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SUMMARY

The fractal finite element method (FFEM), originally developed for calculating stress intensity factors
in fracture mechanics problems, has been extended to analyse fluid–structure interaction in the form
of added-mass-type problems. These include the free vibration of a submerged spherical shell and the
interaction between a dam and a reservoir. For the former problem, the numerical solution from the FFEM
agrees well with the analytical solution, and the FFEM performed better than conventional finite elements
and infinite elements in terms of efficiency. For the latter problem, the FFEM predicted an added mass
profile that is different from that based on Westergaard’s parabolic solution. Copyright q 2008 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In this paper, fluid–structure interaction problems are analysed using the fractal finite element
method (FFEM). Specifically, the method is applied to the problem of harmonic vibration of
fluid–structure-coupled systems wit an unbounded fluid domain.

There are many problems that involve the combined motion of a fluid and a structure. Examples
of such problems include the response of a dam and reservoir to an earthquake, the response of
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ships and other vessels to waves, and the motion of a launcher rocket with a liquid fuel. Zienkiewicz
and Taylor [1] gives the following description of such problems: ‘Frequently two or more physical
systems interact with each other, with the independent solution of any one system being impossible
without simultaneous solution of the others. Such systems are known as coupled and of course
such coupling may be weak or strong depending on the degree of interaction.’ Here, neither
the fluid nor the structural system can be solved independently of the other due to the unknown
forces at the interface.

The inertia effect of the surrounding fluid medium on the dynamic characteristics, such as
natural frequencies, of immersed structures can be significant. This is especially true of structures
having large areas of contact with the surrounding fluid, such as plates and shells. The study of
the vibration of immersed plate and shell structures has therefore received much attention. For
example, the vibration of infinitely long cylindrical shells in an acoustic medium has been analysed
by Junger and Mass [2] and Bleich and Baron [3], etc. while that of a spherical shell has been
considered by Hayek [4]. In ocean engineering, the vibration of a ship in water is often considered
to be equivalent to that of a ship with an additional mass or ‘added mass’ in the vacuum. Such
added-mass-type problems have been investigated numerically by Nicolas-Vullierme and Blumstein
[5], Nicolas-Vullierme and Ohayon [6] and Orsero and Armand [7, 8], etc. In these works, the
eigenfrequencies of the structure for the conservative system were computed using infinite elements
to model the unbounded fluid domain. More recent references on ship vibration problems can be
found in Ozsoysal’s review [9]; and for those in relation to slamming and whipping of fast and
conventional ships in particular, one can refer to References [10, 11].

In a very considerable range of problems, the fluid displacement remains small while the
interaction is substantial. In such cases, the simplest approach for taking account of the flow around
a vibrating structure is the potential flow idealization. This means that the surrounding fluid is
assumed to be incompressible and non-viscous, and its flow is assumed to be irrotational. The
equations of the fluid then simply reduce to Laplace’s equation in terms of the fluid pressure,
allowing the FFEM developed for static problems [12] to be directly applicable to such dynamic
problems.

The fluid and structure can be discretized in many different ways, one of which is to discretize
the solid using conventional finite elements with the displacements as unknowns, and to discretize
the fluid using finite elements with the pressure as unknown. With the FFEM, a mesh with an
infinite number of layers of self-similar elements will be generated in the unbounded fluid domain,
but only the element matrices of the first layer need to be calculated since the matrices of self-
similar elements are related in a simple manner via the similarity or proportional constant. The
global interpolating functions, in the form of a truncated infinite series, can then be employed
to transform the infinite number of nodal variables to a small number of unknown coefficients
associated with the global interpolating functions. The fluid field can then be described completely
by the nodal pressures at the interface plus a small set of unknown coefficients. Because of this
and the fact that only conventional finite elements are required, for the same degree of solution
accuracy, the computational expense associated with the FFEM is small compared with other
methods, e.g. the use of either a truncated mesh with conventional finite elements or infinite
elements.

The FFEM has proved to be an economic, accurate and easy-to-implement method to impose
boundary conditions in the far field, whereby good approximation of the near-field behaviour
of the system can be obtained [12]. In this paper, the method is used for the free vibra-
tion analysis of an elastic spherical shell immersed in an incompressible fluid and that of a
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dam–reservoir structure. Accurate frequency results have been obtained as shown in the numerical
examples.

2. THEORY

2.1. Fluid behaviour

Consider the small oscillations of a structure immersed in a fluid domain extending to infinity in
all directions (Figure 1). The fluid is assumed to be incompressible as well as being inviscid. Its
behaviour is described by a simple Laplace’s equation of the form

∇2 p=0 (1)

where p is the pressure above the hydrostatic value.
At the interface, Sh , with the solid, Euler’s equation must be satisfied, i.e.

�p
�n

=−�fün (2)

where un is the displacement normal to the interface, � f is the density of the fluid and n is the
direction cosine vector for an inward pointing normal to the structure.

At the boundary, S∞, at infinity, the boundary condition is

p=0 on S∞ (3)

Figure 1. Structure immersed in an infinite fluid domain with interface Sh .
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In spherical coordinates, where

x = r sin�cos� (4)

y = r sin�sin� (5)

z = r cos� (6)

Equation (1) has the form

1

r2 sin�

(
�
�r

(
r2 sin�

�p
�r

)
+ �

��

(
sin�

�p
��

)
+ �

��

(
1

sin�

�p
��

))
=0 (7)

According to [13], the general solution of Equation (7) is

p(r,�,�)=
∞∑
n=0

n∑
m=0

r−(n+1)Pm
n (cos�){Anm cos(m�)+Bnm sin(m�)} (8)

where Pm
n (cos�) are Legendre functions. For axisymmetric problems, the solution reduces to

p(r,�)=
∞∑
n=0

r−(n+1)Pn(cos�)An (9)

It should be noted that this solution is an infinite decay series which, for computational purposes,
can be truncated into a finite number of terms with M unknowns or generalized coordinates, i.e.
An (n=0,1, . . . ,M−1). A truncated series of Equation (9) will therefore be used as the global
interpolation function in the FFEM to transform the nodal pressures in the far field into a set of
generalized coordinates. M is thus called the number of transformation terms.

2.2. Discretization of the coupled fluid–structure systems

The coupled problem can be discretized in the standard manner with the displacement vector
approximated as

u≈Nuũ (10)

and the fluid pressure as

p≈Npp̃ (11)

where Nu and Np are interpolation functions, u is the displacement vector for the structure, p is
the pressure in the fluid domain, ũ are the nodal displacements in the structure, and p̃ are the nodal
pressures in the fluid domain.

According to Zienkiewicz and Taylor [1], the governing equations for the free vibration of the
coupled system are [

M 0

�fQ
T 0

]{ ¨̃u
¨̃p

}
+

[
K −Q

0 H

]{
ũ

p̃

}
=0 (12)
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where M and K are the mass and stiffness matrices of the structure, respectively, H is the matrix
derived from Laplace’s equation for the fluid domain:

H=
∫

�
(∇Np)

T∇Np d� (13)

�f is the density of the fluid and Q is the matrix due to fluid–structure interaction:

Q=
∫
Sh
NT
unNp dS (14)

By putting ũ=�u ei�t and p̃=�p ei�t , Equation (12) can be rewritten as

(K−�2M)
�u−Q�p=0 (15)

and

H�p−�f�
2QT �u=0 (16)

2.3. The FFEM

When using the FFEM to analyse the coupled system, the fluid region is discretized into layers of
self-similar or fractal elements with increasing dimensions; as shown in Figure 1. Each layer is
created from the adjacent inner layer using the same proportional constant or similarity ratio. The
infinite number of nodal pressures will be transformed into a finite set of generalized coordinates
using the global interpolation functions derived from (9). Similar to the stiffness matrices [12], it
can be shown that there is a simple relation between the H matrices of similar elements, which
allows this transformation to be performed at the local element level and the results summed up as
geometrical progression series to be assembled to the global H matrix (see later). The contributions
to the global H matrix from the infinite number of elements in the unbounded domain are therefore
fully accounted for, while the number of degrees of freedom remains finite.

Following procedures similar to those for static problems [12], the fluid matrix equation, (16),
for the first layer is partitioned with respect to the slave nodes (r ) in the fluid region and the master
nodes (h) at the fluid–structure interface:

[
Hhh Hhr

Hrh Hrr

]⎧⎨
⎩

�

Ph

�

Pr

⎫⎬
⎭=

{
�f�

2QT�uh

0

}
(17)

Using the transformation

�pr =Tra

where Tr is the transformation matrix evaluated from the truncated series of Equation (9) and a
are the associated generalized coordinates, the pressure vector can be expressed as{�ph

�pr

}
=

[
I 0

0 Tr

]{
�ph

a

}
(18)
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Substituting Equation (18) into Equation (17) yields[
Hhh HhrTr

Hrh HrrTr

]{�

Ph

a

}
=

{
�f�

2QT�uh

0

}
(19)

Pre-multiplying the equation by the transpose of the transformation matrix, i.e.[
I 0

0 Tr

]T

on both sides then gives[
Hhh HhrTr

TT
r Hrh TT

r HrrTr

]{�

Ph

a

}
=

{
�f�

2QT�uh

0

}
(20)

Similarly, for the second and subsequent layers in the unbounded fluid domain, i.e. k�2, we have

TT
kHkTka=0 (21)

By summing the contributions from all fluid layers, i.e. adding Equations (21) for all k to Equation
(20), Equation (16) can be expressed as⎡

⎢⎣
Hhh HhrTr

TT
r Hrh TT

r HrrTr +
∞∑
k=2

TT
kHkTk

⎤
⎥⎦

{�

Ph

a

}
=

{
�f�

2QT�uh

0

}
(22)

From the lower part of Equation (22) above, we have

a=−L−1TT
r Hrh

�ph (23)

where

L=
(
TT
r HrrTr +

∞∑
k=2

TT
kHkTk

)
(24)

Substituting this back into the upper part of Equation (22) yields
�

Ph =�f�
2H−1

A QT�uh (25)

where

HA=Hhh−HhrTrL−1TT
r Hrh (26)

Finally, substituting Equation (25) into Equation (15) gives the equation for the free vibration of
the coupled system:

[K−�2(M�+M)]�u=0 (27)

where the added mass is given by

M� =� fQH−1
A QT (28)
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To solve Equation (27), one must first calculate the summation
∞∑
k=2

TT
kHkTk

To this end, consider two axisymmetric elements, denoted by a and b, which are similar in the r
direction with � being the proportional constant. It follows from (4) to (6) that the nodal coordinates
in element b can be expressed in terms of these in element a via

Xb=�Xa

It can then be shown that

∇Nb
p = 1

�
∇Na

p

and

d�b=2�Xb dSb=�3 ·2�Xa dSa =�3 ·d�a

where Na
p and Nb

p are interpolation functions, �a and �b are volumes, and Sa and Sb are areas
of elements a and b, respectively. For axisymmetric elements, therefore, the H matrix, Equation
(13), of element b is related to that of element a via

Hb=
∫

�b

(∇Nb
p)

T∇Nb
p d�=�Ha (29)

It follows by induction that

Hk =�k−2H2 (30)

From (9), it can be seen that

Tk =T2Diag[�i ] (31)

where

�i =�−(k−2)i (32)

is a scaling function and i=1,2,3 . . .M .
Thus,

∞∑
k=2

TT
kHkTk =

∞∑
k=2

�(k−2) ·Diag[�i ]TTT
2H2T2Diag[� j ]=[�i j H i j ] (33)

where

�i j =
∞∑
k=2

�−(k−2)i ·�(k−2) ·�−(k−2) j =[1−�−(i+ j−1)]−1 (34)

and

[Hi j ]=TT
2H2T2 (35)

with i, j =1,2, . . . ,M .
The FFEM has been coded and used to solve some added-mass-type problems. The followings

present the numerical calculations conducted to verify the program.
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3. APPLICATION

3.1. Free vibration analysis of a spherical shell immersed in an incompressible fluid

The geometrical dimensions and mechanical properties used in this problem are shell radius r0=
2.5m, shell thickness h=0.01m, shell density �s =7800kg/m3, fluid density �f=1000kg/m3,
Young’s modulus of shell E=2×1011N/m2, and its Poisson ratio v=0.3. The analytical solution
to this problem can be found in [4, 6].

3.1.1. FFEM vs FEM with a truncated fluid domain. For this problem, the spherical shell was
modelled using 300 axisymmetric shell elements (SAX1) [14], giving 903 degrees of freedom
(DOF) for the structure. The fluid domain was modelled using acoustic elements (ACAX4) [11],
no infinite elements being used in this case. As a minimum, a truncated fluid domain with only one
layer of acoustic elements may be used, for which the number of DOF would be 1204. However,
to obtain reasonably accurate results without using infinite elements or the fractal element method,
more layers of acoustic elements were required. For this example, 10 layers of acoustic elements
were used, with the fluid domain being truncated at a radius r =5m. The total number of DOF
was 7525. Figure 2 shows some of the modes of vibration predicted by the model using finite
elements only.

The FFEM, on the other hand, could provide equally accurate results with much fewer DOF.
In this case, the number of transformation terms used was 12 and the similarity ratio was 1.10.
The number of DOF of the FFE model was 915. Table I compares the FFE results with both the
analytical solution [4, 6] and the results from the model with a truncated domain of finite elements
only. As can be seen, the three sets of results agree well with each other. However, the higher
efficiency of the FFEM is clearly illustrated by the fact that the number of DOF in the FFE model
was only 1/8th of that in the finite element model.

3.1.2. Convergence of FFE results. Table II shows the changes of the FFE frequency results with
increasing number of transformation terms, M . The similarity ratio used was kept at 1.10. As
can be seen, the results for a particular frequency take the form of a step change at a particular
M value; the higher the frequency, the higher the M value at which the step change takes place.
Although no other step changes are apparent with further increase of M , such behaviour is not
typical of numerical convergence.

To ensure that convergence of the numerical results had truly been achieved, and to understand
the step change behaviour of the frequency results, the convergence with increasing M of the
added mass values associated with different nodes on the spherical shell were investigated. The
added mass of five nodes on the top half of the axisymmetric shell model (Figure 2) and their
convergence with increasing M are given in Table III. Their normalized values, using those for
M=20, are plotted in Figure 3 to further illustrate the rate of convergence with increasing M .
All the nodal added mass values presented converge to within 2% for M�5. Note that, due to
symmetry, the corresponding nodes on the bottom half of the shell will have the same added mass
values. Note also that the added mass is independent of the mode shape and frequency.

As can be seen from Table III and Figure 3, the nodes at the poles have much smaller added
mass and the rate of convergence with increasing M is slower than that of the node at the equator.
Therefore, for the lower modes of vibration, which will be dominated by the motion of the nodes
close to the equator, due to their much larger added mass, the convergence of the numerical results
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Figure 2. Modes of free vibration of the submerged spherical shell (n is mode number).

Table I. Predicted natural frequencies for spherical shell
immersed in incompressible fluid (for FFEM, similarity ratio

�=1.10, number of transformation terms M=12).

n Analytical FFEM FEM

2 80.68 80.94 78.93
0 94.77 94.92 94.30
3 100.14 100.61 98.20
4 113.70 114.42 112.27
5 124.63 125.67 123.79
6 133.93 135.37 133.69
8 149.72 151.95 150.50

10 163.06 166.31 164.95
11 175.17 173.03 171.68
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Table II. Convergence of the FFE frequency results for submerged spherical shell with increasing number
of transformation terms M (similarity ratio �=1.10, ‘—’ signifies identical results as per lower M values).

n M=4 M=5 M=6 M=7 M=8 M=9 M=10 M=12 M=20

2 80.94 — — — — — — — —
0 94.92 — — — — — — — —
3 100.61 — — — — — — — —
4 159.08 114.42 — — — — — — —
5 163.40 163.40 125.66 — — — — — —
6 169.20 169.20 169.20 133.37 — — — — —
7 170.22 170.22 170.22 170.22 144.04 — — — —
8 173.54 173.54 173.54 173.54 173.54 151.95 — — —
9 177.01 177.01 177.01 177.01 177.01 177.01 159.33 — —

10 180.69 180.69 180.69 180.69 180.69 180.69 180.69 166.31 166.31
11 184.63 184.63 184.63 184.63 184.63 184.63 184.63 173.03 173.03

Table III. Convergence of nodal added mass Ma (kg) against the number of transformation terms M .

Ma
M �=0 �=0.12� �=0.25� �=0.38� �=0.5�

1 1.125E−01 2.486E+01 4.807E+01 6.427E+01 6.989E+01
2 1.339E−01 2.956E+01 5.414E+01 6.683E+01 6.989E+01
3 1.328E−01 2.945E+01 5.328E+01 7.004E+01 7.763E+01
4 1.323E−01 2.933E+01 5.392E+01 7.258E+01 7.763E+01
5 1.312E−01 2.915E+01 5.517E+01 7.261E+01 7.906E+01
6 1.305E−01 2.908E+01 5.571E+01 7.328E+01 7.906E+01
7 1.300E−01 2.911E+01 5.575E+01 7.360E+01 7.970E+01
8 1.296E−01 2.918E+01 5.581E+01 7.362E+01 7.970E+01
9 1.294E−01 2.928E+01 5.597E+01 7.388E+01 7.996E+01

10 1.293E−01 2.935E+01 5.607E+01 7.392E+01 7.996E+01
11 1.292E−01 2.940E+01 5.608E+01 7.396E+01 8.009E+01
12 1.291E−01 2.943E+01 5.609E+01 7.403E+01 8.009E+01
13 1.291E−01 2.943E+01 5.613E+01 7.404E+01 8.014E+01
14 1.291E−01 2.943E+01 5.615E+01 7.406E+01 8.014E+01
15 1.291E−01 2.943E+01 5.615E+01 7.408E+01 8.017E+01

with increasing M is expected to be faster. In contrast, the higher modes is expected to have
a slower rate of convergence since the poles will have a bigger contribution to the motion, as
indicated by the mode shapes shown in Figure 2.

We are now in a position to explain the step change behaviour of the frequency results shown
in Table II. Given that the frequency of free vibration is inversely proportional to the square root
of mass, the convergence with increasing M of the natural frequencies of the immersed shell is
expected to mirror that of the inverse of the square root of the total added mass. However, before
summing them up, the nodal added mass values (mai ) need to be weighted by the eigenvector
(vi ) for a particular mode of vibration, for different nodes will have different contributions to the
motion, as explained above. Figure 4 shows the changes with increasing M of 1/

√∑
mai vi for

several modes of vibration. The step changes in the results, which are very similar to those in the
frequencies, can clearly be seen. Thus, the results presented in Table II for the natural frequencies
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can be considered as demonstration of their convergence with the number of transformation
terms M .

Figure 5 shows the convergence of the FFE results with the similarity ratio. As found for static
problems [12, 15], the closer to unity is the similarity ratio, i.e. the larger the number of fractal
elements used per unit distance in the unbounded domain, the more accurate is the solution. For
example, for mode 10, the frequency converges from within 50% to within 3% of the analytical
solution when the similarity ratio changes from 2.0 to 1.1. Since the value of the similarity ratio
does not affect the size of the problem, a value close to unity is recommended for generating the
fractal mesh. However, as will be seen later, this only applies to problems where a closed-form
solution is available for the summation of the infinite transformed matrices.

3.1.3. Comparison with infinite elements. The FFE results will now be compared with those of
Nicolas-Vullierme and Ohayon [6] who applied a combination of finite and infinite elements to
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Table IV. Frequency results for submerged spherical shell: comparison between FFE and infinite elements
[7] (for FFEM, �=1.10, number of transformation terms M=12).

n Analytical FFEM First mesh Second mesh Third mesh Fourth mesh

2 80.68 80.94 81.30 83.20 82.13 81.28
0 94.77 94.92 102.39 132.46 94.99 112.10
3 100.14 100.61 101.34
4 113.70 114.42 116.70 113.70 113.10 112.10
5 124.63 125.66
6 133.93 135.37 138.08 137.90 137.90 137.80
8 149.72 151.95 154.37

10 163.06 166.31 170.11
11 175.17 173.03 181.10

the problem. Four different computations with spherical boundaries of different radii r were used
by these workers:

1. Truncation of fluid domain at r =7r0, finite element mesh.
2. Truncation of fluid domain at r =2r0, finite element mesh.
3. Intermediary boundary at r =2r0, finite elements inside, infinite 1/r type elements outside.
4. Intermediary boundary at r =2r0, finite elements inside, infinite 1/r3 type elements outside.

There was no information on the order of the elements and the mesh density used.
Table IV compares the results from the FFEM with the analytical solution and those from

Reference [6] (denoted as first, second, third and fourth mesh). In general, the FFE results are
closer to the analytical solution than those given in [6].
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Figure 6. Dam and reservoir with rigid bottom.

3.2. Free vibration analysis of a concrete gravity dam

3.2.1. Global interpolation functions. To model dam–reservoir interaction, a 2-D model of a
gravity dam (Figure 6) was adopted. Assuming water to be incompressible, inviscid and irrotational,
the hydrostatic pressure, p, in excess of the static pressure due to small-amplitude motion of water
is governed by the Laplace equation (1).

At the dam–reservoir interface (S1), where the normal acceleration is prescribed, the boundary
condition is given by Euler’s equation (2). Neglecting the effects of surface waves, the boundary
condition at the free surface (S4) is p=0. This is justified because, even at the lowest frequency
(∼3Hz, see later), the wavelength of the surface waves is less than 0.3m, which is much smaller
than the characteristic dimensions of the problem. At higher frequencies, the wavelength of the
surface waves would be even smaller. The same boundary condition (p=0) applies at the far
end (S3) where x is infinite. If the bottom of the reservoir is assumed to be rigid, the boundary
condition at the bottom of the fluid domain, (S2), may be expressed as

�p
�n

=0 (36)

An analytical solution of Equation (1) satisfying the above given boundary conditions is [16]:

p(x, y)=8an�wH
∞∑
k=1

(−1)k+1

(2k−1)2�2
exp

(
− (2k−1)�x

2H

)
cos

(
(2k−1)�y

2H

)
(37)

where an is the ground acceleration, H is the depth of water, �w is the density of water. This
equation will be used as the global interpolation function for the FFEM.

3.2.2. Westergaard’s added mass. Earthquake-induced hydrodynamic pressures on dams were first
investigated by Westergaard mathematically [17]. According to his solution, the hydrodynamic
forces exerted on a gravity dam due to earthquake ground motion are equivalent to inertia forces
of a volume of water attached to the dam and moving back and forth with the dam, while the
rest of the reservoir water remains inactive. For analysis of gravity dams idealized as a 2-D rigid
monolith with vertical upstream face, Westergaard proposed a parabolic shape for this body of
water. The added mass of water at location i , mai , is therefore obtained by multiplying the mass
density �w of water by the volume of water tributary to point i :

mai = 7
8�w

√
H(H− yi )Ai (38)
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Figure 7. Part of the virtual FFE mesh of the fluid domain (�=1.10 in the x-direction).

where H is the depth of water, yi the height above the base of the dam, Ai the tributary surface
area at point i .

3.2.3. The FFEM. Four-node plane acoustic elements [14] were used for the fluid, part of the mesh
being shown in Figure 7. The right-hand side boundary is the interface between the dam and the
reservoir. An infinite number of elements were generated in the upstream direction. Each column
of elements was created from the adjacent column on the right using the same similarity ratio
throughout. The infinite number of nodal pressures was transformed into a finite set of generalized
coordinates using the global interpolation functions derived from (37). There is a linear relation
between the H matrices of similar elements; hence, this transformation could be performed at the
local element level and the results summed up as geometrical progression series to be assembled
to the global H matrix. However, since the fractal principle applies to the x-direction only, the H
matrix had to be divided into two components. As a result, unlike the previous submerged spherical
shell problem, there was no closed-form solution for the summation of the infinite transformed
matrices; hence only a finite number of fractal layers could be used for this problem.

From the previous section, the summation to be calculated after fractal transformation is

∞∑
n=k

TT
kHkTk

The element H matrix can be expressed as

Hi j =
∫
Re

(
�Ni

�x
�N j

�x
+ �Ni

�y
�N j

�y

)
dx dy=Hx

i j +Hy
i j (39)

where Re denotes the region of an element

Hx
i j =

∫
Re

�Ni

�x
�N j

�x
dx dy (40)

and

Hy
i j =

∫
Re

�Ni

�y
�N j

�y
dx dy (41)
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Consider two elements, denoted by a and b, which have the same dimension in the y-direction
and are similar in the x-direction with � being the proportional constant, i.e.

xb=�xa (42)

and

yb= ya (43)

It follows that

Hb=Hx
b +Hy

b =Hx
a /�+�Hy

a (44)

By induction, the components of Hk (k�2) of the outer layers can be derived from those of H2:

Hk =Hx
k +Hy

k =�−(k−2)Hx
2 +�(k−2)Hy

2 (45)

Tk can be obtained from Equation (37). Note that there is only one transformation term, i.e. an .

3.2.4. Numerical computation. A simple 2-D gravity dam model was examined using the FFEM.
The geometry of a typical non-overflow monolith of the dam is illustrated in Figure 8. The monolith
is 103m high and 70m wide at its base. The upstream wall of the monolith is assumed to be straight
and vertical, which is slightly different from the real configuration. The depth of the reservoir
is hw=91.75m. Densities for water and the dam are 1000 and 2643kg/m3, respectively, and
Young’s modulus and the Poisson ratio of the dam concrete are 310.27GPa and 0.15, respectively.
Following the work of other investigators [14, 17], a 2-D analysis of the non-overflow monolith
was carried out, assuming plane-stress conditions. The finite element mesh used for the analysis
is shown in Figure 9. It consists of 760 first-order, reduced-integration, plane-stress elements
(CPS4R [14]).

For simplicity, the dam–foundation interaction was neglected by assuming that the foundation
was rigid. The dam–reservoir dynamic interaction resulting from the horizontal component of
ground motion was modelled in a simple form using the added mass technique; both Wester-
gaard’s added mass formulation and that calculated by the FFEM were used. The FFE approach
was implemented in ABAQUS/Standard [14] using a simple 2-node user element that had been
coded in its User Element Subroutine UEL. The hydrodynamic pressures resulting from the
vertical component of ground motion were assumed to be small and were neglected in all the
simulations.

As mentioned previously, no closed-form solution for the summation of sub-H matrices in the
FFE region exists; hence, 100 layers of FFEs were used with �=1.10. In this case, the value of
the similarity ratio and the number of fractal layers must be chosen so as to produce an efficient
solution without excessive computational effort. For the interpolation function, (22), 60 terms were
used for the summation.

Figure 10 shows the distributed nodal added mass due to the FFE user elements, which is
compared with the Westergaard ‘added mass’. As can be seen, the FFE predicted added mass
profile is quite different from that of Westergaard’s, with the former solution giving less added
mass in the upper section of the reservoir and more added mass in the lower section. Table V
further compares the total mass predicted by Westergaard with that by the FFEM. It can be seen
that the FFEM gives slightly higher value for the total added mass. Two of the mode shapes
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Figure 8. Geometry and dimensions of the dam.

Figure 9. Finite element model for dam, including 2-node user elements for the reservoir.
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Figure 10. Added mass profiles for dam with full reservoir.

Table V. Total mass of dam with full reservoir.

Mass associated with direction (kg)

x y z

FFEM 1.5046907E+07 9 485 585 0.0
Westergaard 1.4398595E+07 9 485 585 0.0

predicted by the two methods are shown in Figure 11. In Table VI, the natural frequency results
due to the two added mass profiles are compared. Not surprisingly, the FFEM predicted slightly
lower natural frequencies because of the larger added mass.

Also presented in Table VI are the natural frequencies predicted by ABAQUS using acoustic
finite elements (AC2D4) and a truncated boundary to model the reservoir (Figure 12). The distance
of truncation ranged from 200 to 800m. It should be noted that the results for mode 1 with a
domain of 200m will not be very reliable since, given a speed of sound in water of approximately
1500m/s, mode 1 (2.57Hz) would have a wavelength of about 580m. Nevertheless, the ABAQUS
results seem to be converging with increasing truncation distance.

There are significant differences between the FFE and ABAQUS frequency results, especially for
mode 2 (∼12%). Given that frequency is proportional to the square root of mass, the corresponding
discrepancies in the added mass would be even more significant. The discrepancies are attributed
to the different formulations of the two methods, with the FFEM being based on potential flow
while the ABAQUS acoustic elements being based on compressible fluid. The ABAQUS results
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Figure 11. Predicted mode shapes of dam with full reservoir.

Table VI. Natural frequency (Hz) results for dam with full reservoir.

Mode Westergaard FFEM FEM (200m) FEM (400m) FEM (800m)

1 2.63 2.57 2.70 2.66 2.57
2 6.63 6.57 6.51 6.06 5.78
3 10.67 10.64 10.85 10.72 10.77
4 12.69 12.48 13.24 12.27 11.98

are perhaps more representative. ABAQUS does not seem to have an element that is based on
potential flow, but its results using acoustic elements can be brought closer to the FFE results
by increasing the bulk modulus of water to simulate incompressible fluid. However, the much
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Figure 12. FE model with a truncated boundary (200m) for the reservoir.

increased wavelength of the fluid motion means that a much larger fluid domain would be required
to provide accurate solutions.

4. CONCLUSION

The FFEM has been successfully extended to the analysis of added-mass-type problems, including
both axisymmetric and 2-D cases, with an infinite fluid domain. The use of a global interpolating
function allows the infinite number of nodal pressures of the fractal finite elements representing
the fluid to be condensed into a finite set of generalized coordinates by means of the fractal
transformation technique. No new element formulations are involved for this method. The FFE
solutions, which involve much fewer DOF in its computation, compare favourably with those
reported in the literature. However, for compressible fluids that cannot be adequately modelled by
the Laplace equation, the FFEM would significantly overestimate the added mass.
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