
The University of Manchester Research

Spatial and Kinematic models for Procedural Sound in 3D
Virtual Environments

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Pecino Rodriguez, J. I., & Pecino, I. (2014). Spatial and Kinematic models for Procedural Sound in 3D Virtual
Environments. In International Computer Music Conference Proceedings (Vol. 2014). (International Computer
Music Conference Proceedings). Michigan Publishing.

Published in:
International Computer Music Conference Proceedings

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:08. Jun. 2022

https://www.research.manchester.ac.uk/portal/en/publications/spatial-and-kinematic-models-for-procedural-sound-in-3d-virtual-environments(60549d8c-4646-4064-a9ae-780cb3201e47).html

SPATIAL AND KINEMATIC MODELS FOR

PROCEDURAL AUDIO IN 3D VIRTUAL

ENVIRONMENTS

Ignacio Pecino

NOVARS Research Centre,

University of Manchester, UK

joseignacio.pecinorodriguez@postgrad.manchester.ac.uk

ABSTRACT

In the last years an increasing interest can be observed for

developments in game engine technologies as a versatile

creative tool. In particular, the possibility to visualize and

simulate real-time complex physical behaviors facilitates

the design and implementation of 3D virtual music

instruments and the exploration of sound gesture as a

result of their kinematic and spatial properties. This paper

describes two case examples in the form of linear

compositions based on non-conventional instrumental

designs where audio is procedurally generated using

custom-built APIs in the game engine scripting language

(Unity3D-Javascript/C#). Sound events are also

organized as a sequence of flexible code instructions,

resulting in a quasi-fixed piece duration with subtle

timbral variations over multiple playbacks. In both cases,

the model presented shows inherit spatial characteristics,

which are useful in order to build spatialization patterns

in a multichannel loudspeakers configuration and

emphasize the strong causal connection between the

visual and sonic aspects of these works.

1. INTRODUCTION

1.1 Game Engines as Multidisciplinary Creative

Environments.

The need for rich development environments, especially

in the field of sound art and interactive media, has led to

the incorporation of new tools [1] [2] which, although

originally devised for the video game industry, have

proven to be an extremely convenient and affordable

solution for many sound artists.

This is easily understandable as video games

development often requires similar software and

hardware capabilities as many of the interactive works

proposed by sound artists, including graphics rendering,

time management methods, an audio playback engine,

input interfaces, etc.

In some occasions, this type of software can also be

used for prototyping complex art installations where an

impact assessment is required [3], yet the usage of game

engine technologies goes far beyond real-world

simulation models, allowing for innovative and original

approaches to instrumental design and composition where

virtual tridimensional space can be considered as the

main structural variable that shapes the musical output.

Notable examples of compositional applications of a

game engine [4] can be found in the works of Robert

Hamilton [5], Ricardo Climent [6] or Andrew Dolphin

[7] [8], whose “sound toys” are a very interesting

demonstration of interactive tools with a focus on space

and real time synthesis (in MAX/MSP) using control data

from a 3D engine (Unity). However, it is possible to

appreciate how most of these and other works using game

engine technologies are essentially interactive in nature,

as they need some sort of live user input in order to

produce sound, whether it is coming from a member of

the audience (e.g. a sound installation) or the artist

himself (during a performance or at the studio).

In contrast, the two cases described later in this paper

are an attempt to reconcile the more traditional approach

of fixed-media and acousmatic composition with the

emerging trends and procedural techniques that these new

development environments have to offer. In particular,

the potential for 3D objects manipulation, integrated

physics (collisions detection, gravity, etc.), along with the

built-in scripting languages, are exceptionally helpful

when mapping dynamically generated spatial and

kinematic data into the audio engine of our choice (e.g.

SuperCollider [9]), while sound events can be

programmatically sequenced over time from a custom

script, analogously to how we organize sound materials

or MIDI events in a DAW (e.g. Protools).

1.2 Procedural Audio

Given the real-time nature of most processes running in a

game engine, a procedural approach to sound generation

is possible and desirable, even in a non-interactive

compositional context. An audio sample playback engine

is generally provided in every game engine, but these are

usually very limited in their functionality, permitting only

basic volume and pitch controls. Consequently, it is often

advisable to replace the default internal audio engine with

a more specific and powerful software for real time audio
Copyright: © 2014 Ignacio Pecino. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License 3.0

Unported, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original author and source are credited.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

processing such as Supercollider or MAX/MSP. Both

sides of the system (game engine and external audio

software) are then interconnected using a standard

communication protocol such as OSC [10].

Procedural audio [11], as opposed to recorded sound, is

created in real time according to a set of rules or

algorithms (sound as a process), reducing the amount of

raw audio data needed to play a music piece although

considerably more demanding in terms of CPU usage.

1.3 Live Coding vs. Sequenced Code.

The use of live coding (on-the-fly programming) as a

form of musical expression is an increasingly popular

practice within the music community. Supercollider and

Chunk [12] are well-known examples of object-oriented

programming languages that allow live interaction with

code and improvisation.

On the other hand, the scripting languages that most

game engines include (JavaScript and C# in Unity,

Python in Blender, etc.) do not permit code modifications

at runtime but, in most situations, they are still capable of

managing time efficiently, as long as we do not require

sample accurate audio processing.

In the two case examples proposed here, the scripting

programming language is utilized in three different ways,

corresponding to the three stages of the proposed

compositional method.

First, it is required to implement the basic structural

design of our virtual instrument, including the

characteristic variables and components of the system.

Secondly, it allows us to define a set of functions or

subroutines describing what our virtual instrument is able

to perform (instrumental techniques) as result of the

manipulation of the previous variables and objects.

Thirdly, as we mentioned earlier, all these functions

(API) can be called as an organized sequence of events to

create the temporal structure of the final musical piece

(specific examples will be presented later in this paper).

Across all these three stages, minor random elements

are introduced into the instrumental design and related

algorithms, so the final output will be a piece with an

approximate total duration that exhibits a macroscopic

deterministic behavior while presenting interesting small

variations at a microscopic level which are not directly

determined by the composer (in contrast with

conventional fixed-media pieces).

2. VIRTUAL 3D INSTRUMENT

IMPLEMENTATION

Efforts to build virtual 3d instruments for musical

interaction can be found prior to the emergence of game

engines technologies [13], but the workflow involved in

this process and the quality of the final output has

benefited from the general features present in this

accessible and “ready-to-use” development framework.

2.1 Space as the starting point

The two pieces we are about to discuss next, make

extensive use of these virtual 3D environments,

proposing non-conventional instrumental models with

strong spatial attributes. The first piece (“Singularity”)

uses a sonification of cellular automata to explore the

growth and dissemination patterns of its cells as a motif

generator for spatial concatenative synthesis. On the

other hand, the second piece studies the kinematic

behavior and sonic potential of a set of virtual rings,

organized as a fractal geometric construct known as

Apollonian Gasket 1, which is recursively generated from

triples of circles where each circle is tangent to the other

two. Given the elements involved—materials/physical

objects, sound and movement—this second piece

displays manifest similarities with generic sound

sculpture works [14].

Nevertheless, none of the instruments employed in

these pieces imitate any real-world conventional

instrumental design, but suggest more abstract prototypes

based on mathematical models. Thus, the focus is not on

simulation but on the use of space and the possibility of

composing original pieces using bespoke experimental

instruments that might otherwise be difficult and

expensive to implement in a real-world situation.

2.2 The Audiovisual Dilemma

It seems to be clear that the possibility of real-time

visualization and manipulation of 3D objects within a

game engine is certainly helpful when designing and

implementing 3D virtual instruments, as we are

establishing direct causal relationships between the

operation/behavior of the simulated physical system and

the following sonic output. However, since the main goal

of the proposed method is to deliver a non-interactive

music composition, it is not so clear what the nature of

the final piece should be: acousmatic or audiovisual,

especially when the music language used resembles that

of the electroacoustic acousmatic tradition. In other

words, should the audience be presented with a

visualization of the virtual instrument performing the

piece?

In principle, both points of views are equally valid

(with their pros and cons) but, given the spatial attributes

of the pieces being discussed, I tend to believe that the

sonic gesture is better explained when we are able to see

the object and movement involved, in the same way as a

performer and his instrument can be observed in a

traditional concert situation. Yet categorizing the piece as

“audiovisual” might not always be correct, as the visual

side of it does not necessarily have an aesthetic intention,

in the way the musical output does.

Furthermore, the visuals of the mentioned pieces have

deliberately been kept simple and minimalistic, avoiding

1 http://en.wikipedia.org/wiki/Apollonian_gasket

unnecessary elements not related with the sonic

mechanisms and reinforcing the original musical concept.

2.3 Audio Sources and Spatialization

One of the advantages of using game engines to play

sound materials is that the number of final audio channels

is not fixed, not even needs to be considered during the

compositional process. Consequently, spatialization is

mostly based on the movement and positions of virtual

objects (audio-sources) in the 3D virtual environment.

Therefore, sounds are automatically panned by the built-

in spatial audio engine according to the current

loudspeaker setup and the audio-listener object position

(also included in the scene). Once the piece is completed,

we are able to switch the desired multichannel output

configuration from a list of available options, usually

including stereo, quadraphonic, 5.1 and 7.1 surround.

Alternatively, if we decide to integrate an external

audio engine, such as one of the previously discussed,

this spatial functionality is lost and needs to be re-

implemented. The solution considered in one the

mentioned examples (Apollonian Gasket) is to translate

Unity’s Vector3 positions (x,y,z) into angular positions

(r, θ) and send this data to Supercollider where sounds

can be panned into any speakers array using VBAP [15].

The downside of this approach is that our piece will no

longer work as a single standalone application but it will

depend on external software to play our sounds. This is,

however, a distribution issue and not a compositional

one.

3. SINGULARITY: SONIC AUTOMATA

A sonic implementation of a cellular automaton is

presented along this piece2, consisting in an orthogonal

grid of square cells (represented as cubes) that “live or

die” according to a given set of rules known as Game of

Life [16].

Figure 1. Screenshot of cellular automata in Singularity

The rules are quite simple but powerful enough to

originate complex emergent phenomena. The originated

shapes and patterns depend on the initial configuration of

2 Recording of the piece available at http://vimeo.com/79344883

the automaton and evolve over time (using discrete time

intervals/ steps) spreading across the different areas of the

grid (see Figure 1). This behavior is particularly

interesting from a compositional point of view, since it

exhibits “life form” characteristics: growth, decline,

chaos-order alternation, etc., which are structurally

suitable for a musical discourse.

Also, the dynamic spatial dissemination of the living

cells can be used to generate spatialization motifs within

a surround loudspeakers configuration. In this case all

sounds are played within Unity using the default audio

engine.

3.1 Sonification of the Cellular Automaton

In order to translate the successive cells states into sonic

gestures, an array of very short audio samples (<100ms)

dissected from original recordings at the Museum of Sci-

ence and Industry of Manchester, was used. Then, a piece

of JavaScript code selects a random sample and plays it

whenever a new cell comes to live. This sound is played

at the cell’s position, contributing to the surround sonic

image perceived from the point of view of the audio-

listener object at the center of the scene.

The rapid concatenation of micro-samples across a bi-

dimensional space produces a macroscopic textural effect

that can be categorized as a form of spatial concatenative

synthesis, as long as the evolution rate is fast enough;

although sometimes this rate is also kept relatively low

and variable, favoring the apparition of distinct rhythmic

patterns.

3.2 Software Control Interface

A number of variables are defined in the automaton’s

code, so we can modify its properties and state; for ex-

ample: size (number of cells in the grid), initial density

(how many cells are likely to be alive on start), initial

area (size of the sub-grid where cells can be initially in-

stantiated), pitch-shift (option to slightly detune audio

samples), random-volume, random-rate, etc.

All the cells are initially disabled (dead state) but we can

activate them from the main sequence script using the

cell “state” property as follows:

var automaton_A: GameObject;

function Awake(){

//Reference to the control script in the A automaton

a = automaton_A.GetComponent(Automata);

}

function Start(){

a.rate=0.1;

a.state[10,12]=true;

a.state[11,13]=true;

a.state[9,13]=true;

}

The previous example would initiate a particular

automaton configuration, which would evolve under the

given rules (on a separate script) until a stationary state is

achieved or all the cells are dead. As we can observe, the

reference to the corresponding cell is provided by its (x,y)

position in the grid (bi-dimensional array) while other

properties can also be modified here.

In addition, specific functions are also created as

methods to control the automaton’s behavior,

particularly, tempo related functions such as

Accelerando, Ritardando, etc. The evolution rate (time

between consecutive steps) can be fixed or randomly

selected between a minimum and maximum rate. The

next example shows a routine that progressively changes

these values over a given period of time:

function ChangeRate(targetMin:float,targetMax:float,seconds:float){

 var t = 0.0;

 var currMin= minRate;

 var currMax= maxRate;

 while (t <= 1.0) {

 t += Time.deltaTime/seconds;

 minRate = Mathf.Lerp(currMin,targetMin, Mathf.Lerp(0.0, 1.0, t));

 maxRate = Mathf.Lerp(currMax,targetMax, Mathf.Lerp(0.0, 1.0, t));

 yield;

 }

}

3.3 Creating the final sequence

Once the instrument with its custom control interface is

ready, we need to select a number of automata

configurations as possible candidates for the final

sequence, taking in consideration their musical potential

and functionality within our piece. This process is

analogous to the act of selecting sound materials for an

acousmatic piece, although we are now working with

shorts space-timbre motifs generated by virtue of the fast

concatenative action of our cellular automata.

The sequence is possible thanks to several time related

instructions such as the yield instruction of the Unity

scripting language. For instance, if we need to wait 1.5s

before a new motif is generated, it is just a matter of

typing the following line:

yield WaitForSeconds(1.5);

Using a while statement, it is also possible to link two

events so the second one will only take place once a

certain condition involving the first event is met. For

example:

//automaton A is ritardando
//Wait until its minimum rate is above 0.85
while (a.minRate<0.85){
 yield; //Wait 1 frame
}
//Play motif in automaton B
automata_B.SetActive(true);
b.state[1,1]=true;
b.state[1,2]=true
b.state[3,2]=true;
//etc.

Other subroutines are also created when multiple code

threads need to run in parallel, facilitating the operation

of simultaneous automata within our scene from a single

master script (sequencer).

4. APOLLONIAN GASKET: A VIRTUAL

SOUND SCULPTURE

As we mentioned earlier, this second case example

explores the kinematics of a set of rings geometrically

arranged as an Apollonian Gasket. This mathematical

object was chosen not just because of its spatial

characteristics, but also because of its simplicity and

recursive elegance. Moreover, the kinematic model of the

rings movement has multiple similarities with a popular

sound toy known as Euler’s Disk3 and also resembles the

natural behavior of a spinning coin.

Figure 2. Spatial distribution of the Apollonian Gasket

The original Gasket is a bi-dimensional object as we can

see in Figure 2, but it has been extended for this piece4

into a third vertical dimension, in order to allow a richer

kinematic experience (see Figure 3).

Figure 3. Screenshot of the 3D Apollonian Gasket

Virtual Instrument.

3 http://www.youtube.com/watch?v=ug2bKCG4gZY

4 Recording of the piece available at http://vimeo.com/83995079

Given that the curvatures of the component rings are be-

ing used as a variable to feed sound parameters, I opted

for an asymmetric shape given by the initial values 18, 23

and 27, thus avoiding excessive regularity and repetition.

4.1 Sonification of Kinematic Data

Audio is generated procedurally, in real time, using

synthesis techniques that respond to specific changes in

physical variables in the virtual objects (rings).

These objects are animated using a custom Unity script

and the consequent kinematic data is sent to an external

audio engine (Supercollider) via OSC5 messages. Again,

this approach permits a tight interconnection between the

visual and sonic elements of the piece, since audio-video

synchrony is nearly perfect and the movement/gesture of

the virtual object can be effectively translated into sound.

The algorithms used in Supercollider include different

types of synthesis such as Physical Modelling, FM/AM

or Granular Synthesis and the input variables used to feed

these generators include: ring curvature, tilt, rotation

speed, precesion speed, collision strength, horizontal

angular position (azimuth), etc.

One of the advantages of this kind of procedural sound

generation is, for instance, the high number of sound

variations that can be achieved with very light

algorithms. For example, the .scd file used by

SuperCollider to generate all the sounds in this piece,

despite it contains more than 1500 lines of code, it only

weights 30Kb (plus another 30Kb on the Unity scripting

side). Also, these sonic variations are responsive and

necessarily linked to the virtual object’s kinematic

variables, while a similar complex response using raw

recorded audio would take a considerably larger amount

of data.

4.2 Control Interface

Similarly to how we did in the first case example

(Singularity), we need some kind of software interface to

regulate the mechanics of the proposed instrument.

The system suggested is now based on an “energy”

variable that determines the kinematic state of the rings.

Then, we can introduce energy variations by calling the

following function (C#):

IEnumerator ChangeEnergy (GameObject ring, float targetEnergy,

float seconds){

float t = 0.0F;

var precesion = ring.GetComponent<Precesion>();

float currentEnergy = precesion.energy;

while (t <= 1.0F) {

t += Time.deltaTime/seconds;

precesion.energy=

Mathf.Lerp(currentEnergy,targetEnergy,

Mathf.Lerp(0.0F, 1.0F, t));

yield return 0;

}

}

5 Using UnityOSC (https://github.com/jorgegarcia/UnityOSC)

However, before any energy is introduced into the

system, the multiple rings need to be initialized, both in

Unity and SuperCollider. For example (Unity code):

public void StartRotor(){

arcTan = Mathf.Atan(transform.position.x/transform.position.z);

//Surround Panning

if(transform.position.z>=0){

azimut = (arcTan*180/Mathf.PI);

}else{

if(transform.position.x>=0){

azimut = 180 + (arcTan*180/Mathf.PI);

}else{

azimut = (arcTan*180/Mathf.PI)-180;

}

}

//Send OSC Messages

List<object> values = new List<object>();

values.AddRange(new object[]{curvature, azimut});

OSCHandler.Instance.SendMessageToClient("SuperCollider",

"start"+curvature.ToString(),values);

rotorSynth=true;

}

The previous functions can obviously be reused as many

times as needed from the master sequence script:

aro18.GetComponent<Precesion>().StartRotor();
StartCoroutine(ChangeEnergy(aro18,10.0F,5.0F));

These are just two example of the Apollonian Gasket API

functionality, but a number of other methods can also be

called to easily modify any required property.

4.3 Instrumental Techniques

The Apollonian Gasket instrument presents at least three

distinctive timbres, depending on the characteristic

movements/behaviour of the rings in 3D space, namely:

a) Rotation. Circular movement around the ring's

main symmetry axis (Figure 3).

Figure 3. Rotation movement

b) Precesion. Changes in the orientation of the

rotational axis around a vertical axis (secondary

rotation). Rotation and precesion speeds are

often related (Figure 4) and the consequent

movement is translated into sound using real-

time noise filtering and recursive modulation

techniques in SuperCollider.

Figure 4. Precesion movement

c) Collision. A small percussive element is

sometimes attached to the ring in a way that it

will hit the floor at intervals, producing a

collision sound as a consequence of the

rotation/precesion movement (see Figure 5). In

that case, the ring’s tilt angle and the relative

velocity of the collision can be used to feed

several input parameters of an associated

physical modelling synthesizer (Karplus-Strong

UGen). Furthermore, the contact points

generated by the physics engine provide the

necessary vector data to position our collision

sound using VBAP (see Section 2.3).

Figure 5. Collision gesture

4.4 Spatialization and Sound Diffusion

The geometrical distribution of the rings, according to the

mathematical fractal structure, provides a quasi-

symmetric layout with three main groups of rings placed

on the Front-Left, Front-Right and Rear-Center (see

Figure 6). The audio listener is then placed at the

approximate centre of the set (ring146), providing an

optimal listening position that can later be reproduced in

the concert hall when playing the piece in a multichannel

speakers setup (e.g. MANTIS6 system). Every sound

event is panned in Supercollider using the VBAP object,

allowing for azimuth and elevation data on any array of

speakers. This approach reinforces the original idea of

channel independent composition where sound objects

are spatialized in virtual space, regardless of the final

number of output channels.

Furthermore, the Apollonian Gasket presents a sort of

inside-outside separation given by the three original

tangent circles, as all remaining circles will either be

inside or outside of these three circles. The inner set is

considerably smaller in size but has the same number of

rings and similar spatial distribution as the outer set. This

in/out characteristic can be easily used to create two

separate multichannel buffers or stems (e.g. 4+4) and

send them to different groups of speakers in the sound

diffusion system (close vs. distant speakers) allowing for

further exploration and manipulation of the piece during

the live concert performance [17].

Figure 6. Spatial distribution of the Apollonian Gasket

5. CONCLUSIONS

Subsequent analysis of the ideas and techniques proposed

in these two works seem to suggest that all the usual

phases of music creation (e.g. instrument

design/implementation, exploration of instrumental

techniques, performance and composition) are also

present within a game-engine environment and can be

formalized using a programming language. This is indeed

one more example of the existing virtualization trend that

can be observed in many other disciplines; usually driven

6 www.novars.manchester.ac.uk/mantis/

by economic factors, but focused here on extending the

limits of musical expression.

We can also appreciate how real-time procedural sound

generation is not necessarily linked to interactive media

but may also be adopted for compositional purposes, for

example, when a fixed macroscopic output is pursued

while maintaining a certain degree of microscopic

randomness or organic behaviour. Using code to organize

our sound-generating processes (in contrast with

traditional DAW timelines) has proven to be an effective

way to achieve this goal, as it permits a flexible

implementation and reinterpretation (playback) of these

functions.

 On the other hand, by extending our notion of space to

the virtual domain, we have been able to explore sonic

gesture as a result of simulated physical actions and

spatial distribution/dissemination models that can be

consolidated as viable 3D virtual musical instruments.

The complexity and level of detail of the processes

involved are only limited by the actual processing speed

of our CPU/GPU, but it is also possible to use separate

networked machines for specific tasks (e.g. physics

engine vs. audio engine) when the proposed model

requires more processing power.

6. FUTURE WORK

By the time of writing this paper, all live performances of

these pieces have been carried out in a concert hall using

multiple loudspeakers and a conventional projection

system (large screen at the stage). The most important

limitation of this approach is that it requires some effort

from the audience in order to apprehend the proposed

correspondence between the visual on-screen space and

the aural concert hall space. For example, for the

perspective view displayed in Figure 1 and 3, objects

rendered at the top of the screen would normally be

played from the front loudspeakers, while objects at the

bottom of the screen would be played from the rear ones

(anything in-between is panned accordingly). Therefore,

we find a physical separation between both spaces which

is only overcome thanks to the listener’s intuition and

imagination.

As an optimal future solution, a fully immersive visual

system such as Oculus Rift7 could be adopted. The

transition to this new technology should be quite straight

forward given that the game engine used for these pieces

(Unity) has already been tested with this kind of

hardware. Such an approach would be compatible with

the current system using loudspeakers and VBAP

panning, but alternative audio rendering methods based

on binaural or Ambisonics techniques might also be

considered.

7 http://www.oculusvr.com/

7. REFERENCES

[1] “Unity3D”, http://unity3d.com/. Last accessed

March 2014.

[2] “Blender.org”. http://www.blender.org. Last

accessed March 2014.

[3] I.Bukvic, “Using gaming engine for virtual

prototyping and impact assessment of complex

interactive art installations”, in Proceedings of the

International Computer Music Conference,

Huddersfield, UK, 2011.

[4] A.Dolphin, A. “Compositional Applications of a

Game Engine”, in Proceedings of the Games

Innovations Conference (GIC), London, UK, 2009,

pp. 213-222.

[5] R.Hamilton, “UDKOSC: An immersive Musical

Environment”, in Proceedings of the International

Computer Music Conference, Huddersfield, UK,

2011.

[6] R.Climent, http://acousmatic.org. Last accessed

March 2014.

[7] A.Dolphin, “Cyclical Flow: Spatial Synthesis Sound

Toy as Multichannel Composition Tool”, in

Proceedings of the International Computer Music

Conference, Ljubljana, Slovenia, 2012.

[8] A.Dolphin, “SpiralSet: A Sound Toy Utilising Game

Engine Technologies”, in Proceedings of the

International Conference on New Interfaces for

Musical Expression (NIME), Pittsburgh, USA, 2009,

pp. 56-57.

[9] “SuperCollider”, http://www.audiosynth.com/. Last

accessed March 2014.

[10] M.Wright, A.Freed, "Open Sound Control: A New

Protocol for Communicating with Sound Synthesiz-

ers", in Proceedings of the International Computer

Music Conference, Thessaloniki, Greece, 1997.

[11] A.Farnell, “An introduction to procedural audio and

its application in computer games”, available online

at http://obiwannabe.co.uk/html/papers/proc-

audio/proc-audio.html, 2007. Last accessed March

2014.

[12] G.Wang, P.R.Cook, “On-the-fly Programming:

Using Code as an Expressive Musical Instrument” in

Proceedings of the International Conference on New

Interfaces for Musical Expression (NIME),

Hamamatsu, Japan, 2004.

[13] A.Mulder, S. Fels, K. Mase, “Design of Virtual 3D

Instruments for Musical Interaction”, in Proceedings

of Graphics Interface ’99, Kingston, Canada, 1999,

pp.76-83.

[14] J.Grayson. Sound sculpture: a collection of essays

by artists surveying the techniques, applications,

http://unity3d.com/
http://www.blender.org/
http://obiwannabe.co.uk/html/papers/proc-%20%20%20audio/proc-audio.html
http://obiwannabe.co.uk/html/papers/proc-%20%20%20audio/proc-audio.html

and future directions of sound sculpture. Vancouver:

A.R.C. Publications, 1975. ISBN 0-88985-000-3

[15] V. Pulkki, “Virtual Source Positioning Using Vector

Base Amplitude Panning.” J. Audio Eng. Soc.,

45(6): 456–466, Jun. 1997.

[16] M.Gardner, “The fantastic combinations of John

Conway's new solitaire game "life", Scientific

American 223, Oct.1970: 120-123

[17] D.Berezan, “Flux: Live-Acousmatic Performance

and Composition”, EMS: Electroacoustic Music

Studies Network, De Montfort/Leicester, 2007.

