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Stochastic given-time H∞ consensus over

Markov jump networks with disturbance

constraint

Xiaoli Luan, Yang Min, Zhengtao Ding and Fei Liu

Abstract

In this study, the given-time H∞ consensus problem over networks with directed information flow

and Markov jump topologies is addressed. Our focus is on keeping the disagreement dynamics of

networks remain confined within the prescribed bound in the fixed time interval. Compared with the

asymptotical consensus in infinite settling time, the proposed algorithm is less conservative. In addition,

the new model transformation approach is presented to make the design results more advantageous in

commonality. Simulation results show the effectiveness of the proposed controller, and reveal that the

prescribed boundary of the disagreement trajectory has the effect on disturbance rejection performance.

Index Terms

Directed communication graph, Markov jump topology, Give-time consensus, H∞ performance

I. INTRODUCTION

In practical applications, dynamic systems are often connected with each other via com-

munication and sensing networks to achieve some challenging control tasks, such as satellite

formation flying, hazardous material handling, and industrial process controlling, etc (Fax and
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Murray, 2004; Huang et al., 2006; Dong and Farrell, 2009; Xie et al., 2015). For such network-

connected systems, agreement and consensus protocol design are fundamental and interesting

issues, which aim to enable the states of all subsystems converge to the same value using

the local information obtained from the network. For example, an industrial heating furnace

with multiple passes need to be controlled for all individual pass outlet temperature reaching the

same value in order to achieve higher energy efficiency and obtain better profit. Since pioneering

results on consensus control (Jadbabaie and Morse, 2003) and (Olifati-Saber and Murray, 2004),

the consensus problem has been extensively investigated by numerous researchers from various

perspectives (see (Scardovi and Sepulchre, 2009; Li et al., 2010; Ding, 2013; Liu et al., 2014)

and the references therein).

Since systems are often operating under uncertain environments, stochastic consensus for

networks with Markov jump topologies has been studied. For example, necessary and sufficient

conditions of mean square consensus were presented in (Zhang and Tian, 2009; Miao et al.,

2013) for networks in Markov switching topologies; Both continuous and discrete-time consensus

problems were investigated in (You et al., 2013), which shows the effect of switching topologies

on consensus is determined by the union of topologies associated with the positive recurrent states

of the Markov process. For other uncertain environments with various disturbances and random

communication noises, robust H∞ control approach is usually brought to achieve consensus and

attenuate the effect of external disturbance on the behavior of the system. For example, the H∞

consensus performance problem for linear multi-agent systems with undirected topologies was

analyzed in (Massioni and Verhaegen, 2009; Lin and Jia, 2010; Li et al., 2011). Considering

physical systems in practice are inherently nonlinear, the consensus protocol with prescribed L2

and H∞ performance for multi-agent systems were investigated in (Wen et al., 2012; Li et al.,

2012).

Carding the existing research results on consensus, including subsystems with linear and

nonlinear dynamics, communications with fixed and stochastic topologies, protocols with state

feedback and output feedback laws, most of which require that the disagreement dynamics of

subsystems asymptotically converges to zero in infinite time interval. In practice, there are some

cases where large value of state disagreement is not acceptable, for instance in the presence

of saturation. Furthermore, some systems are required to operate satisfactorily only over fixed

time interval, e.g., communication network systems, biochemistry reaction systems, and robot
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control systems. In this sense it appears more reasonable to investigate the network-connected

systems whose state disagreement remains within prescribed bound in the fixed time interval.

So far, to the best of authors knowledge, there is no result available yet on such problem, not

to mention network-connected systems with Markov jump topologies and external disturbances.

This situation actually motivates the present work.

The given-time consensus to be addressed in this paper deals with the network-connected

systems whose operation is limited to a specified time interval, and the state disagreement does

not exceed a given threshold. By means of the concept of short-time stability (finite-time stability)

put forward by Dorato (Dorato, 1961), which has been developed well in the past few years

(Amato and Ariola, 2005; Luan et al., 2013), a given-time H∞ consensus protocol is designed

for networks with stochastic Markov jump communication topologies and external disturbances.

Compared with existing results in consensus, the proposed algorithm has three new features: 1)

The proposed given-time H∞ consensus reduces the conservativeness of the controller design

from the perspective of engineering; 2) The new model transformation approach is presented by

exploring certain features of Laplacian matrix in real Jordan form, which leads to more generality

of the designed protocol; 3) Different from existing results in network topologies governed by

Markov jump process, the main result obtained is determined not only by the jump mode, but

also the jump rate.

II. PROBLEM DESCRIPTION

The dynamics of N subsystems takes the following form:

ẋi(t) = Axi(t) +Bui(t) +Bwwi(t) (1)

for i = 1, · · · , N , where xi(t) ∈ Rn and ui(t) ∈ Rm represent the state and control input of

subsystem i, respectively. w(t) ∈ Lp
2

[
0 +∞

)
is the external disturbance, and A, B, Bw are

constant matrices with (A,B) controllable.

The connection among the subsystems is specified by a directed graph G which consists of a

set of vertices denoted by Λ and a set of edges denoted by Υ. A vertex represents a subsystem,

and each edge represents a connection. Associated with the graph, its adjacency matrix Q with

elements qij denotes the connections such that qij = 1 if there is a connection from subsystem j

to subsystem i, and qij = 0, otherwise. The Laplacian matrix L = {lij} is commonly defined as
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lii =
N∑

j=1,j ̸=i

qij , lij = −qij for i ̸= j. For a directed graph, some properties about the Laplacian

matrix L will be given in the following lemma.

Lemma 2.1: (Yu et al., 2011) Zero is an eigenvalue of L with 1⃗ =

[
1, · · · , 1

]T
∈ RN

as the corresponding right eigenvector and all the non-zero eigenvalues have positive real parts.

Furthermore, zero is a single eigenvalue of L if and only if the graph contains a directed spanning

tree.

In this work, the considered network connection topology is switching, and the switching

process {rt, t ≥ 0} is governed by a homogeneous Markov chain. Let (Ω, E,Ø) be the probability

space,where Ω is the sample space, E is the algebra of events and Ø is the probability measure

defined on E. Let the random form process {rt, t ≥ 0} be the Markov stochastic process taking

values in a finite set S = {1, 2, · · · , s} with transition rate matrix Π = {πrl}, r, l ∈ S and define

the following transition probability from mode r at time t to mode l at time t+∆t as

Ørl = Ør {rt+∆t = l|rt = r} =


πrl∆t+ o (∆t) , r ̸= l

1 + πrr∆t+ o (∆t) , r = l

with transition probability rates πrl ≥ 0 for r, l ∈ S, r ̸= l and
s

Σ
l=1,l ̸=r

πrl = −πrr where ∆t > 0

and lim
∆t→0

o(∆t)/∆t → 0.

To formulate the problem addressed in this paper, let us make the following assumptions:

Assumption 2.1: The external disturbance wi(t) for each subsystem is time varying and sat-

isfies ∫ t

0

wT
i (t)wi(t)dt ≤ d, d ≥ 0 (2)

where d is a given positive scalar.

Assumption 2.2: For the convenience of presentation of the proposed design, the eigenvalues

of the Laplacian matrix are distinct (Cai et al., 2015).

In order to quantify the effect of disturbances to consensus, a controlled output function zi(t)

is defined to measure the state disagreement variable as follows

zi = xi −
N∑
j=1

[κ (rt)]jxj (3)

where κ (rt) ∈ RN is defined as the left eigenvector of jump Laplascian L (rt) associated with

the eigenvalue 0 and satisfies κ(rt)
T1⃗ = 1. It is desirable that the state disagreement zi(t) of the

Page 4 of 19

http://mc.manuscriptcentral.com/timc

Transactions of the Institute of Measurement and Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5

network-connected system (1) remains confined within the prescribed bound in the fixed time

interval, which motivates the subsequent given-time consensus concept:

Definition 2.1: (Luan et al., 2013) For a given-time constant T > 0, the network-connected

dynamic system (1) (setting ui(t) = 0, wi(t) = 0) is said to be given-time consentable with

respect to
(

c1 c2 T R

)
, where c1 < c2 and R > 0, if

E
{
zTi (0)Rzi(0)

}
≤ c1 ⇒ E

{
zTi (t)Rzi(t)

}
< c2, ∀ t ∈

[
0 T

]
(4)

Remark 2.1: With the finite-time stability theory, the definition of given-time consensus for

network-connected systems is presented to describe the transient behavior of state disagreement

in finite-time interval. That is, for the given initial condition E
{
zi

T (0)Rzi(0)
}

≤ c1, the

disagreement trajectory is confined within the specified bound E
{
zTi (t)Rzi(t)

}
< c2 over the

fixed time interval T > 0. It should be noted that there is a significant difference between given-

time consensus and asymptotical consensus studied in the existing literatures. In fact, a system

is given-time consentable may not be asymptotically consentable if the disagreement trajectory

does not converge to zero. Conversely, the asymptotical consensus of a system could not be

given-time consensus if the disagreement trajectory exceeds the prescribed bound c2.

Furthermore, considering the effect of external disturbances on the disagreement dynamics, the

given-time H∞ consensus protocol is designed such that the disagreement dynamics of system

(1) not only satisfies (4), but also under zero initial condition, satisfies the following cost function

inequality for a positive scalar γ > 0 and all admissible wi(t) with the constraint condition (2):

E

{∫ T

0

zTi (t)zi(t)dτ

}
< γ2E

{∫ T

0

wT
i (t)wi(t)dτ

}
(5)

In order to make the proposed given-time consensus controller suitable for network-connected

system with more general topologies, the new model transformation method will be presented

in the next section, which needs the following lemma:

Lemma 2.2: (Ding (2014)) For a Laplacian matrix that satisfies Lemma 2.1, there exists a

transformation F (rt) =

[
F1 (rt) 1⃗

]
and F (rt)

−1 =

[
F2 (rt) κ (rt)

]T
such that

F (rt)
−1L (rt)F (rt) = J (rt) (6)
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where J (rt) is a block-diagonal matrix of blocks

J (rt) =



λ1 (rt)

. . .

λnλ
(rt)

µ1 (rt)

. . .

µnµ (rt)

0



with λi (rt) ∈ R for i = 1, · · · , nλ and µi (rt) =

 αi (rt) βi (rt)

−βi (rt) αi (rt)

 ∈ R2×2 for i = 1, · · · , nµ.

In the above expression, λi (rt) , αi (rt) and βi (rt) are positive real numbers with λi (rt) denoting

real eigenvalues of L (rt) and αi (rt)±jβi (rt) denoting complex conjugate eigenvalues of L (rt)

respectively and clearly we have 1 + nλ + 2nµ = N .

This paper relaxes the requirement that the disagreement dynamics asymptotically converges

to zero, and only requires the disagreement trajectory stays in a prescribed bound with H∞

performance specification over a given-time interval. To this end, the consensus protocol will be

designed and sufficient conditions for the existence of given-time H∞ consensus controller will

be proposed in the next section.

III. MAIN RESULTS

To achieve given-time consensus, the following protocol is adopted:

ui = K (rt)
N∑
j=1

qij (rt) (xj − xi) (7)

where qij (rt) are adjacency elements of the stochastic jump graph G (rt), and K (rt) ∈ Rm×n

is the mode-dependent control gain to be designed.

Then rewrite protocol (7) as follows:

ui = −K (rt)
N∑
j=1

lij (rt)xj (8)
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With protocol (8) and denoting x =

[
xT
1 xT

2 · · · xT
N

]T
, w =

[
wT

1 wT
2 · · · wT

N

]T
,

the closed-loop system is expressed as follows:

ẋ = (IN ⊗ A− L (rt)⊗BK (rt))x+ (IN ⊗Bw)w (9)

where L (rt) is the Laplacian matrix associated with jump graph G (rt) , and ⊗ denotes the

Kronecker product of matrices.

Denoting z =

[
zT1 zT2 · · · zTN

]T
, equality (3) is rewritten as follows:

z = x−
((

⇀

1 · κ(rt)T
)
⊗ In

)
x

= M (rt)⊗ Inx

(10)

where M (rt) = IN − (
⇀

1 · κ(rt)T ).

Making the following transformation ξ = F (rt)
−1 ⊗ Inx, z̃ = F (rt)

−1 ⊗ Inz, w̃ = F (rt)
−1 ⊗

Ipw, the network dynamics (9) is transformed to the following system
ξ̇ = (IN ⊗ A− J (rt)⊗BK (rt)) ξ + (IN ⊗Bw) w̃

z̃ = (F (rt)
−1 ⊗ In)(M (rt)⊗ In)(F (rt)⊗ In)ξ

(11)

Performing the matrix calculation to equation (11), one has

z̃ =
(
F (rt)

−1 ⊗ In
)
(M (rt)⊗ In) (F (rt)⊗ In) ξ

= F (rt)
−1M (rt)F (rt)⊗ Inξ

=
(
F (rt)

−1INF (rt)− F (rt)
−1(

⇀

1 · κ(rt)T)F (rt)
)
⊗ Inξ

=
(
IN −

(
F (rt)

−1⇀1
)
·
(
κ(rt)

TF (rt)
))

⊗ Inξ

(12)

According to the definition of F (rt) in Lemma 2.2, we have

F (rt)
−1F (rt) = F (rt)

−1

[
F1 (rt)

⇀

1

]
=



1 0 · · · 0

0 1 0

... . . .

0 0 · · · 1
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i.e.

F (rt)
−1 ·

⇀

1 =

[
0 0 · · · 1

]T
and

F (rt)
−1F (rt) =

[
F2 (rt) κ(rt)

]T
F (rt) =



1 0 · · · 0

0 1 0

... . . .

0 0 · · · 1


i.e.

κ(rt)
TF (rt) =

[
0 0 · · · 1

]
Hence, equation (12) can be restated as

z̃ =



1 0 · · · 0

0 1 · · · 0

...
... . . . ...

0 0 · · · 0


⊗ Inξ (13)

For the notational convenience, let us partition the state variable ξ into ξi for i = 1, · · · , N .

Then for i = 1, · · · , nλ, we have
ξ̇i = (A− λi(rt)BK(rt))ξi +Bww̃i

z̃i = ξi

(14)

and for i = nλ + 1, · · · , N − 1
ξ̇i1 = (A− αi (rt)BK (rt)) ξi1 − βi (rt)BK (rt) ξi2 +Bww̃i1

z̃i1 = ξi1

(15)


ξ̇i2 = (A− αi (rt)BK (rt)) ξi2 + βi (rt)BK (rt) ξi1 +Bww̃i2

z̃i2 = ξi2

(16)
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and for i = N 
ξ̇N = AξN +Bww̃N

z̃N = 0

(17)

where i1 = 1 + nλ + 2k − 1, i2 = 1 + nλ + 2k, k ∈ 1, · · · , nµ. For notational simplicity, when

rt = r, r ∈ S, K (rt), λi (rt), αi (rt) and βi (rt) are respectively denoted as Kr, λi,r, αi,r and

βi,r.

We shall design the mode-dependent control gain matrix Kr to ensure that the disagreement

dynamics of system (1) remains confined within the prescribed bound in the fixed time interval

with H∞ performance specification.

Theorem 3.1: For the network-connected dynamic system (1) and a given-time constant T >

0, the given-time consensus problem can be solved under mode-dependent protocol (7) with

respect to
(

c1 c2 T R d

)
, if there exist positive constant η > 0 and γ2 > 0, mode-

dependent symmetric positive definite matrix Xr, mode-dependent matrix Yr and λ > 0 satisfied

the following LMIs for each r ∈ S :

XrA
T + AXr − σYr

TBT − σBYr + πrrXr − ηXr Xr Ψ1r Ψ2r

Xr −1 0 0

Ψ1r
T 0 −Ψ3r 0

Ψ2r
T 0 0 −Ψ4r


< 0 (18)

λ
(
R̃⊗R

)−1

< (IN ⊗Xr) <
(
R̃⊗R

)−1

(19) −e−ηTηc2 + λmax(F (rt)
−TF (rt)

−1)γ
2d

(
1− e−ηT

) √
ηc1

√
ηc1 −λ

 < 0 (20)

where

Ψ1r =

[
Bw Bw · · · Bw

]

Ψ2r = [ √πr1Xr · · · √
πr(r−1)Xr

√
πr(r+1)Xr · · · √

πrNXr
]

Ψ3r = diag

{
γ2I, γ2I, · · · , γ2I

}
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Ψ4r = diag{ X1, · · · , Xr−1, Xr+1, · · · , XN
}

σ = min
{
λ1,r, · · · , λnλ,r, α1,r, · · · , αnµ,r

}
, R̃ = F (rt)

TF (rt)

If the above four LMIs are feasible, then the feedback matrix of the consensus protocol is given

by Kr = YrX
−1
r .

Proof: Consider a stochastic Lyapunov function candidate as

V (ξi(t), rt = r) = V (ξi, r) = ξTi Prξi (21)

where Pr is mode-dependent positive definite symmetric matrix for each r. For i = 1, · · · , nλ,

along the trajectories of system (14), the corresponding time derivative of V (ξi, r) is given by

d
dt
E {V (ξi, r)}

= lim
∆t→0

1
∆t

[E {V (ξi (t+∆t) , rt+∆t, t+∆t)| ξi(t) = ξi, rt = r} − V (ξi(t), r, t)]

≤ ξTi

(
(A− λi,rBKr)

TPr + Pr (A− λi,rBKr) +
s∑

l=1

πrlPl

)
ξi + 2ξTi PrBww̃i

(22)

For i = nλ+1, · · · , N − 1, we consider V (ξi, r) in pairs for the complex conjugate eigenvalues.

It can be obtained in a similar way to the real eigenvalue case that

d
dt
E {V (ξi1 , r)}+ d

dt
E {V (ξi2 , r)}

≤ ξTi1

(
(A− αi,rBKr)

TPr + Pr (A− αi,rBKr) +
s∑

l=1

πrlPl

)
ξi1

+ξTi2

(
(A− αi,rBKr)

TPr + Pr (A− αi,rBKr) +
s∑

l=1

πrlPl

)
ξi2

+2ξTi1PrBww̃i1 + 2ξTi2PrBww̃i2

(23)

Let V (ξ(t), r) =
N−1∑
i=1

V (ξi, r), if the following condition holds (A− σBKr)
TPr + Pr (A− σBKr) +

s∑
l=1

πrlPl − ηPr + I PrBw

∗ −γ2I

 < 0 (24)

it follows
d

dt
E {V (ξ(t), r)} < ηE {V (ξ(t), r)}+ γ2w̃(t)Tw̃(t)− z̃(t)Tz̃(t) (25)
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Multiplying both sides of (25) by e−ηt and integrating from 0 to t, it follows that

E {V (ξ(t), r)} < eηt
(
V (ξ(0), r0) + γ2

∫ t

0

e−ητ w̃(τ)Tw̃(τ)dτ

)
< eηt

(
V (ξ(0), r0) + (N − 1) γ2λmax(F (rt)

−TF (rt)
−1)d

(1− e−ηt)

η

) (26)

where λmax(F (rt)
−TF (rt)

−1) is the maximum eigenvalue of F (rt)
−TF (rt)

−1.

Defining

IN ⊗R =
(
F (rt)

−1 ⊗ In
)T (

R̃⊗R
) (

F (rt)
−1 ⊗ In

)
IN ⊗ P̃r =

(
R̃⊗R

)−1/2

(IN ⊗ Pr)
(
R̃⊗R

)−1/2

we have

E {V (ξ(t), r)} < eηt (N − 1)

(
λmax

(
IN ⊗ P̃r

)
c1 + γ2λmax(F (rt)

−TF (rt)
−1)d

(1− e−ηt)

η

)
(27)

On the other hand, the following condition holds

E {V (ξ(t), r)} = E
{
z̃(t)T (IN ⊗ Pr) z̃(t)

}
= E

{
z̃(t)T

(
R̃⊗R

)1/2 (
IN ⊗ P̃r

)(
R̃⊗R

)1/2

z̃(t)

}
> λmin

(
IN ⊗ P̃r

)
E
{
z̃T

(
R̃⊗R

)
z̃
} (28)

Putting together (27) and (28), we have

E
{
z̃T

(
R̃⊗R

)
z̃
}
<

eηt (N − 1)
[
c1ηλmax

(
IN ⊗ P̃r

)
+ λmax(F (rt)

−TF (rt)
−1)γ

2d (1− e−ηt)
]

λmin

(
IN ⊗ P̃r

)
η

If the following condition is satisfied

eηt
[
c1ηλmax

(
IN ⊗ P̃r

)
+ λmax(F (rt)

−TF (rt)
−1)γ

2d (1− e−ηt)
]

λmin

(
IN ⊗ P̃r

)
η

< c2 (29)

which implies that for ∀ t ∈
[
0 T

]
, E

{
zTi (t)Rzi(t)

}
< c2, then the network-connected dy-

namical system (1) is said to be given-time consentable with respect to
(

c1 c2 T R d

)
.

Further more, according to condition (25) and in zero initial condition, we can get

E

{∫ T

0

z̃(t)Tz̃(t)dτ

}
< γ2E

{∫ T

0

w̃(t)Tw̃(t)dτ

}
(30)
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which is equivalent to the cost function (5). To obtain the gains of the designed protocol, next

we will reduce conditions (24) and (29) to feasibility problems involving LMIs.

Pre- and post-multiplying the inequality (24) by block-diagonal matrix diag

{
P−1
r I

}
,

letting Xr = P−1
r , Yr = KrXr and applying Schur complement, it leads to inequality (18) .

According to IN ⊗ P̃r =
(
R̃⊗R

)−1/2

(IN ⊗ Pr)
(
R̃⊗R

)−1/2

, one has(
IN ⊗ P̃r

)−1

=
(
R̃⊗R

)1/2

(IN ⊗ Pr)
−1
(
R̃⊗R

)1/2

λmax

(
IN ⊗ P̃r

)−1

=
1

λmin

(
IN ⊗ P̃r

)
Condition (29) follows that

c1η

λmin(X̃r)
+ λmax(F (rt)

−TF (rt)
−1)γ

2d
(
1− e−ηt

)
<

e−ηtηc2

λmax(X̃r)
(31)

Define

λmax(X̃r) < 1, λ < λmin(X̃r) (32)

From definition(32), we can have condition (19). Putting (31) and (32) together, the desired

condition (20) can be obtained, which completes the proof.

Remark 3.1: Note that inequality (25) with η > 0 in the proof relaxes the requirement on

Lyapunov energy function by allowing it to increase, which leads to less conservativeness of

the results. If we set η = 0 and make the assumption that the communication topology is fixed,

then the condition derived in (19) will reduce to asymptotical consensus results in literatures (Li

et al., 2010; Ding, 2014). In this case, the state of network-connected dynamic system (1) can

also asymptotically reach to an identical value via the designed control protocol (7).

Remark 3.2: Upon exploring certain features of Laplacian matrix in real Jordan form, and

defining the state disagreement in the form of (3), the closed-loop system (9) is transformed into

system (11), which makes the designed protocol suitable for more general networks with directed

information flow. Considering that the Laplacian matrix of a directed graph is not symmetric

positive semi-definite, the transformation method employed in (Lin and Jia, 2010; Liu and Jia,

2011) is not applicable here. Therefore, with the new transformation proposed in this paper,

sufficient conditions for achieving given-time H∞ consensus are presented in Theorem 3.1.

Remark 3.3: From Theorem 3.1 it can be seen that the given-time H∞ consensus of system

(1) is influenced by not only the eigenvalues of Laplacian matrix, but also the transition rate of
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communication topology. Furthermore, to obtain an optimized given-time consensus controller,

the bound of disagreement trajectory can be reduced to the minimum possible value such that

LMIs (18-20) are satisfied. The optimization problem can be described as follows:

min
Xr,Yr,λ,c2

c2

s. t. LMIs (18− 20)

(33)

IV. ILLUSTRATIVE EXAMPLE

In this section, we will provide an example to show the advantage of the proposed method. The

system under consideration is a connection of four subsystems, and each of them is described

by a state-space model as

ẋi(t) =

 −1.48 0.96

1.57 1.95

xi(t) +

 1

5

ui(t) +

 0.1

−0.3

wi(t)

The interconnection topology jumps between G1 and G2 with adjacency matrices described as:

Q1 =



0 0 0 1

1 0 0 0

0 0 0 1

0 1 0 0


, Q2 =



0 1 0 0

0 0 0 1

1 1 0 1

0 1 0 0


and the transition rate between G1 and G2 is

Π =

 −0.7 0.7

0.4 −0.4


The external disturbance is supposed to be

w(t) =

[
w1(t) w2(t) w3(t) w4(t)

]T
=

[
2 sin(t) − sin(t) 3 sin(t) −1.5 sin(t)

]T
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According to the relationship between Q and L, the resultant Laplasian matrices are obtained as

L1 =



1 0 0 −1

−1 1 0 0

0 0 1 −1

0 −1 0 1


, L2 =



1 −1 0 0

0 1 0 −1

−1 −1 3 −1

0 −1 0 1


According to the eigenvalues of Lr for r = 1, 2, it is easy to get that

J1 =



1 0 0 0

0 3/2
√
3
/
2 0

0 −
√
3
/
2 3/2 0

0 0 0 0


, J2 =



1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 0


with the transformation matrices

T1 =



0 0.5
√
3
/
2 1

0 −1 0 1

−3/2 1/2
√
3
/
2 1

0 1/2 −
√
3
/
2 1


, T2 =



2 1 0 1

0 −1 0 1

1 1 1 1

0 1 0 1


and

T1
−1 =



2/3 0 −2/3 0

1/3 −2/3 0 1/3

√
3
/
3 0 0 −

√
3
/
3

1/3 1/3 0 1/3


, T2

−1 =



1/2 0 0 −1/2

0 −1/2 0 1/2

−1/2 0 1 −1/2

0 1/2 0 1/2


Our aim here is to design a given-time H∞ consensus controller in the form of (7) such that the

disagreement trajectory stays within the given bound in the presence of external disturbance and

Markov jump topology. Introducing the initial value for c1 = 0.1, c2 = 0.3, T = 5, R = 0.1I2,

Page 14 of 19

http://mc.manuscriptcentral.com/timc

Transactions of the Institute of Measurement and Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

 

 

x11
x22
x33
x44

(a) State xi1 of free system
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(b) State xi2 of free system

Fig. 1: State response of free system

d = 2, γ = 1 and η = 1, and by solving (18)-(20) in Theorem 3.1, the corresponding mode-

dependent controller gains are computed as follows:

K1 = [ 0.7177 02.7305 ]

K2 = [ 0.9636 03.5157 ]

To demonstrate the effectiveness of the design method, the state response of free system without

control input is shown in Fig.1 and the disagreement trajectory under control protocol (7) is shown

in Fig. 2 for given initial states x10 = [ 0.3 0.5 ]T, x20 = [ 0.2 0.4 ]T, x30 = [ 0.25 0.45 ]T

and x40 = [ 0.38 0.47 ]T. It can be seen that even for the unstable system, the state disagreement

stays within the specified bound c2 = 0.3 over the given-time horizon T = 5 with the designed

controller. In order to investigate the effect of γ and η in the search of minimum upper bound

of c2 and maximum lower bound of c1 , the results of the optimization problem are summarized

in Table I. In addition, from Theorem 3.1 it can be seen that the values of c1 and c2 have effect

on the disturbance rejection level γ, which are given in Table II.

As shown in Table I , the increasing of γ and decreasing of η lead to the smaller bound of c1

and bigger bound of c2. From Table II we can conclude that the disturbance rejection level is

improved for bigger value of c1 and smaller value of c2 , which is consistent with the practical

situation.
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(d) Disagreement trajectory z4

Fig. 2: Disagreement trajectory of the controlled system

TABLE I: Minimum upper bound of c2 and maximum lower bound of c1 for different values

of γ and η

η γ c1 c2

5 1.2 0.0061 3.4332

5 1.3 0.0061 3.4240

5 1.4 0.0062 3.4077

5 1.5 0.0062 3.3906

3 1.5 0.0097 3.2883

3 1.6 0.0097 3.2749

1 1.6 0.0256 3.1284
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TABLE II: Minimum value of γ for different values of c1 and c2

c1 c2 γ

0.6 0.9 1.2681

0.6 1.8 1.2678

0.6 2.7 1.2661

0.3 2.7 1.1526

0.1 2.7 0.6284

V. CONCLUSION

The given-time H∞ consensus problem has been proposed and solved in this paper for

network-connected dynamical systems with directed communication graph and Markov jump

topologies. To keep the disagreement dynamics of networks within the prescribed bound in the

fixed time interval with a guaranteed H∞ disturbance rejection performance, sufficient conditions

for the existence of the controller have been derived. Future work will focus on the design of

output feedback control protocol for achieving given-time H∞ consensus for networks under

communication delays with fixed or switching directed topologies.
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