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ABSTRACT 

In the last years an increasing interest can be observed for 

developments in game engine technologies as a versatile 

creative tool. In particular, the possibility to visualize and 

simulate real-time complex physical behaviors facilitates 

the design and implementation of 3D virtual music 

instruments and the exploration of sound gesture as a 

result of their kinematic and spatial properties. This paper 

describes two case examples in the form of linear 

compositions based on non-conventional instrumental 

designs where audio is procedurally generated using 

custom-built APIs in the game engine scripting language 

(Unity3D-Javascript/C#). Sound events are also 

organized as a sequence of flexible code instructions, 

resulting in a quasi-fixed piece duration with subtle 

timbral variations over multiple playbacks. In both cases, 

the model presented shows inherit spatial characteristics, 

which are useful in order to build spatialization patterns 

in a multichannel loudspeakers configuration and 

emphasize the strong causal connection between the 

visual and sonic aspects of these works.     

1. INTRODUCTION 

1.1 Game Engines as Multidisciplinary Creative 

Environments. 

The need for rich development environments, especially 

in the field of sound art and interactive media, has led to 

the incorporation of new tools [1] [2] which, although 

originally devised for the video game industry, have 

proven to be an extremely convenient and affordable 

solution for many sound artists.   

This is easily understandable as video games 

development often requires similar software and 

hardware capabilities as many of the interactive works 

proposed by sound artists, including graphics rendering, 

time management methods, an audio playback engine, 

input interfaces, etc.  

In some occasions, this type of software can also be 

used for prototyping complex art installations where an 

impact assessment is required [3], yet the usage of game 

engine technologies goes far beyond real-world 

simulation models, allowing for innovative and original 

approaches to instrumental design and composition where 

virtual tridimensional space can be considered as the 

main structural variable that shapes the musical output.  

Notable examples of compositional applications of a 

game engine [4] can be found in the works of Robert 

Hamilton [5], Ricardo Climent [6] or Andrew Dolphin 

[7] [8], whose “sound toys” are a very interesting 

demonstration of interactive tools with a focus on space 

and real time synthesis (in MAX/MSP) using control data 

from a 3D engine (Unity). However, it is possible to 

appreciate how most of these and other works using game 

engine technologies are essentially interactive in nature, 

as they need some sort of live user input in order to 

produce sound, whether it is coming from a member of 

the audience (e.g. a sound installation) or the artist 

himself (during a performance or at the studio). 

In contrast, the two cases described later in this paper 

are an attempt to reconcile the more traditional approach 

of fixed-media and acousmatic composition with the 

emerging trends and procedural techniques that these new 

development environments have to offer. In particular, 

the potential for 3D objects manipulation, integrated 

physics (collisions detection, gravity, etc.), along with the 

built-in scripting languages, are exceptionally helpful 

when mapping dynamically generated spatial and 

kinematic data into the audio engine of our choice (e.g. 

SuperCollider [9]), while sound events can be 

programmatically sequenced over time from a custom 

script, analogously to how we organize sound materials 

or MIDI events in a DAW (e.g. Protools).  

1.2 Procedural Audio 

Given the real-time nature of most processes running in a 

game engine, a procedural approach to sound generation 

is possible and desirable, even in a non-interactive 

compositional context. An audio sample playback engine 

is generally provided in every game engine, but these are 

usually very limited in their functionality, permitting only 

basic volume and pitch controls. Consequently, it is often 

advisable to replace the default internal audio engine with 

a more specific and powerful software for real time audio 
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processing such as Supercollider or MAX/MSP. Both 

sides of the system (game engine and external audio 

software) are then interconnected using a standard 

communication protocol such as OSC [10].   

Procedural audio [11], as opposed to recorded sound, is 

created in real time according to a set of rules or 

algorithms (sound as a process), reducing the amount of 

raw audio data needed to play a music piece although 

considerably more demanding in terms of CPU usage.     

1.3 Live Coding vs. Sequenced Code. 

The use of live coding (on-the-fly programming) as a 

form of musical expression is an increasingly popular 

practice within the music community. Supercollider and 

Chunk [12] are well-known examples of object-oriented 

programming languages that allow live interaction with 

code and improvisation.  

On the other hand, the scripting languages that most 

game engines include (JavaScript and C# in Unity, 

Python in Blender, etc.) do not permit code modifications 

at runtime but, in most situations, they are still capable of 

managing time efficiently, as long as we do not require 

sample accurate audio processing.   

In the two case examples proposed here, the scripting 

programming language is utilized in three different ways, 

corresponding to the three stages of the proposed 

compositional method.  

First, it is required to implement the basic structural 

design of our virtual instrument, including the 

characteristic variables and components of the system.  

Secondly, it allows us to define a set of functions or 

subroutines describing what our virtual instrument is able 

to perform (instrumental techniques) as result of the 

manipulation of the previous variables and objects. 

Thirdly, as we mentioned earlier, all these functions 

(API) can be called as an organized sequence of events to 

create the temporal structure of the final musical piece 

(specific examples will be presented later in this paper). 

Across all these three stages, minor random elements 

are introduced into the instrumental design and related 

algorithms, so the final output will be a piece with an 

approximate total duration that exhibits a macroscopic 

deterministic behavior while presenting interesting small 

variations at a microscopic level which are not directly 

determined by the composer (in contrast with 

conventional fixed-media pieces). 

2. VIRTUAL 3D INSTRUMENT 

IMPLEMENTATION 

Efforts to build virtual 3d instruments for musical 

interaction can be found prior to the emergence of game 

engines technologies [13], but the workflow involved in 

this process and the quality of the final output has 

benefited from the general features present in this 

accessible and “ready-to-use” development framework.  

2.1 Space as the starting point 

The two pieces we are about to discuss next, make 

extensive use of these virtual 3D environments, 

proposing non-conventional instrumental models with 

strong spatial attributes. The first piece (“Singularity”) 

uses a sonification of cellular automata to explore the 

growth and dissemination patterns of its cells as a motif 

generator for spatial concatenative synthesis.  On the 

other hand, the second piece studies the kinematic 

behavior and sonic potential of a set of virtual rings, 

organized as a fractal geometric construct known as 

Apollonian Gasket 1, which is recursively generated from 

triples of circles where each circle is tangent to the other 

two. Given the elements involved—materials/physical 

objects, sound and movement—this second piece 

displays manifest similarities with generic sound 

sculpture works [14]. 

Nevertheless, none of the instruments employed in 

these pieces imitate any real-world conventional 

instrumental design, but suggest more abstract prototypes 

based on mathematical models. Thus, the focus is not on 

simulation but on the use of space and the possibility of 

composing original pieces using bespoke experimental 

instruments that might otherwise be difficult and 

expensive to implement in a real-world situation.  

2.2 The Audiovisual Dilemma 

It seems to be clear that the possibility of real-time 

visualization and manipulation of 3D objects within a 

game engine is certainly helpful when designing and 

implementing 3D virtual instruments, as we are 

establishing direct causal relationships between the 

operation/behavior of the simulated physical system and 

the following sonic output. However, since the main goal 

of the proposed method is to deliver a non-interactive 

music composition, it is not so clear what the nature of 

the final piece should be: acousmatic or audiovisual, 

especially when the music language used resembles that 

of the electroacoustic acousmatic tradition. In other 

words, should the audience be presented with a 

visualization of the virtual instrument performing the 

piece? 

In principle, both points of views are equally valid 

(with their pros and cons) but, given the spatial attributes 

of the pieces being discussed, I tend to believe that the 

sonic gesture is better explained when we are able to see 

the object and movement involved, in the same way as a 

performer and his instrument can be observed in a 

traditional concert situation. Yet categorizing the piece as 

“audiovisual” might not always be correct, as the visual 

side of it does not necessarily have an aesthetic intention, 

in the way the musical output does.  

Furthermore, the visuals of the mentioned pieces have 

deliberately been kept simple and minimalistic, avoiding 
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unnecessary elements not related with the sonic 

mechanisms and reinforcing the original musical concept.  

2.3 Audio Sources and Spatialization 

One of the advantages of using game engines to play 

sound materials is that the number of final audio channels 

is not fixed, not even needs to be considered during the 

compositional process. Consequently, spatialization is 

mostly based on the movement and positions of virtual 

objects (audio-sources) in the 3D virtual environment. 

Therefore, sounds are automatically panned by the built-

in spatial audio engine according to the current 

loudspeaker setup and the audio-listener object position 

(also included in the scene). Once the piece is completed, 

we are able to switch the desired multichannel output 

configuration from a list of available options, usually 

including stereo, quadraphonic, 5.1 and 7.1 surround.  

Alternatively, if we decide to integrate an external 

audio engine, such as one of the previously discussed, 

this spatial functionality is lost and needs to be re-

implemented. The solution considered in one the 

mentioned examples (Apollonian Gasket) is to translate 

Unity’s Vector3 positions (x,y,z) into angular positions 

(r, θ) and send this data to Supercollider where sounds 

can be panned into any speakers array using VBAP [15]. 

The downside of this approach is that our piece will no 

longer work as a single standalone application but it will 

depend on external software to play our sounds. This is, 

however, a distribution issue and not a compositional 

one.  

3. SINGULARITY: SONIC AUTOMATA   

A sonic implementation of a cellular automaton is 

presented along this piece2, consisting in an orthogonal 

grid of square cells (represented as cubes) that “live or 

die” according to a given set of rules known as Game of 

Life [16].  

 

Figure 1. Screenshot of cellular automata in Singularity 

The rules are quite simple but powerful enough to 

originate complex emergent phenomena. The originated 

shapes and patterns depend on the initial configuration of 
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the automaton and evolve over time (using discrete time 

intervals/ steps) spreading across the different areas of the 

grid (see Figure 1). This behavior is particularly 

interesting from a compositional point of view, since it 

exhibits “life form” characteristics: growth, decline, 

chaos-order alternation, etc., which are structurally 

suitable for a musical discourse. 

Also, the dynamic spatial dissemination of the living 

cells can be used to generate spatialization motifs within 

a surround loudspeakers configuration. In this case all 

sounds are played within Unity using the default audio 

engine. 

3.1 Sonification of the Cellular Automaton 

In order to translate the successive cells states into sonic 

gestures, an array of very short audio samples (<100ms) 

dissected from original recordings at the Museum of Sci-

ence and Industry of Manchester, was used. Then, a piece 

of JavaScript code selects a random sample and plays it 

whenever a new cell comes to live. This sound is played 

at the cell’s position, contributing to the surround sonic 

image perceived from the point of view of the audio-

listener object at the center of the scene.   

The rapid concatenation of micro-samples across a bi-

dimensional space produces a macroscopic textural effect 

that can be categorized as a form of spatial concatenative 

synthesis, as long as the evolution rate is fast enough; 

although sometimes this rate is also kept relatively low 

and variable, favoring the apparition of distinct rhythmic 

patterns.  

3.2 Software Control Interface  

A number of variables are defined in the automaton’s 

code, so we can modify its properties and state; for ex-

ample: size (number of cells in the grid), initial density 

(how many cells are likely to be alive on start), initial 

area (size of the sub-grid where cells can be initially in-

stantiated), pitch-shift (option to slightly detune audio 

samples), random-volume, random-rate, etc. 

All the cells are initially disabled (dead state) but we can 

activate them from the main sequence script using the 

cell “state” property as follows: 

 
var automaton_A: GameObject;   

function Awake(){ 

//Reference to the control script in the A automaton 

a = automaton_A.GetComponent(Automata);  

} 

function Start(){ 

a.rate=0.1; 

a.state[10,12]=true; 

a.state[11,13]=true; 

a.state[9,13]=true; 

} 

 

The previous example would initiate a particular 

automaton configuration, which would evolve under the 

given rules (on a separate script) until a stationary state is 

achieved or all the cells are dead. As we can observe, the 

reference to the corresponding cell is provided by its (x,y) 



position in the grid (bi-dimensional array) while other 

properties can also be modified here. 

In addition, specific functions are also created as 

methods to control the automaton’s behavior, 

particularly, tempo related functions such as 

Accelerando, Ritardando, etc. The evolution rate (time 

between consecutive steps) can be fixed or randomly 

selected between a minimum and maximum rate. The 

next example shows a routine that progressively changes 

these values over a given period of time:    

 
function ChangeRate(targetMin:float,targetMax:float,seconds:float){ 

    var t = 0.0; 

    var currMin= minRate; 

    var currMax= maxRate; 

    while (t <= 1.0) { 

        t += Time.deltaTime/seconds; 

        minRate = Mathf.Lerp(currMin,targetMin, Mathf.Lerp(0.0, 1.0, t)); 

        maxRate = Mathf.Lerp(currMax,targetMax, Mathf.Lerp(0.0, 1.0, t)); 

        yield; 

    } 

} 

3.3 Creating the final sequence 

Once the instrument with its custom control interface is 

ready, we need to select a number of automata 

configurations as possible candidates for the final 

sequence, taking in consideration their musical potential 

and functionality within our piece. This process is 

analogous to the act of selecting sound materials for an 

acousmatic piece, although we are now working with 

shorts space-timbre motifs generated by virtue of the fast 

concatenative action of our cellular automata. 

The sequence is possible thanks to several time related 

instructions such as the yield instruction of the Unity 

scripting language. For instance, if we need to wait 1.5s 

before a new motif is generated, it is just a matter of 

typing the following line: 

 
yield WaitForSeconds(1.5); 

 

Using a while statement, it is also possible to link two 

events so the second one will only take place once a 

certain condition involving the first event is met. For 

example: 

 

//automaton A is ritardando 
//Wait until its minimum rate is above 0.85 
while (a.minRate<0.85){ 
    yield; //Wait 1 frame 
} 
//Play motif in automaton B 
automata_B.SetActive(true); 
b.state[1,1]=true; 
b.state[1,2]=true 
b.state[3,2]=true; 
//etc. 
 

Other subroutines are also created when multiple code 

threads need to run in parallel, facilitating the operation 

of simultaneous automata within our scene from a single 

master script (sequencer). 

4. APOLLONIAN GASKET: A VIRTUAL 

SOUND SCULPTURE 

As we mentioned earlier, this second case example 

explores the kinematics of a set of rings geometrically 

arranged as an Apollonian Gasket. This mathematical 

object was chosen not just because of its spatial 

characteristics, but also because of its simplicity and 

recursive elegance. Moreover, the kinematic model of the 

rings movement has multiple similarities with a popular 

sound toy known as Euler’s Disk3 and also resembles the 

natural behavior of a spinning coin. 

 

Figure 2. Spatial distribution of the Apollonian Gasket 

The original Gasket is a bi-dimensional object as we can 

see in Figure 2, but it has been extended for this piece4 

into a third vertical dimension, in order to allow a richer 

kinematic experience (see Figure 3).  

 

 

Figure 3. Screenshot of the 3D Apollonian Gasket 

Virtual Instrument. 
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Given that the curvatures of the component rings are be-

ing used as a variable to feed sound parameters, I opted 

for an asymmetric shape given by the initial values 18, 23 

and 27, thus avoiding excessive regularity and repetition. 

4.1 Sonification of Kinematic Data 

Audio is generated procedurally, in real time, using 

synthesis techniques that respond to specific changes in 

physical variables in the virtual objects (rings). 

These objects are animated using a custom Unity script 

and the consequent kinematic data is sent to an external 

audio engine (Supercollider) via OSC5 messages. Again, 

this approach permits a tight interconnection between the 

visual and sonic elements of the piece, since audio-video 

synchrony is nearly perfect and the movement/gesture of 

the virtual object can be effectively translated into sound. 

The algorithms used in Supercollider include different 

types of synthesis such as Physical Modelling, FM/AM 

or Granular Synthesis and the input variables used to feed 

these generators include: ring curvature, tilt, rotation 

speed, precesion speed, collision strength, horizontal 

angular position (azimuth), etc. 

One of the advantages of this kind of procedural sound 

generation is, for instance, the high number of sound 

variations that can be achieved with very light 

algorithms. For example, the .scd file used by 

SuperCollider to generate all the sounds in this piece, 

despite it contains more than 1500 lines of code, it only 

weights 30Kb (plus another 30Kb on the Unity scripting 

side). Also, these sonic variations are responsive and 

necessarily linked to the virtual object’s kinematic 

variables, while a similar complex response using raw 

recorded audio would take a considerably larger amount 

of data. 

4.2 Control Interface 

Similarly to how we did in the first case example 

(Singularity), we need some kind of software interface to 

regulate the mechanics of the proposed instrument.  

The system suggested is now based on an “energy” 

variable that determines the kinematic state of the rings. 

Then, we can introduce energy variations by calling the 

following function (C#): 

 
IEnumerator ChangeEnergy (GameObject ring, float targetEnergy,  

float seconds){ 

float t = 0.0F; 

var precesion = ring.GetComponent<Precesion>(); 

float currentEnergy = precesion.energy; 

while (t <= 1.0F) { 

t += Time.deltaTime/seconds; 

precesion.energy= 

Mathf.Lerp(currentEnergy,targetEnergy, 

Mathf.Lerp(0.0F, 1.0F, t)); 

yield return 0; 

} 

} 

 

                                                           

5 Using UnityOSC (https://github.com/jorgegarcia/UnityOSC) 

However, before any energy is introduced into the 

system, the multiple rings need to be initialized, both in 

Unity and SuperCollider. For example (Unity code): 

 
public void StartRotor(){ 

arcTan = Mathf.Atan(transform.position.x/transform.position.z); 

 

//Surround Panning 

if(transform.position.z>=0){ 

azimut = (arcTan*180/Mathf.PI); 

}else{ 

if(transform.position.x>=0){ 

azimut = 180 + (arcTan*180/Mathf.PI); 

}else{ 

azimut = (arcTan*180/Mathf.PI)-180; 

} 

} 

//Send OSC Messages 

List<object> values = new List<object>(); 

values.AddRange(new object[]{curvature, azimut}); 

OSCHandler.Instance.SendMessageToClient("SuperCollider", 

"start"+curvature.ToString(),values); 

rotorSynth=true; 

} 

 

The previous functions can obviously be reused as many 

times as needed from the master sequence script: 

 
aro18.GetComponent<Precesion>().StartRotor(); 
StartCoroutine(ChangeEnergy(aro18,10.0F,5.0F)); 

 

These are just two example of the Apollonian Gasket API 

functionality, but a number of other methods can also be 

called to easily modify any required property. 

4.3 Instrumental Techniques 

The Apollonian Gasket instrument presents at least three 

distinctive timbres, depending on the characteristic 

movements/behaviour of the rings in 3D space, namely: 

 

a) Rotation. Circular movement around the ring's 

main symmetry axis (Figure 3).  

 

 

Figure 3. Rotation movement 

 

 



b) Precesion. Changes in the orientation of the 

rotational axis around a vertical axis (secondary 

rotation). Rotation and precesion speeds are 

often related (Figure 4) and the consequent 

movement is translated into sound using real-

time noise filtering and recursive modulation 

techniques in SuperCollider.  

 

 

Figure 4. Precesion movement 

 

c) Collision. A small percussive element is 

sometimes attached to the ring in a way that it 

will hit the floor at intervals, producing a 

collision sound as a consequence of the 

rotation/precesion movement (see Figure 5). In 

that case, the ring’s tilt angle and the relative 

velocity of the collision can be used to feed 

several input parameters of an associated 

physical modelling synthesizer (Karplus-Strong 

UGen). Furthermore, the contact points 

generated by the physics engine provide the 

necessary vector data to position our collision 

sound using VBAP (see Section 2.3).  

 

Figure 5. Collision gesture 

4.4 Spatialization and Sound Diffusion 

The geometrical distribution of the rings, according to the 

mathematical fractal structure, provides a quasi-

symmetric layout with three main groups of rings placed 

on the Front-Left, Front-Right and Rear-Center (see 

Figure 6). The audio listener is then placed at the 

approximate centre of the set (ring146), providing an 

optimal listening position that can later be reproduced in 

the concert hall when playing the piece in a multichannel 

speakers setup (e.g. MANTIS6 system). Every sound 

event is panned in Supercollider using the VBAP object, 

allowing for azimuth and elevation data on any array of 

speakers. This approach reinforces the original idea of 

channel independent composition where sound objects 

are spatialized in virtual space, regardless of the final 

number of output channels.  

Furthermore, the Apollonian Gasket presents a sort of 

inside-outside separation given by the three original 

tangent circles, as all remaining circles will either be 

inside or outside of these three circles. The inner set is 

considerably smaller in size but has the same number of 

rings and similar spatial distribution as the outer set. This 

in/out characteristic can be easily used to create two 

separate multichannel buffers or stems (e.g. 4+4) and 

send them to different groups of speakers in the sound 

diffusion system (close vs. distant speakers) allowing for 

further exploration and manipulation of the piece during 

the live concert performance [17]. 

 

Figure 6. Spatial distribution of the Apollonian Gasket 

5. CONCLUSIONS  

Subsequent analysis of the ideas and techniques proposed 

in these two works seem to suggest that all the usual 

phases of music creation (e.g. instrument 

design/implementation, exploration of instrumental 

techniques, performance and composition) are also 

present within a game-engine environment and can be 

formalized using a programming language. This is indeed 

one more example of the existing virtualization trend that 

can be observed in many other disciplines; usually driven 
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by economic factors, but focused here on extending the 

limits of musical expression. 

We can also appreciate how real-time procedural sound 

generation is not necessarily linked to interactive media 

but may also be adopted for compositional purposes, for 

example, when a fixed macroscopic output is pursued 

while maintaining a certain degree of microscopic 

randomness or organic behaviour. Using code to organize 

our sound-generating processes (in contrast with 

traditional DAW timelines) has proven to be an effective 

way to achieve this goal, as it permits a flexible 

implementation and reinterpretation (playback) of these 

functions.  

  On the other hand, by extending our notion of space to 

the virtual domain, we have been able to explore sonic 

gesture as a result of simulated physical actions and 

spatial distribution/dissemination models that can be 

consolidated as viable 3D virtual musical instruments.  

The complexity and level of detail of the processes 

involved are only limited by the actual processing speed 

of our CPU/GPU, but it is also possible to use separate 

networked machines for specific tasks (e.g. physics 

engine vs. audio engine) when the proposed model 

requires more processing power.  

6. FUTURE WORK  

By the time of writing this paper, all live performances of 

these pieces have been carried out in a concert hall using 

multiple loudspeakers and a conventional projection 

system (large screen at the stage). The most important 

limitation of this approach is that it requires some effort 

from the audience in order to apprehend the proposed 

correspondence between the visual on-screen space and 

the aural concert hall space. For example, for the 

perspective view displayed in Figure 1 and 3, objects 

rendered at the top of the screen would normally be 

played from the front loudspeakers, while objects at the 

bottom of the screen would be played from the rear ones 

(anything in-between is panned accordingly). Therefore, 

we find a physical separation between both spaces which 

is only overcome thanks to the listener’s intuition and 

imagination. 

As an optimal future solution, a fully immersive visual 

system such as Oculus Rift7 could be adopted. The 

transition to this new technology should be quite straight 

forward given that the game engine used for these pieces 

(Unity) has already been tested with this kind of 

hardware. Such an approach would be compatible with 

the current system using loudspeakers and VBAP 

panning, but alternative audio rendering methods based 

on binaural or Ambisonics techniques might also be 

considered.  
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