the strip 

will be written in the more suitable form E = E 0 + ∆ E1 , where E1 = E 0 ⋅ψ X1( ). The 

problem with ( )0..0 EEei ==∆  will be referred to as unperturbed, while the one with 

∆ ≠ 0 as perturbed. 

Because of the assumption for constant Poisson’s ratio, the Lame constants for the 

continuum of the perturbed problem, which are required in the analysis, are written in 

the same way as modulus of elasticity: 

(2) 
µ = µ0 1 + ∆ψ X1( )[ ] = µ0 + ∆µ1

λ = λ0 1 + ∆ψ X1( )[ ]= λ0 + ∆λ1 , where 
µ1 = µ0 ⋅ψ X1( )
λ1 = λ0 ⋅ψ X1( ) . 

 

Since a small perturbation of these elastic characteristics is under consideration, the 

solutions to the perturbed problem are assumed to have the form: 

(3a) 

σ ij = σ ij
0 + ∆σ ij

1

ε ij = ε ij
0 + ∆ε ij

1

ui = ui
0 + ∆ui

1

 

Figure 2. Change of modulus of elasticity of the medium within a strip of width 2s  

E=E0

E0[1+∆⋅ψ( X1)]

-s +s

E(X1)

X1
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where σ ij
0, ε ij

0 , ui
0  (the zero order solutions) are the solutions of the unperturbed problem, 

and σ ij
1 , εij

1 , ui
1  (the first order solutions) are unknown functions to be investigated in the 

following analysis. Consequently, the stress intensity factor for the perturbed problem 
can be written in the same manner: 

(3b) KI = KI
0 + ∆KI

1  

where KI
0  is the stress intensity factor for the unperturbed problem, caused by the stress 

field σ ij
0  and KI

1  is the stress intensity factor caused by the stress field σ ij
1 . 

The main objective of the work will be to estimate the deviation of the stress intensity 

factor for the perturbed problem, KI , from the stress intensity factor for the unperturbed 

one, KI
0 , as a function of the crack tip position. This function is normalised so that it 

does not depend on the magnitude of the perturbation coefficient, resulting in: 

(4) Π d( )=
1

∆
⋅

KI

KI
0 −1

 
 
  

 
 = sgn ∆( ) KI

1

KI
0  

However, the perturbation magnitude must still be small enough to ensure the 

assumptions made with equations (3) and all the subsequent derivations. 

 
3. Mathematical analysis 

The constitutive law for linear elasticity, used together with the equations (2) and (3a), 

affords the following representation of the stresses for the perturbed problem: 

(5) 

σ ij = σ ij
0 + ∆σ ij

1 = 2µε ij + λεkkδij =

= 2 µ0 + ∆µ1( ) ε ij
0 + ∆ε ij

1( )+ λ0 + ∆λ1( )εkk
0 + ∆εkk

1( )δij =

= 2µ0ε ij
0 + λ0εkk

0 δij( )+

+ ∆ 2µ 0ε ij
1 + λ0εkk

1 δij( )+ ∆ 2µ1ε ij
0 + λ1εkk

0 δij( )+

+ ∆2 2µ1ε ij
1 + λ1εkk

1 δij( )

 

Equating coefficients of the zero powers of ∆  produces the constitutive law for the 

unperturbed body, while equating coefficients of the first powers of ∆  leads to an 

expression for the stresses of the first order solution which reads: 

(6) σij
1 = 2µ0ε ij

1 + λ0εkk
1 δij( )+ 2µ1ε ij

0 + λ1εkk
0 δij( ) 

With the notations  
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(7a) Σij
K = 2µ1εij

0 + λ1εkk
0 δij( )  

(7b) Σij
U = 2µ0ε ij

1 + λ0ε kk
1 δij( )  

the stresses of the first order solution can be rewritten as: 

(8a) σij
1 = Σij

K + Σij
U  

Hence these stresses consist of one known part, Σij
K , and one unknown part, Σij

U .  

The purpose of this work, however, is not in finding the entire stress tensor of the first 
order solution but in analysing the behaviour of the stress intensity factor of this first 
order solution when the crack tip occupies different positions with respect to the 
perturbation region. It is clear from equation (8a) that the stress intensity factor of the 
first order solution will be, precisely like the stresses, a superposition of the stress 
intensity factors due to the two parts Σij

K  and Σij
U , which will be hereafter denoted by 

KI
K  and KI

U  respectively. Consequently, one may write: 

(8b) KI
1 = KI

K + KI
U  

A substitution of the formulas for µ1  and λ1  from (2) into (7a) reduces the expression 

for Σij
K  to the form: 

(9a) Σij
K = 2µ 0ψ X1( )ε ij

0 + λ0ψ X1( )εkk
0 δij( )= ψ X1( )⋅σij

0  

Since the zero order stresses induce the zero order stress intensity factor KI
0 , i.e. the 

stress intensity factor for the unperturbed problem, it follows: 

(9b) KI
K = ψ X1( )⋅ KI

0  

In order to obtain the unknown terms in formulas (8a) and (8b) one observes that the 
first order stresses must obey the equilibrium equations σij, j

1 = 0; hence the equality 

Σij , j
U + Σij, j

K = 0 ensues from (8a). 

The derivative of the term Σij
U  reduces, after some well-known algebra, to: 

(10a) Σ ij , j
U = µ 0ui, jj

1 + µ 0 + λ0( )uj , ji
1  

while the derivative of the term Σij
K  is easily calculated from (9a) and from the 

equilibrium requirements σij, j
0 = 0 for the stresses of the zero order solution: 
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(10b) Σij , j
K = ψ X1( )⋅σ ij

0( )
, j

= ψ , j X1( )⋅σ ij
0 +ψ X1( )⋅σij, j

0 = ψ, j X1( )⋅σ ij
0  

Since the function ψ X1( ) depends only on the first co-ordinate this result can be further 

reduced to Fi = Σij, j
K = ′ ψ X1( )⋅σi1

0 , where the prime denotes the ordinary derivative of 

the function ψ X1( ). The new notation, Fi , in the last expression has been introduced for 
simplicity. 

Consequently the equilibrium equations for the stresses of the first order solution lead to 

a system of differential equations for the unknown displacements: 

(11) µ0ui, jj
1 + µ0 + λ0( )uj, ji

1 + Fi = 0 

Equations (11) can be seen as an analogous system of equilibrium equations for a 

linearly elastic continuum, with characteristics as those for the unperturbed problem and 

subjected only to fictitious body forces Fi . Stated differently, the unknown term Σij
1  in 

the first order solution of the perturbed problem can be found as a solution to a new 

elasticity problem for an infinite body with unperturbed elastic characteristics and 

subjected to body forces present only inside the initial perturbation region. The body 

forces, on their hand, are due to the stress field of the zero order solution, i.e. the 

solution for unperturbed homogeneous linear elastic body subjected to uniformly 

distributed load at infinity, perpendicular to the present crack.  

The stress field around the crack tip for this body has a well-known solution, which in 

more elegant complex form yields the following representation of the fictitious body 

forces: 

(12) 

F1 + iF2 = ′ ψ X1( )⋅ σ11
0 + iσ21

0( )= ′ ψ X1( ) KI
0

2 2π
1

z
+ 1

z 
+ z − z 

z 
3
2

 
 

 
 

F1 − iF2 = ′ ψ X1( )⋅ σ11
0 −iσ21

0( )= ′ ψ X1( ) KI
0

2 2π
1

z
+

1

z 
+

z − z

z
3
2

 
 

 
 

 

Note that in (12) z = x1 + ix2  and z = x1 − ix2  are taken with respect to the co-ordinate 

system centred at the crack tip, while the argument of ′ ψ  is taken with respect to the 

spatially fixed system. This is done for the sake of simplicity only and the transform to a 

single co-ordinate system will be performed when it becomes necessary.  

The solution of (11) can be found using the results for the stress field due to 

concentrated horizontal and vertical forces and subsequent integration in a region S  of 

the complex plane, defined by S = x1,x2( ): x1 + d ≤ s, x2 ≤ b{ } .  
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The stresses due to concentrated forces are easily obtained by Muskhelishvili’s complex 

potentials method and the complex stress intensity factor is derived directly form them. 

Only the formulas of interest are included below: 

(13a) 

Σ22
U − i Σ12

U =
1

2π 1 +κ( ) F1 + iF2( ) κ
w − z 

−
1

w − z
 
 

 
 +

 
  

z ∈ S
∫

+ F1 − iF2( ) w − z

w − z ( )2 −
1

w − z 

 
 
  

 
  

  
dz

 

(13b) KI
U − i KII

U =
1

2π 1 +κ( ) F1 + iF2( ) 1

z
−

κ
z 

 
 

 
 + F1 − iF2( )z − z

2z 
3
2

 

  
 

  z ∈ S
∫ dz  

The note for (12) is valid for (13) with x1, x2  being the co-ordinates of the application 

point of the forces F1, F2  with respect to the co-ordinate system centred at the crack tip. 

A substitution of equations (12) into (13b) provides:  

(14) 

KI
U − i KII

U = KI
0

4π 1 +κ( )
′ ψ X1( )⋅ 1− 2κ

2
⋅ 1

zz 
+ z 

zz 
+ 1−κ

2
⋅

 

 
 z

z z 
z ∈ S
∫

+
1

4
⋅
z2 + z 2

z z ( )
3
2

−
1 +κ

2
⋅

z 3

z z ( )2

 

 
 dz

  

A transition in (14) from the complex variable z  to its algebraic representation x1 + i x2  

and integration with respect to x2  produces the intermediate result: 

(15) 

KI
U − iKII

U =
KI

0

4π 1 +κ( ) ′ ψ X1( )⋅
− d−s

− d+s

∫ κ ⋅ ln
b2 + x1

2 − b

b2 + x1
2 + b

+ 4 ⋅arctan
b

x1

 
 
  

 
 

 

 
 

+
2b

b2 + x1
2

− 1+κ( )⋅ 2b x1

b2 + x1
2

 

 
 dx1

 

As seen in (15) the imaginary terms in the right hand side have cancelled out during the 

integration, thus leading to the expected zero stress intensity factor for the second mode.  

Now the translation x1 = X1 − d , followed by the scaling substitution ξ = X1 s  converts 

equation (15) into a more convenient form: 
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(16) 

Ρ = KI
U

KI
0

= 1
4π 1+κ( )

′ ψ ξ ⋅ s( )
−1

+1

∫ κ ⋅ ln
β2 + ξ −γ( )2 − β

β2 + ξ −γ( )2 + β
+ 4 ⋅arctan

β
ξ − γ
 
 
  

 

 

 
 

+
2β

β 2 + ξ − γ( )2
− 1 +κ( ) ⋅

2 β ξ − γ( )
β2 + ξ − γ( )2

 

 
 sdξ

 

where the notations β = b s  and γ = d s  have been introduced.  

For any fixed β  equation (16) gives Ρ  as a function of the crack tip distance d , or 

normalised distance γ . Combining (16) with equation (9b) leads to an expression for 

the function defined in (4): 

(17) Π d( )= sgn ∆( )⋅ KI
1

KI
0 = sgn ∆( ) ⋅ ψ d( )+ Ρ d( )[ ]  

The integral in (16) does not have a closed form solution for every particular choice of 

the function ψ . Therefore a numerical integration of Ρ d( )  will be used later for 

computing Π d( ) for different heights of the perturbation region (i.e. different β ).  

More interesting from practical point of view is the case when β >>ξ,γ  or stated 

otherwise, when b >> s,d . It can be seen as a limiting solution for β → ∞ , although the 

analysis is still confined within a range of b << a  according to the previous 

assumptions. The rectangular region, inducing the perturbation, will be hereafter called 

a strip, in order to underline this new condition. To obtain the solution for this case, 

consider the integral in (16) as two separate parts: 

(18a) I1 = κ ′ ψ ξ ⋅s( )⋅ ln
β2 + ξ −γ( )2 − β

β2 + ξ −γ( )2 + β−1

+1

∫ ⋅s dξ  

(18b) I2 = ′ ψ ξ ⋅ s( )⋅
−1

+1

∫ 4 ⋅ arctan
β

ξ −γ
 
 
  

 
+

2 β
β2 + ξ − γ( )2

− 1+κ( )⋅ 2 β ξ −γ( )
β2 + ξ −γ( )2

 

 
 

 

 
 ⋅s dξ  

When passing β  to approach infinity the integral in (18b) takes the form: 
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(19) 

I2 = ′ ψ ξ ⋅ s( )⋅
−1

+1

∫ 2π⋅ sgn ξ − γ( )+ 2[ ]⋅ sdξ = 2π ′ ψ ξ ⋅s( )⋅
−1

+1

∫ sgn ξ −γ( )⋅s dξ =

= 2π ψ ξ⋅ s( )⋅sgn ξ −γ( )[ ]−1

1
− 4π ψ ξ⋅ s( )⋅

−1

+1

∫ δ ξ −γ( )dξ =

= −4π ψ ξ ⋅s( )⋅
−∞

+∞

∫ δ ξ − γ( )dξ = −4π ⋅ψ γ ⋅ s( ) = −4π ⋅ψ d( )

 

where the properties ψ −s( )= ψ s( ) = 0 and ψ x( ) ≡ 0, for x > s  are used, together with 

some properties of the signum function and the Dirac’s delta function. 

To deal with the integral in (18a), integration by parts is initially performed to obtain: 

(20) 

I1 = κ ψ ξ ⋅ s( )⋅ ln
β 2 + ξ − γ( )2 − β

β2 + ξ − γ( )2 + β

 

 
 

 

 
 

−1

1

−

κ ψ ξ ⋅ s( )⋅ 2β
ξ − γ( ) β 2 + ξ − γ( )2

−1

+1

∫ dξ =

= −κ ψ ξ ⋅ s( )⋅ 2β
ξ −γ( ) β2 + ξ −γ( )2

−1

+1

∫ dξ

 

and by letting β  to approach infinity 

(21) I1 = −2κ
ψ ξ ⋅ s( )
ξ −γ( )−1

+1

∫ dξ  

The last result, with the help of the property ψ x( ) ≡ 0, for x > s , is written as: 

(22) I1 = −2κ
ψ ξ ⋅ s( )
ξ −γ( )−∞

+∞

∫ dξ = −2πκ ⋅Ψ γ ⋅ s( ) 

where Ψ γ ⋅ s( ) is the Hilbert’s transform of the function ψ ξ ⋅ s( ), defined by: 

(23) Ψ x( ) =
1

π
ψ t( )
t − x( )−∞

+∞

∫ dt Cauchy principal value( ) 

The general solution now follows from (16) and (17): 

(24) Π d( )= sgn ∆( )⋅ κ
1 +κ

⋅ ψ d( )−
1

2
Ψ d( ) 

 
 
 
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An explanatory note 

A question might arise about whether a function of the type:  

(*) ψ x( ) =
0, x ≥ s

1, x < s

 
 
 

 

can be used as a trial function for elastic modulus distribution in perturbation strip. The 

Hilbert’s transform of (*) reads: 

(**) Ψ d( ) =
1

π
ln

s − d

s + d
 

and causes infinite increase or decrease of the function Π d( ) when the crack tip is 

situated exactly at the borders of the strip. This outcome is in agreement, of course, with 

the previous results for cracks terminating at sharp interfaces. However, for the 

purposes of the present work such a function is not acceptable, since its derivative 

violates the assumption (1c) for being a function of bounded variation. A “nicer” 

function will be adopted in the next section, which solution could be used for resolving 

cases of more general elastic modulus distributions.  

 
4. A primer 

As a useful example consider a concrete choice of the perturbation function: 

(25) ψ x( ) = cos
πx

2s
⋅
1 + sgn s − x( )

2
 

This choice fulfils all the prerequisites posed by equations (1). Inserting the chosen 

function into the general solution (24) yields to: 

(26) Π1 = sgn ∆( ) κ
2 1 +κ( ) cos

π
2

γ 
 

 
 1 + sgn 1− γ( )[ ]−

1

π

cos
π
2

ξ 
 

 
 

ξ − γ
dξ

−1

1

∫
 

 
 

  

 

 
 

  
 

where the lower index 1 has been introduced to underline the particularity of the 

solution for one half-wave shaped gradient function. Next section will clarify this point.   

The integral in formula (26) can be solved using the translation x = ξ −γ , which gives: 
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(27) 

H = 1
π

⋅
cos

π
2

ξ 
 

 
 

ξ −γ
dξ

−1

1

∫ = 1
π

⋅
cos

π
2

x + γ( ) 
 

 
 

x
dx

−1−γ

1−γ

∫ =

=
1

π
⋅ cos

π
2

γ 
 

 
 ⋅

cos
π
2

x
 
 

 
 

x
dx

−1−γ

1−γ

∫ −
1

π
⋅sin

π
2

γ 
 

 
 ⋅

sin
π
2

x
 
 

 
 

x
dx

−1−γ

1−γ

∫

 

and the substitution t =
nπ
2

x , which leads to: 

(28) H =
1

π
⋅ cos

π
2

γ 
 

 
 ⋅

cos t( )
t

dt
π
2

−1−γ( )

π
2

1−γ( )

∫ −
1

π
⋅ sin

π
2

γ 
 

 
 ⋅

sin t( )
t

dt
π
2

−1−γ( )

π
2

1−γ( )

∫  

Several cases must be considered when solving the integrals in the last expression. All 

the results are obtained in terms of the sine and cosine integrals Si(x) and Ci(x). 

Case 1: γ < −1 (the crack tip is placed before the strip) 

In this case both limits of the integrals are positive and the following argument is used: 

H =
1

π
⋅ cos

π
2

γ 
 

 
 ⋅

cos t( )
t

dt
π
2

−1−γ( )

∞

∫ −
cos t( )

t
dt

π
2

1−γ( )

∞

∫
 

 

 
 

 

 

 
 

−

−
1

π
⋅sin

π
2

γ 
 

 
 ⋅

sin t( )
t

dt
0

π
2

1−γ( )

∫ −
sin t( )

t
dt

0

π
2

−1−γ( )

∫
 

 

 
 

 

 

 
 

=

= 1
π

⋅ cos
π
2

γ 
 

 
 ⋅ −Ci

π
2

−1− γ( ) 
 

 
 + Ci

π
2

1 − γ( ) 
 

 
 

 
  

 
  

−

−
1

π
⋅sin

π
2

γ 
 

 
 ⋅ Si

π
2

1 − γ( ) 
 

 
 − Si

π
2

−1 −γ( ) 
 

 
 

 
  

 
  

 

Case 2: γ >1 (the crack tip is placed after the strip) 

In this case both limits are negative and first the substitution t = −t  is applied, 

succeeded by the same reasoning as in Case 1: 
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H =
1

π
⋅ cos

π
2

γ 
 

 
 ⋅

cos t( )
t

dt
π
2

1+γ( )

π
2

−1+γ( )

∫ +
1

π
⋅ sin

π
2

γ 
 

 
 ⋅

sin t( )
t

dt
π
2

1+γ( )

π
2

−1+γ( )

∫ =

=
1

π
⋅ cos

π
2

γ 
 

 
 ⋅ −Ci

π
2

1+ γ( ) 
 

 
 + Ci

π
2

−1+ γ( ) 
 

 
 

 
  

 
  

+

+
1

π
⋅sin

π
2

γ 
 

 
 ⋅ Si

π
2

−1 +γ( ) 
 

 
 − Si

π
2

1 + γ( ) 
 

 
 

 
  

 
  

 

Case 3: γ = 1 (the crack tip is placed at one of the borders of the strip) 

In this case the first term in (28) vanishes in limit, since the cosine function goes faster 

to zero than the cosine integral, which has a logarithmic singularity. The solution is 

hence given by: 

H = −sgn γ( )⋅ Si π( )
π

  

Note that this result implies a finite stress intensity factor when the crack tip is placed at 

the borders of the strip, differing from the phenomenon that occurs when the interface 

between two materials is sharp. 

Case 4: γ <1 (the crack tip is placed inside the strip) 

The case is resolved by separating the integral of integration into two intervals and 

subsequently applying the logic from Case 1 and Case 2: 

H =
1

π
⋅ cos

π
2

γ 
 

 
 ⋅

cos t( )
t

dt
π
2

−1−γ( )

0

∫ +
cos t( )

t
dt

0

π
2

1−γ( )

∫
 

 

 
 

 

 

 
 

−

−
1

π
⋅sin

π
2

γ 
 

 
 ⋅

sin t( )
t

dt
π
2

−1−γ( )

0

∫ +
sin t( )

t
dt

0

π
2

1−γ( )

∫
 

 

 
 

 

 

 
 

=

=
1

π
⋅ cos

π
2

γ 
 

 
 ⋅ −

cos t( )
t

dt
0

∞

∫ +
cos t( )

t
dt

π
2

1+γ( )

∞

∫ +
cos t( )

t
dt

0

∞

∫ −
cos t( )

t
dt

π
2

1−γ( )

∞

∫
 

 

 
 

 

 

 
 

−

−
1

π
⋅sin

π
2

γ 
 

 
 ⋅

sin t( )
t

dt
0

π
2

1+γ( )

∫ +
sin t( )

t
dt

0

π
2

1−γ( )

∫
 

 

 
 

 

 

 
 

=

= 1
π

⋅ cos
π
2

γ 
 

 
 ⋅ −Ci

π
2

1+ γ( ) 
 

 
 + Ci

π
2

1− γ( ) 
 

 
 

 
  

 
  

−

−
1

π
⋅sin

π
2

γ 
 

 
 ⋅ Si

π
2

1 + γ( ) 
 

 
 + Si

π
2

1− γ( ) 
 

 
 

 
  

 
  
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Summarising the results for the examined cases the integral (27) can be written as: 

(29) 

H γ( ) = 1
π

⋅ cos
π
2

γ 
 

 
 ⋅ Ci

π
2

1− γ 
 

 
 − Ci

π
2

1+ γ 
 

 
 

 
  

 
  

−

−
1

π
⋅sin

π
2

γ 
 

 
 ⋅ sgn(1− γ ) ⋅ Si

π
2

1− γ 
 

 
 + sgn(1+ γ ) ⋅ Si

π
2

1+ γ 
 

 
 

 
  

 
  

 

which is apparently the Hilbert’s transform of the chosen function. 

This completes the solution for the deviation of the stress intensity factor for the 

perturbed problem, with ψ  given by (25), from the one for the unperturbed problem, as 

a function of the crack tip position: 

(30) Π1 = sgn ∆( ) κ
2 1 +κ( ) cos

π
2

γ 
 

 
 1 + sgn 1− γ( )[ ]− H γ( ) 

 
 

 
 
 

 

A graphical representation of the analytical solution (30) is shown in Fig. 3. The sign of 

the perturbation coefficient is taken negative (a drop in the modulus of elasticity), 

noting that a positive perturbation coefficient effects only in a change of the sign of the 

function Π1 γ( ) but not in its magnitudes. 

Plane strain conditions are assumed with the comment that plane stress results differ 

from that for plain strain only by a factor 
3 −ν( ) 1− ν( )

3 − 4ν
, easily derived from equation 

(30). Poisson’s ratio, ν =1 3, is chosen for definiteness, assigning κ = 5 3 for plane 
strain and implying that the results for plain stress are 16 15 times greater. 

Figure 3. Normalised stress intensity factors ratio for different crack tip positions 
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By using equation (17), with numerical integration of the part given by (16), solutions 

have been obtained for three different values of β : β =1; β = 10; β = 100. The 

resulting plots for the normalised stress intensity factors ratio Π  as a function of γ  are 

shown also in Fig.3.  

As seen from the figure, the numerical solutions converge to the analytical one, and the 

curve for β =100  is practically indistinguishable from the analytical curve. 

FEM experiments have been performed to check and support the analytical predictions 

(Jivkov and Ståhle, 1999). The experiments aimed also to show the deviation of the 

results from the analytical prediction for different finite values of the perturbation 

coefficient. To estimate this deviation (error) a comparison of the minimum, 

respectively maximum values of the functions Π FEM γ( )  and Π1 γ( ) has been adopted. 

The experiments have been run for a set of values of the perturbation coefficient, 

namely ∆ = −0.9,−0.5, −0.1,−0.01,0.01,0.1,0.5,0.9. The relative errors in the analytical 

solution minimum and maximum with respect to the FEM results are presented in Fig.4. 

From the graphics in Fig.4 the range of validity of the analytical solution is easily 

assessed. For example, if an error of 5% is acceptable for certain applications, then the 

analytical solution is applicable for variations of the modulus of elasticity as big as 

about 40% in negative and about 60% in positive direction. 

 

Figure 4. Error in the analytical solution for finite values of ∆  
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5. Solution proposal for arbitrary elastic modulus gradient  

The solution offered in the previous section, for a problem perturbed by one half-wave, 

can be extended to resolve the case of any trigonometric elastic modulus distribution by 

a simple reasoning. Consider, for this purpose, the scheme shown in Fig. 5. N  half-

waves with altering signs describe the variation of the modulus of elasticity inside the 

perturbation strip of width 2s . The distances from the central lines of each of the half-

waves to the crack tip are denoted by di
N , i =1,2, ..., N , where the upper index stands for 

the number of half-waves and the lower index for the number of the half-wave being 

considered. The half-waves are counted from left to right so that d1
N < d2

N < ... < dN
N  

holds. The distance from the central line of the strip to the crack tip is denoted as before 

by d . 

It is easy to observe the following relation: 

(31) di
N = d +

N +1 − 2i

N
⋅ s, i = 1,2,..., N  

 

By introducing the normalised distances γ i
N =

di
N

s N
; γ =

d

s
 equation (31) becomes: 

(32) γ i
N = N γ +1( ) +1− 2 i, i = 1,2,..., N  

The linearity of the problem allows the solution for the given N  half-waves to be found 

by superimposing the solutions for each of them. Moreover the Hilbert’s transform is 

also a linear operator. Consequently the solution is given by: 

Figure 5. Distribution of modulus of elasticity in the form of N half-waves 
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(33) Π N γ( ) = −1( )i+1

i =1

N

∑ Π1 γ i
N( ) 

Now a Fourier’s series may be defined as an expansion of a function ψ γ( )  in a series of 

sines and cosines such as: 

(34) ψ γ( ) = aN cos 2N +1( )πγ
2

 
 

 
 N = 0

∞

∑ + bN sin 2N
πγ
2

 
 

 
 N=1

∞

∑  

There is no necessity any more for ψ γ( )  to be continuous, but it must remain bounded. 

All terms are orthogonal and the series converges everywhere in the interval γ <1. The 

expansion’s coefficients are computed as follows: 

(35) 

aN = ψ γ( )⋅ cos 2N +1( )π γ
2

 
 

 
 
dγ

−1

1

∫

bN = ψ γ( )⋅sin 2N
π γ
2

 
 

 
 
dγ

−1

1

∫
 

The solutions (33) can now be combined with (35) to form a general solution for the 

case of an infinite strip with an arbitrary modulus of elasticity change. Thus, the 

deviation of the stress intensity factor may be written in a Fourier’s series form as 

proceeds: 

(36) Π γ( ) = aN ⋅Π 2 N+1 γ( )⋅ cos 2N + 1( )πγ
2

 
 

 
 

+ bN ⋅Π 2 N γ( )⋅sin 2N
πγ
2

 
 

 
 N =1

∞

∑
N =0

∞

∑  

A noteworthy generalisation obtained by that solution is that the requirement of a 

continuous ψ γ( )  is removed. Further one may reflect on the fact that a physical change 

of the elastic modulus is hardly atomically sharp, which calls for a representation via a 

truncated series expansion in the form (36). Hence, the required continuity of ψ γ( )  is 

granted. In the case of a mathematically sharp jump of the elastic modulus, the result 

(36) will be point-wise convergent for any fixed point except for that at the jump. 

 
6. Discussion and conclusions 

In the paper, the result for the stress intensity variation when a crack tip is interfering 

with an infinite strip of spatially changing modulus of elasticity is given in the form of a 

Fourier series expansion. The selected series converges to any continuous function 

defined in the region x ≤ s , provided that the function vanishes at the points x = s . In 
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the case of discontinuous functions, the expansion converges at any fixed point 

excluding only the points of discontinuity. It is not known, at the present, weather the 

resulting stress intensity factor will have discontinuities in the form of finite jumps. 

However, at the jumps in elastic modulus the resulting stress intensity factor either 

become unbounded or vanish which of course in a limited region close to the jump in 

elastic modulus will violate the assumptions made for the present perturbation analysis. 

The result is interesting because the analysis is based on the assumption that the 

modulus of elasticity is continuous everywhere including across the boundaries of the 

strip. The solutions obtained for individual terms of a series expansion, provide us with 

a series point-wise convergent to the result for a discontinuous modulus of elasticity. A 

truncated series represents the result for a continuous modulus where the discontinuity 

is replaced with a fast changing wave. A truncated series expansion approximating a 

discontinuous modulus of elasticity thus supplies a possibility of examining a more 

realistic case where the jump in modulus occurs over a finite distance. This will give a 

physical meaning to truncating the series for terms with minimal period. Approximate 

finite distance over which the jump of modulus occurs should be around 1/4:th of that 

minimal period. 

The error due to the assumed small changes of the modulus of elasticity is examined 

only for the leading term of the Fourier series expansion. However direct comparison 

with numerical results for the leading term can be transformed into results for higher 

order terms following the method given in section 5. The numerical procedure for finite 

changes of the modulus of elasticity (Jivkov and Ståhle, 1999), provides a possibility to 

estimate the error for any variation of modulus of elasticity. However the result must be 

treated with judgement whereas the numerical results cannot be superimposed. 

In the present paper only the modulus of elasticity was depending on one spatial co-

ordinate. A motivation for not introducing a spatial variation also of the Poisson’s ratio 

is that the variation of ν  between different materials is rather limited. In situations such 

as cracks approaching, running parallel with and on bimaterial interfaces the results has 

been shown to be fairly insensitive to the differences in ν  across the interface. If this is 

the case also for gradient materials, may be a subject for a future study. 
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Abstract — The behaviour of the stress intensity factor is investigated for a long plane crack with one tip 

interacting with a strip of graded elastic properties. The material outside the strip is postulated to be 

homogeneous linear elastic and the material in the graded region is assumed to have continuous change of 

modulus of elasticity. Changes of the Poisson’s ratio are ignored. The body is assumed to be large in 

comparison to the crack length, and the crack length itself to be large compared to the linear extent of the 

graded region. The study is performed using finite element method and the results are extrapolated to 

infinitesimal variations of the graded region’s modulus of elasticity from the one of the surrounding body. 

The crack tip, including the graded region, is considered embedded in a square root singular stress field 

governed by the stress intensity factor for a body without a strip. Hence, the numerical solutions are 

obtained for remote boundary conditions in a form of prescribed displacements supplied by that stress 

intensity factor. The analytical solution to the problem for an infinitesimally small variation of the 

region’s modulus of elasticity, obtained recently by the authors, is communicated in brief.  A particular 

function describing the modulus of elasticity change is treated so that a comparison between the finite 

element solutions and the analytical results is facilitated. The analytical solution is shown to have a 

surprisingly large range of validity. If an error of 5% is tolerated, modulus of elasticity may decrease with 

around 40% or increase with around 60%. 

Keywords — elastic material, functionally graded material, layered material, crack growth, stress 

intensity factor, finite element method 

 
1. Introduction 

Modern processes for diffusive or evaporative deposition of thin layers to surfaces and 

thin internal layers in structures have provided possibilities for manufacturing layers of 

size of few atomic distances. The technique introduces new prospects for increasing the 
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lifetime of components when the layers are properly designed for improvement of 

mechanical, thermal or chemical performance. During the production process, as the 

components are exposed to elevated temperatures, considerable diffusion across the 

material boundaries occurs, naturally creating material properties gradients. This might 

question the concept of a distinct bimaterial interface, which has been initially utilised 

for studying layered material. In fact, the diffusion may be taken advantage of since 

graded materials with tailored material property distribution may be developed. 

In the present work an internal layer of a graded material with a continuously varying 

stiffness is considered. A crack perpendicularly approaching, penetrating and passing 

the layer is examined and the behaviour of the stress intensity factor is analysed. The 

case studied, is closely related to generally two directions of past works; those devoted 

to cracks at sharp interfaces and those connected with fracture of functionally graded 

materials. 

The problem for a cracked material attached to an elastic solid was first treated by Zak 

and Williams (1963) and after that followed by Atkinson (1975), Lu and Erdogan 

(1983), He and Hutchinson (1989) and Romeo and Ballarini (1996), among others. A 

series expansion for the stresses around the crack tip was deduced, unveiling the 

phenomenon that the strength of the singular stress field surrounding the crack tip is 

generally weaker or stronger than the well-known square root singular field. This causes 

analytical difficulties because it leads to either infinite or vanishing stress intensity 

factors KI  for a crack that approaches the interface (Schmauder and Müller, 1991). The 

consequence from such an outcome is that the crack either become unconditionally 

unstable or impossible to drive through the interface. One possible approach to 

overcome this anomaly is to consider the linear extent of the crack tip process region. 

However for brittle material predictions still become unrealistic (Wäppling et al., 1998). 

The fracture mechanics aspects of functionally graded materials have been also dealt 

with in a number of works. Exponential spatial variation of the elastic modulus has been 

adopted in the analysis by Atkinson and List (1978), and Delale and Erdogan (1983). 

Further it has been shown (Erdogan et al., 1991, Erdogan, 1995) that assuming a 

“smooth” material property distribution at the interface between a material with 

constant properties and a functionally graded material, the anomalous behaviour of the 

stress state is eliminated. That is, the phenomenon of either infinite or vanishing stress 

intensity factors is no longer valid, as far as jumps in the material property distribution 

are not present.  
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The emphasis in the mentioned works has been in analysing the “local” performance of 

the stress intensity factors, i.e. when the crack tip is interacting only with the interface 

between homogeneous and functionally graded material. Distinctly, the present work is 

devoted to studying a more “global” behaviour by including a whole layer of graded 

material as a media, through which the crack is passing.   

The paper is divided into three main parts. In section 2, after posing the problem, a short 

description of the analytical solution is presented. A particular choice of the gradient 

function is considered, which allows the result for an arbitrary function to be written in 

the form of a trigonometric series expansion. In section 3 the finite element procedure is 

described, together with the necessary approximations adopted. Finally, in section 3 the 

numerical results for the stress intensity factor deviation are presented graphically and 

compared to the analytical predictions for the chosen material gradient function. A very 

good agreement is shown for large range of gradient magnitudes. 

 
2. Model description and analytical solution 

A large two-dimensional homogeneous isotropic linear elastic body is considered. The 

body is attributed a modulus of elasticity E0  and a Poisson’s ratio ν . A strip of a 

different material and width 2s  is introduced into the body. The material is assumed to 

have the same Poisson’s ratio, ν , as the surrounding body and a modulus of elasticity, 

E , changing with respect to the direction, perpendicular to the strip. A large crack is 

supposed to exist in the body with one tip interfering with the strip. The crack plane is 

Figure 1. A crack close to a strip with spatially changing modulus of elasticity 

2s

x1

d

E0, ν

E0[1+∆.ψ(x1)] x2

σ

σ
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perpendicular to the strip and the oriented distance from the central line of the strip to 

the crack tip is denoted by d . The crack surfaces are presumed traction free. Further, 

the body is subjected remotely (at infinity) to a uniformly distributed uniaxial stress 

field with intensity σ , which is perpendicular to the crack plane. Figure 1 displays the 

geometry and all the notations required for the subsequent discussion. 

The modulus of elasticity of the composed body is expressed with the formula 

E = E 0 1 + ∆ψ X1( )[ ]. For the analytical treatment of the problem, ∆  is a coefficient, 

obeying the requirement ∆ <<1. For the finite element solutions, however, ∆  will take 

on finite values. Further, ψ  is allowed to be a bounded continuos function of one 

argument with the following properties: 

(1a) 
ψ X1( )≠ 0, for X1 < s

ψ X1( )= 0, for X1 ≥ s
 

(1b) Max
X1 ∈ R

ψ X1( ){ } ≤ 1 

(1c) ′ ψ X1( ) is a function of bounded variation 

With these assumptions a model of a small perturbation of the elastic modulus of the 

initial body is formulated. The problem with ∆ = 0 i.e. E = E0( ) will be referred to as 

unperturbed, while the one with ∆ ≠ 0 as perturbed. In a more suitable form the change 

of the modulus of elasticity reads:  

(2) E = E 0 + ∆ E1   where E1 = E 0 ⋅ψ X1( ).  

When a small enough perturbation is under consideration, all the field variables for the 

perturbed problem (displacements, strains and stresses) are presumed expressible in the 

same form as the elastic modulus in (2). Upper index zero denotes the zero order 

solution (of the unperturbed problem) and upper index one denotes the first order 

solution for the respective variable. Consequently, the stress intensity factor for the 

perturbed problem can be written as: 

(3) KI = KI
0 + ∆KI

1  

where KI
0  is the stress intensity factor for the unperturbed problem, caused by the stress 

field σ ij
0   and KI

1  is the stress intensity factor caused by the stress field σ ij
1 . 
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The subject of this work is the deviation of the stress intensity factor for the perturbed 

problem, KI , from the stress intensity factor for the unperturbed one, KI
0 , as a function 

of the crack tip position. This function is normalised so that it does not depend on the 

magnitude of the perturbation coefficient, resulting in: 

(4) Π d( )=
1

∆
⋅

KI

KI
0 −1

 
 
  

 
 = sgn ∆( ) KI

1

KI
0  

The magnitude of the perturbation, however, must still be small enough to ensure the 

assumptions made for the field variables, resulting in equation (3).  

The authors have resolved analytically the perturbation problem, posed here, in their 

recent work (Jivkov and Ståhle, 1999). It has been demonstrated that the solution for 

any function, obeying the prerequisites (1), has the following form: 

(5) Π d( )= sgn ∆( )⋅ κ
1 +κ

⋅ ψ d( )−
1

2
Ψ d( ) 

 
 
 

, 

where κ = 3 − 4ν  for plain strain and κ = 3 −ν( ) 1+ ν( ) for generalised plain stress 

conditions respectively, and Ψ d( )  is the Hilbert transform of the function ψ x( ) given 

by: 

(6) Ψ d( ) =
1

π
ψ x( )
x − d( )−∞

+∞

∫ dx Cauchy principal value( ) 

A trial function ψ  of the kind (see Figure 2): 

(7) ψ ξ( )= cos
π
2

⋅ξ 
 

 
 ⋅

1 +sgn 1 − ξ( )
2

, ξ =
x

s
 

has been adopted.  

The result for the normalised stress intensity factor deviation has been accomplished: 

(8) Π γ( ) = sgn ∆( ) κ
2 1 +κ( ) cos

π
2

γ 
 

 
 1 + sgn 1− γ( )[ ]− H γ( ) 

 
 

 
 
 
, γ =

d

s
 

In the last equation H γ( )  stays for the Hilbert transform of the trial function given by: 
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(9) 

H γ( ) = 1
π

⋅ cos
π
2

γ 
 

 
 ⋅ Ci

π
2

1− γ 
 

 
 − Ci

π
2

1+ γ 
 

 
 

 
  

 
  

−

−
1

π
⋅sin

π
2

γ 
 

 
 ⋅ sgn(1− γ ) ⋅ Si

π
2

1− γ 
 

 
 + sgn(1+ γ ) ⋅ Si

π
2

1+ γ 
 

 
 

 
  

 
  

 

Further it has been explained how the result (8) can be used to obtain the solution for 

arbitrary function complying requirements (1). 

 
3. Finite element formulation 

A disk shaped body is initially examined for the numerical computations. The crack 

plane forms one diameter of the disk and the crack tip is fixed at the centre of the disc. 

Accounting for the symmetry of the problem only a half-disk, cut from the whole along 

the crack plane, has been considered for finite element method (FEM) modelling and 

calculations.   

The finite element mesh for the half-disc is shown schematically in Fig. 3. The mesh is 

built up of 2250 eight-node biquadratic isoparametric plane strain finite elements. A 

half-disk region around the crack tip, called inner, is formed with 31 equally spaced 

nodes along each of 100 concentric circles centred at the tip. The first circle, closest to 

the crack tip, has a radius one forth of the radius of the second circle, thus emulating a 

square root of the distance dependence of the displacements. All the other concentric 

circles in the inner region are equally spaced. The inner region has a radius one 

hundredth of the radius of the entire half-disk. The remaining part of the half-disk, 

Figure 2. Change of modulus of elasticity according to the trial function 

E=E0

E0[1+∆.cos( πξ/2)]

-1 +1

E(ξ)

ξ

|∆|

∆<0

∆>0
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which has a half-ring shape, is called outer region. It is formed again with 31 equally 

spaced nodes along each of 50 concentric circles, but the distances between them are 

now gradually increasing with a factor of 1.5. 

The described geometry is fixed for all calculations and does not include a description 

of the strip with spatially changing modulus of elasticity. A modulus of elasticity E0  

and a Poisson’s ratio ν =1 3 have been initially ascribed to all elements. The FEM 

experiments have been performed using ABAQUS program. The procedure for user’s 

definition of a material (UMAT) has been utilised for simulation of the strip. The design 

of the code allows a geometrical description of an inclusion with arbitrary shape and 

having arbitrary change of material characteristics, and it has been used in this work for 

simulating a strip region with the modulus of elasticity change shown in Fig. 2. More 

important, indeed, is the possibility, which the code gives for using only one 

configuration of the mesh and the crack. Instead of modelling the body with the strip as 

a half-disk with spatially fixed strip region, and then considering different locations of 

the crack tip with respect to the strip, the procedure allows the use of the initial 

configuration of the crack, with a strip changing its distance from the crack tip. The 

half-width of the strip, s , has been taken as one hundredth of the half-disk radius, or 

equal to the inner region radius. The strip has been displaced at discrete set of distances 

in the crack tip vicinity, ranging from 2s  before the tip to 2s  after the tip with a step of 

s 10 . 

The idea of convective solver, i.e. “moving strip”, has been used to carry out all the 

calculations in the following way. For every position of the strip, the composed body is 

loaded by imposing one and the same displacements along the edge of the outer region 

Figure 3. Schematic of the used finite element mesh 

 

Crack tip Crack surface 

Strip region 
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of the mesh. These displacements are calculated from the stress intensity factor for the 

unperturbed problem, KI
0 . Hence, it is assumed that the presence of the strip does not 

affect the prescribed boundary conditions. Such an assumption is reasonable, since the 

strip width is comparable to the node distances at the outer boundary, and at most one of 

the nodes could possibly fall into the strip zone. More precise discussion on this matter 

is to be found in section 5 of the work. 

The displacements found along the crack plane are used for calculating the stress 

intensity factor of the perturbed problem for the given position of the strip relative to the 

crack tip. The accepted operation is employing the vertical displacements, u2 , of the 

first ten nodes behind the crack tip along the crack plane. A graph of the ratio u2 r  as 

a function of the distance r  from the crack tip to the respective node is drawn and an 

extrapolation to the limit r = 0  is used to establish: 

(10) KI
FEM = lim

r→0
c r( )⋅ u2 r( )

r
= c r = 0( )⋅ lim

r→ 0

u2 r( )
r

  

where c r( ) is a parameter depending on the material characteristics at the corresponding 

node. In the cases when the crack tip position is outside the strip c r( ) is a constant 

depending on the unperturbed modulus of elasticity and Poisson’s ratio. When crack tip 

position is inside the strip, clearly c r( ) is not a constant, since the modulus of elasticity 

change. In a limit, however, c r = 0( ) is a constant depending on the modulus of 

elasticity at the crack tip, E r = 0( ), and Poisson’s ratio. A typical example of the 

procedure for estimating E r = 0( ) is shown in Fig. 4, where the crack tip is situated in 

the middle of the strip and E r = 0( )= 0.9E0 . 

Figure 4. An example of estimating the stress intensity factor by linear regression 
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4. Results and error estimation of the analytical solution 

The FEM experiments, reported in this work, have been performed primarily to check 

and support the analytical predictions given by equations (8) and (9). The experiments 

aimed also to show the deviation of the results from the analytical prediction for 

different values of the perturbation coefficient. Since the analytical solution is obtained 

with the assumption for small ∆ , a good agreement should be expected at least for such 

coefficients. When performing FEM experiments, the stress intensity factor found for 

each position of the crack tip is actually the one of the perturbed problem, which can be 

written as KI
FEM = KI

0 + ∆KI
1 .  

The stress intensity factor for the unperturbed problem, KI
0 , has been found with letting 

∆ = 0 in the calculation procedure. In order to compare these results with the analytical 

ones, the expression 
1

∆
KI

FEM

KI
0 −1

 
 
  

 
 =

KI
1

KI
0 = ΠFEM γ( ) has been plotted for different 

values of ∆ . Here γ = d s  is a dimensionless position of the crack tip used in the 
analytical solution. 

Figure 5a shows Π FEM γ( )  for ∆ = −0.01; ∆ = −0.1; ∆ = −0.5; ∆ = −0.9 , and Figure 5b 

for ∆ = 0.01; ∆ = 0.1; ∆ = 0.5; ∆ = 0.9 . On the same figures the graphs of the analytical 

solution (8) are given for negative and positive perturbation coefficient respectively. 

To estimate the error in analytical prediction for finite magnitudes of ∆  a comparison of 

the minimal, respectively maximal values of the functions Π FEM γ( )  and Π γ( ) has been 

adopted. The calculated minimum for negative ∆  (maximum for positive ∆ ) of the 

analytical solution is –0.6854 (0.6854) achieved at point γ ≈ 0.26. The FEM solution 

Figure 5a. FEM results for the function Π FEM γ( )  for different negative perturbation 

coefficients and analytic curve Π γ( ) for sgn ∆( ) = −1. 

Π(γ)

-1,0 

-0,8 

-0,6 

-0,4 

-0,2 

0,0

0,2

0,4

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0

γ

∆=−0,01
∆=−0,1
∆=−0,5
∆=−0,9
Analytic

 



10 

curves cannot offer the exact position of the minimum or maximum because of the 

discreteness of the set of crack locations. As seen from the figures there is a tendency 

for shifting the extremum with changing ∆ . Nevertheless, the minimal and maximal 

values of Π FEM γ( )  has been taken as follows: –0.6976, –0.7031, –0.7483, –0.8525 for 

∆ = −0.01, −0.1,−0.5, −0.9  respectively and 0.6936, 0.6881, 0.6651, 0.6464 for 

∆ = 0.01,0.1,0.5,0.9  respectively. The relative errors in the analytical solution 

minimum and maximum with respect to the FEM results is presented in Fig.6 by the 

dashed line. Since the FEM results inevitably carry computational errors, additional 

reasoning is used to improve the error estimate for the analytical solution. 

First of all it is expected that the error in the analytical solution must vanish when the 

perturbation coefficient is approaching zero. This must result in an error estimate curve 

passing trough the origin. Further it might be expected a linear behaviour of the error 

for small non-zero values of the perturbation coefficient. This proposes a translation of 

the error estimate curve by the mean value of the errors for the smallest positive and 

negative perturbation coefficients. The effect of these considerations is the bold line in 

Fig. 6, presenting an improved error estimate curve. 

From the graphics in Fig.6 the range of validity of the analytical solution is easily 

assessed. For example, if an error of 5% is acceptable for certain applications, then the 

analytical solution is applicable for variations of the modulus of elasticity as big as 

about 40% in negative and about 60% in positive direction. 

 

Figure 5b. FEM results for the function Π FEM γ( )  for different positive perturbation 

coefficients and analytic curve Π γ( ) for sgn ∆( ) = +1. 
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5. Discussion 

In the present paper a numerical solution is found applying the dominating term of the 

Williams expansion for mode I crack in a homogeneous material. Boundary conditions 

are applied to a disk shaped region surrounding the crack tip. For a case with an 

inclusion of different elastic material, the under laying assumption is that the distance 

between the crack tip and the remote boundary is large compared to the distance 

between the crack tip and the inclusion or the linear extent of the inclusion. This 

assumption is of course violated when an infinite strip is examined. Accept for a 

moment that the strip is more compliant than the surrounding material (the case with 

negative perturbation coefficient). Then, imposed displacements from the Williams 

solution would underestimate energy release rate in the disk selected for the 

calculations. This is due to underestimated boundary tractions. As opposed to that, 

imposed boundary tractions also from the Williams solution will overestimate the 

energy release rate due to overestimated displacements at the boundary. The difference 

between the stress intensity factor, resulting from prescribed boundary tractions, and 

that resulting from prescribed displacements can be found by computing the stress 

intensity factor arising from boundary tractions acting along the intersection between 

the strip and the boundary. These tractions give a total force that is of the magnitude:  

δF = C ⋅
KI

R
⋅ s  

where s  is the strip width, R  is the radius of the considered disk, and C  is a constant 

dependent on the particular choice of the elastic modulus variation in the strip.  

Figure 6. Error in analytical solution for finite values of the perturbation coefficient 

Error (%)

-10

-5

0

5

10

15

20

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

∆

 



12 

The stress intensity factor caused by that force is of the order: 

δKI =
δF

R
 

which leads to the expression: 

δKI = C ⋅ KI ⋅
s

R
. 

The computed deviation of the stress intensity factor due to the presence of the strip is 

of the order C ⋅ KI , yielding an error due to approximated boundary conditions of the 

order s R . This fact is taken into account in the finite element modelling, where 

s R = 0.01, which is considered fulfilling reasonable requirements on accuracy. 

The error due to approximated boundary conditions can also be directly related to the 

difference in results between a finite rectangular region with a length equal to the linear 

extent of the treated disk and an infinite strip. The fact that the result for a strip of a 

length to width ratio of 100 almost coincides with the result for an infinite strip (Jivkov 

and Ståhle, 1999) lends confidence to the presently assumed boundary conditions. 
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1. Introduction 

The advantages of materials deliberately fabricated with spatially varying mechanical 

properties have been recognised in the recent years for a bulk of applications. These 

advantages consist in exploiting valuable characteristics of a set of different materials to 

produce an integrated material, having a desirable performance under a particular 

regime of exploitation. The materials have been called functionally graded materials 

(FGM) to underline the idea behind their design and manufacturing. The “disadvantage” 

from the mechanical point of view is that such materials can not be analysed in the 

frame of classical homogeneous isotropic linear elastic theory, since at least the 

homogeneity is lost by convention. 

Possibly the simplest examples of FGM are layered (or laminated) materials, for which 

by definition the mechanical characteristics experience discontinuous changes at 

discrete surfaces. Consequently, the case of two different elastic materials, ideally 

joined along a plane has been initially investigated (Dundurs, 1969). The major result of 

this work is the observation that the stress field in such a bimaterial medium depends 
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only on two parameters, but not on four characteristics for given stress boundary 

conditions. Generally, the two parameters can be chosen in many ways as proper 

combinations of the four constants of the two materials but one particular choice, 

proposed by Dundurs, has been widely accepted and named after him. 

The case of discontinuous change of elastic properties can hardly be supported with 

physical reasons. During the manufacture process considerable diffusion across the 

interfacial planes might occur, questioning the idea of abrupt properties’ change. The 

diffusion is also used to create a prescribed distribution of the material properties, thus 

producing more general illustrations of FGM. In both cases the notion of sharp (or 

ideal) interfaces can be deserted and the variation of material characteristics can be 

accepted continuous. 

Some studies of FGM address the continuum mechanics problems. For example a 

concept of “equivalent homogeneous plate” has been successfully applied (Abid Mian 

and Spencer, 1998) to obtain a class of solutions for stress field in functionally graded 

and layered materials with arbitrarily changing (with respect to one co-ordinate only) 

elastic characteristics.  

For the present, the crack problem and some other fracture mechanics concepts in FGM 

have been studied basically after a choice of a particular function describing the 

variation of the modulus of elasticity, while the changes in Poisson’s ratio have been 

neglected. For example, steady state solutions for crack propagating in a material with 

exponential change of elastic modulus have been found (Atkinson and List, 1978) and it 

has been demonstrated that this is the only choice of variation leading to them. It has 

been shown later (Delale and Erdogan, 1983, Erdogan et al., 1991, Erdogan, 1995) that 

an exponential variation with respect to one or both plane co-ordinates is the only 

choice, which converts the coefficients of the differential equation for the plane problem 

to constants.   

Based on the results, it has been discussed in most of the mentioned papers that the 

assumption of constant Poisson’s ratio, ν , is not very restrictive. This is because of the 

insensitivity of the solutions to reasonable changes of ν . For the sake of completeness 

and also for dealing with the potential cases when the changes in Poisson’s ratio are 

significant enough not to be discarded, the influence of these changes deserves 

attention. In such cases the spatial change of ν  enters the problem formulation as a 

second function in addition to the change of modulus of elasticity, E . In this paper two 

functions, dependent on the variations of elastic modulus and Poisson’s ratio, are 

introduced. It is initially demonstrated that these functions degenerate to constants in the 
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case of discontinuous change of elastic characteristics, and these constants are linear 

combinations of Dundurs’ parameters. It is clarified that this is not the only possible 

choice of functions, but it is shown to have certain advantages to other possible choices. 

Any particular mathematical form of these functions defines two classes of functions, 

for E  and ν  variations respectively, for which the stress fields will be self-similar. Thus 

a solution for one couple of the introduced functions will generate solutions for 

infinitely many choices (belonging to the initiated class) of the modulus of elasticity and 

Poisson’s ratio spatial changes. The goal of the present paper is to explore the prospects 

for improved formulations in a future work on cracks in functionally graded materials. 

 

2. Opening motives in functional description 

Consider a plane state of an elastic homogeneous continuum and note that the 

constitutive low can be written for both plane strain and generalised plane stress as 

follows:  

(1) ε ij =
1

2µ
σij +

κ −3

4
σkkδij

 
 

 
 
, i, j = 1,2  

where µ  is the shear modulus, and κ = 3 − 4ν  for plane strain and κ = 3 −ν( ) 1+ ν( ) 

for plane stress respectively. 

Introduce also for the sake of clarity the modified modulus of elasticity and Poisson’s 

ratio: 

(2) ˆ E , ˆ ν ( )=
E,ν( ) planestress

E

1− ν 2 ,
ν

1 −ν
 
 

 
 plane strain

 

 
 

 
 

 

When σ22 = 0  equation (1) can be written in one of the following forms: 

(3) ε11 =
κ +1
8µ

σ11 =
1
ˆ E 

σ11 = C1 ⋅σ11  

It is natural to call C1  the uniaxial compliance of the continuum at plane state. 

When σ22 ≠ 0 , a contraction of equation (1) leads to any of the presentations: 
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(4) ε ii =
κ −1

4µ
σ ii =

1 − ˆ ν 
ˆ E 

σ ii = C2 ⋅σ ii  

Again C2  could be called biaxial (bulk or real) compliance of the continuum at plane 

state. Initiate for convenience a new constant C3  using the relations: 

(5) C3 = 2C1 − C2 =
1

2µ
=

1 + ˆ ν 
ˆ E 

 

which can be called a shift of the real from the uniaxial compliance. 

Now examine the case of a linear but inhomogeneous continuum with elastic properties 

changing as arbitrary functions of one of the plane co-ordinates, say x . Then the 

constants C1 , C2  and C3 , defined by equations (3)-(5), can be regarded as instantaneous 

uniaxial, biaxial and shift compliance respectively at the spatial position under 

consideration, for which the constitutive low (1) is valid. They could also be regarded as 

functions of the spatial co-ordinate along which the elastic properties vary as their 

definitions show.  

Introduce formally two functions, Γ1  and Γ2 , through the differential relations: 

(6a) dΓ1 = −
dC2

2C1

= −
κ −1

κ +1
⋅
d

κ −1
µ

κ −1
µ

=
κ −1

κ +1
⋅ d ln

µ
κ −1

=
1

2
1− ˆ ν ( )⋅d ln

ˆ E 

1 − ˆ ν 
 

(6b) dΓ2 = −
dC3

2C1

= −
2

κ +1
⋅
d

1
µ
1
µ

=
2

κ +1
⋅ d ln µ =

1

2
1 + ˆ ν ( )⋅ d ln

ˆ E 

1 + ˆ ν 
 

The differentials of Γ1  and Γ2  can be thought of as dimensionless quantities measuring 

the tendency of change of the biaxial and the shift compliances with respect to the 

instantaneous uniaxial compliance at a given spatial position.  

For the case of a continuum, consisting of two bonded half-planes of different 

homogeneous linear elastic materials, it can be easily shown that the two introduced 

functions are simply related to the known Dundurs’ parameters. Indeed these 

parameters can be written in terms of the biaxial and the shift compliances modifying 

Dundurs (1969): 
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(7a) α =
C1

1 − C1
2

C1
1 + C1

2 = β +
1

2
⋅
C3

1 − C3
2

C1
1 + C1

2  

(7b) β =
1

2
⋅
C2

1 − C2
2

C1
1 + C1

2  

where all terms are constants with the superscripts denoting the number of the material.  

On the other side the three compliances can be written as functions of the above 

constants using Heaviside’s step function, θ x( ) : 

(8) Ci x( )= Ci
1 + Ci

2 − Ci
1( )⋅θ x( ) 

which introduces the jump in the compliances at x = 0 . 

If postulated that the instantaneous uniaxial compliance at the point of jump is the mean 

of the uniaxial compliances of the two materials, i.e. C1 x = 0( )= C1
1 + C1

2( ) 2, then it 

can be concluded from equation (6) that the following relations hold: 

(9a)  
dΓ1

dx
=

C2
1 − C2

2

C1
1 + C1

2 ⋅δ x( ) = 2βδ x( ) 

(9b) 
dΓ2

dx
=

C3
1 − C3

2

C1
1 + C1

2 ⋅δ x( ) = 2 α − β( )δ x( ) 

where δ x( ) is Dirac’s delta function. If equations (9) are integrated over the entire real 

axis, the result shows that in the case of sharp interface between two homogeneous 

materials, the chosen functions degenerate to constants, which are linear combinations 

of the Dundurs’ parameters: 

(10) Γ1 = 2β  and Γ2 = 2 α − β( ) 

Note that the symmetry property typical for Dundurs’ parameters is preserved in the 

introduced functions, namely an alternation in tendency of change of the shift and the 

biaxial compliances from negative to positive (or vice versa) alters the sign of the 

respective function.  
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3. An applicability study and discussion 

A first observation is that the functions from the previous section are mutually 

dependent and not separable in the sense that each of one of the functions is not 

expressible as a full differential of some expression not explicitly dependent on the 

other. It is easily shown for example that the following implications hold: 

(11) 
Γ1 = const ⇒ Γ2 = ln

κ − 1
κ + 1

= Γ2
1 κ( )

Γ2 = const ⇒ Γ1 = ln
2

κ + 1
= Γ1

2 κ( )
 

which may be used to write the differential form of the functions differently 

(12) 
dΓ1 =

κ −1
κ +1

⋅ d ln
µ

κ −1
= exp Γ2

1( )⋅ d ln
µ

κ −1

dΓ2 =
2

κ +1
⋅ d ln µ = exp Γ1

2( )⋅ d ln µ
 

Equations (12) demonstrate the intrinsic property of the proposed functions, namely 

each one of them depends on one unique choice of the other (the choice for which the 

first is constant). The claim here is that two mutually independent characteristics have 

not to be used in a mechanical description of a non-homogeneous medium (for example 

E x( ),ν x( )) since another choice of these characteristics leading to the same state of the 

continuum can always be found. Thus the solution to a particular problem, solved for 

two separable parameters will be a solution to a class of problems but with unknown 

originating property of the class. In such a case another solution for separable 

parameters, by chance belonging to the same class, would well cause an unnecessary 

effort. Two characteristics, which avoid this possible situation, like the proposed 

functions, will be called intrinsic. 

Additional debate is suggested to clarify the notion of non-separable couples of 

functions. The mutual dependence arises from the consistency of the “measure” used to 

grade the tendencies of change of the different compliances. In the previous section this 

measure was chosen to be the uniaxial compliance. The tendencies of change of all the 

three compliances, measured with this scale will give three reasonable choices and any 

two of them, a matter of taste, can be chosen for intrinsic functions, the third one 

remaining a linear combination of the two. If another measure is used, say the biaxial 

compliance, another set of intrinsic functions will be initiated provided the measure is 

used consistently for every possible tendency of change. This is not the case, however, 
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if different measures to scale different tendencies of change of the compliances are 

applied. For example, if C2 -measure and C3 -measure are used to scale the tendencies of 

change of the biaxial and the shift compliances respectively, the result will be a couple 

of quasi-intrinsic functions given by: 

(13) dΓ1
q = d ln

µ
κ −1

; dΓ2
q = d ln µ  

These functions are obviously inadequate, since they are separable (already separated), 

and the state of the continuum described by them might be described by many others. 

Therefore, if two candidate functions are to be used the first property to be inspected is 

that they are inseparable, or mutually dependent, which can be achieved for example by 

applying a consistent measure for all types of changes to be scaled. 

It is important to identify the “classes of equivalence”, which the intrinsic functions 

induce. The case of plane stress will be considered for definiteness, but obviously plane 

strain conditions can be treated similarly. The two functions may be written as: 

(14) 
dΓ1 =

1

2
1 −ν( )⋅ d ln E +

1

2
dν

dΓ2 =
1

2
1+ ν( )⋅ d ln E −

1

2
dν

 ⇒  

(15) 
d Γ1 + Γ2( )= d ln E

d Γ1 − Γ2( ) = dν −ν ⋅ d ln E
  

Equations (15) lead to the following solutions for E x( ),ν x( ) if the intrinsic functions 

are given: 

(16) 

E x( ) = exp d Γ1 + Γ2( )∫ + k1[ ]= K1 ⋅ E f x( )

ν x( ) = E x( )⋅ d Γ1 − Γ2( )
E x( )∫ + k2

 

  
 

  
= ν f x( )+ K2 ⋅ E f x( )

 

where K1, K2  are arbitrary constants and E f x( ),ν f x( ) are some fundamental solutions 

to the integrals. If the integration constants are chosen as K1 = 1; K2 = 0, i.e. a definite 

choice of modulus of elasticity and Poisson’s ratio variations is made, then the solution 

for the corresponding definite intrinsic functions found by (14), will cover the solutions 

for the family of elastic modulus and Poisson’s ratio variations given by (16). In other 
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words, the class of equivalent material parameters’ gradients induced by the intrinsic 

functions is described by equations (16). 

To see the application of the intrinsic functions, imagine an infinitesimal element of a 

non-homogeneous continuum, with change of the elastic properties in one direction, say 

x . For this element one can write the following conditions: 

(17) 
δσx = δσ xy = 0;δσy ≠ 0

δεy = δεxy = 0; δε x ≠ 0
 

where δ  denotes the variation of the respective quantity due to the variation of the 

elastic properties in x -direction. It is interesting to find the change in the stresses for 

future applications. Using the constitutive low for elasticity one may express: 

(18) δεy = 0 =
κ +1

8µ
⋅δσ y + σ x + σ y( )⋅δ κ −1

8µ
 
 
  

 
− σ x − σy( )⋅δ 1

4µ
 
 
  

 
 

Now it is easy to see that the change of σy  due to the elastic properties’ variation (the 

only stress experiencing such a change) may be expressed with the help of the intrinsic 

functions and the initial stress state: 

(19) dσ y = σ x + σ y( )⋅ dΓ1 − σ x −σ y( )⋅ dΓ2  

where the variations are replaced with derivatives. 

The increment of σy  given by (19) will be an additional term in, for example, the 

equilibrium equations for the non-homogeneous continuum, turning them into a system 

of differential equations with variable coefficients.  

As can be deduced from (16) the only choice making these coefficients constant is an 

exponential variation of the elastic modulus and a constant Poisson’s ratio, provided 

that K2 = 0 . In the case of nonzero constant, K2 ≠ 0 , it is clear that a solution for 

exponential variation of the elastic modulus will be also a solution to all the problems 

with identical exponential variation of Poisson’s ratio, scaled by that nonzero constant. 

This should apply for the solutions found by different authors for exponential change of 

E  and constant ν , or for cosine change of E  and constant ν  (Jivkov and Ståhle, 1999), 

which is a rather interesting observation.  

As a matter of fact, equations (16) suggest one natural separation of the graded 

materials into two classes. The first class covers all materials with constant, or changing 
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similarly to elastic modulus Poisson’s ratio. By similarly changing is meant having the 

same shape, but not necessarily the same scale. Obviously, this class is established from 

constant fundamental function for ν . The materials belonging to this class can be called 

uni-functional. The second class covers all other materials, for which the change of ν  

has essentially dissimilar shape from the change of E . This class is created from non-

constant fundamental function for ν  and the materials belonging to it can be called bi-

functional. 

Thus the solutions found for exponential, or cosine variation of modulus of elasticity 

hold for uni-functional materials with the corresponding functional change. In fact, bi-

functional materials are difficult to imagine. But if there are such materials, it is hard to 

see how a closed form solution to the differential equations with variable coefficients 

can be found. One attempt with the help of perturbation analysis, however, might be 

worth to explore. 

Finally, it is important to note that, although mathematically the two constants K1, K2  

may be arbitrary, physically only a bounded collection of choices is of practical interest. 

This is especially valid for the choices of K2  since Poisson’s ratio potential variations 

are much more restricted than those of the modulus of elasticity are. 
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