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aEscuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n,
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Abstract

Complexity of oilwell drillstrings makes unfeasible the direct application of control methodologies to suppress non-

desired oscillations existing in these systems. A reasonable alternative is to develop operation recommendations and

parameter selection methods to guide the driller to avoid such oscillations. In this paper, by using dynamical analysis tools,

operation recommendations and the detection of safe drilling parameters in a conventional oilwell drillstring are presented.

To this end, a more generic lumped-parameter model than those considered until now is proposed. Particularly, this model

takes into account the fact that the drillstring length increases as drilling operation makes progress. The analysis of a

sliding motion giving rise to self-excited bit stick–slip oscillations and bit sticking phenomena at the bottom-hole assembly

is performed. Finally, the identification of key drilling parameters ranges for which non-desired torsional oscillations are

present is carried out by studying Hopf bifurcations in the vicinity of the system equilibrium point when rotary velocities

are greater than zero.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Oilwell drillstrings are mechanical systems which undergo complex dynamical phenomena, often involving
non-desired oscillations. Three main types of oscillations are distinguished: torsional (e.g., stick–slip
oscillations), axial (e.g., bit bouncing phenomenon) and lateral (e.g., whirl motion due the out-of-balance of
the drillstring) [1–4]. These oscillations are a source of failures which reduce penetration rates and increase
drilling operation costs. Stick–slip phenomenon appearing at the bottom-hole assembly (BHA) is particularly
harmful for the drillstring and it is a major cause of drill pipes and bit failures, in addition to well bore
instability problems. For this reason, this paper is focused on stick–slip oscillations. They cause the top of the
drillstring to rotate with a constant rotary speed, whereas the bit (cutting device) rotary speed varies between
zero and up to six times the rotary speed measured at the surface.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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To deal with the problem of stick–slip oscillations, two challenging problems have to be solved:
developing models to adequately describe the phenomenon and designing methodologies to help reduce its
effects.

A model describing all drillstring dynamical phenomena would be too complex for analysis purposes.
Simplifications are mandatory to keep equations manageable. Lumped-parameter models lead to more simple
analysis and system simulation, in comparison to partial derivatives models. Several lumped-parameter
models have been proposed in the literature to describe drillstring torsional behaviour. These models are of
one degree [5,6] and two degrees of freedom [1,2,7–10]. Such models fail to reflect two important
characteristics: (i) the fact that the drillstring length increases as drilling operation makes progress,
(ii) oscillations appearing along the connected drill pipes and the drill collars (just above the bit). In this work,
an n-dimensional lumped-parameter discontinuous model which overcomes such disadvantages is proposed.
The discontinuity is introduced by the bit–rock interaction which is modelled by means of a dry friction
combined with an exponential-decaying law.

Due to the complexity of the system and variables involved, the direct application of control methodologies
in order to suppress non-desired oscillations phenomena can be unfeasible. It seems to be more reasonable to
propose operation recommendations and drilling parameters selection methodologies in order to suppress
oscillations and guide the driller. Following this approach, in this work, an analysis of system complex
phenomena and bifurcations is performed. The existence of a sliding motion is proven. This motion is
shown to be related to bit stick–slip oscillations and bit sticking phenomena. Transitions between several
bit dynamics are identified. These transitions are shown to depend on the weight on the bit (WOB) and
the torque given by the surface motor. It is shown that the presence of stick–slip and bit sticking pheno-
mena is characterized by the dynamics of the drill collars (elements just above the bit) if an n-dimensional
model is used, or by means of the top-rotary mechanism dynamics, if only two degrees of freedom are
considered.

Local Poincaré–Andronov–Hopf bifurcations (often referred to as Hopf bifurcations) of the system
equilibrium point when rotary velocities are greater than zero are also studied. Hopf bifurcations imply the
birth, or the death, of a periodic orbit through a change in the stability of an equilibrium point and are the
typical way in which instability arises in physical systems. Changes in drillstring behaviour are studied through
variations in three parameters: (i) the weight on the bit, (ii) the rotary speed at the top-rotary drillstring
system, (iii) the torque given by the surface motor (u). Practical experience has shown them to be important for
the drillstring behaviour [11]. Drillers employ these parameters in optimization drilling models [12]. These
models are used to optimize the rate of penetration and drilling costs. However, the rotary speed and
the weight on the bit are considered constant and no study of their influence on drillstring oscillations is
usually made.

The intersection of the region of parameters where no Hopf bifurcations are present with the region where
no stuck bit is possible provides a good estimation for parameters weight on the bit, u and angular velocities to
have safe drilling operations.

The paper is organized as follows. Section 2 presents an n-dimensional lumped-parameter model of the
torsional behaviour of the drillstring including the bit–rock interaction. This model properly describes bit
stick–slip oscillations and other non-desired bit phenomena. In Section 3, the effects of the weight on the bit
and the torque u on the bit behaviour are analysed. For this purpose, the existence of a sliding mode which
causes different bit sticking phenomena is shown. Section 4 identifies the region of rotary velocities and weight
on the bit in which non-desired oscillations are present. This is done by means of studying local bifurcations of
the system equilibrium point when rotary velocities greater than zero are considered. Conclusions are given in
the last section.

2. A dynamic torsional model of a conventional drillstring

The model presented in this section includes and generalizes other drillstring torsional lumped-parameter
models appeared in the literature [1,2,5–10].

A conventional drillstring consists of the bottom-hole assembly and drill pipes screwed end to end to each
other to form a long pipe (see Fig. 1). The bottom-hole assembly comprises the cutting device, referred to as
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Fig. 1. Important elements in a conventional vertical drillstring. _jr (rad/s) top angular velocity, _jb (rad/s) bit angular velocity, Lp (m) drill

pipe line length, Lb (m) bottom-hole assembly length, W ob (N) weight on the bit, Tb (Nm) torque on the bit.
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bit, stabilizers (at least two spaced apart) which prevent the drillstring from underbalancing, and a series of
pipe sections which are relatively heavy, known as drill collars. Drillstrings usually include a heavy-weight drill
pipe at the top of the bottom-hole assembly. While the length of the bottom-hole assembly ðLbÞ remains
constant, the total length of the drill pipe line ðLpÞ increases as the borehole depth does so and can reach
several kilometers. An important element in the drilling is the drilling mud or fluid which, among others, has
the function of cleaning, cooling and lubricating the bit. The drillstring is rotated from the surface by an
electrical motor. The rotating mechanism can be of two types: a rotary table or a top drive.

Fig. 2 depicts a simplified torsional model of a conventional drillstring. It reflects the fact that the
length of the drillstring (number of drill pipes) increases while the drilling operation advances. Four kinds
of elements are considered: (i) the top-rotary system, (ii) p drill pipes modelled as linear springs of torsional
stiffness kt and torsional damping ct, (iii) the bottom-hole assembly (including the drill collars), (iv) the
bit. The drill pipes are connected to the inertias Jr and J, corresponding to the inertia of the top-rotary
system and to the inertia of each drill pipe. The number of drill pipes can be modified depending on system
analysis requirements. The pth drill pipe is connected to the drill collars ðJlÞ by means of ktl and ctl . Finally,
the drill collars are connected to the bit (Jb) by means of ktb and ctb. At the bit, a viscous damping torque and
a dry friction torque are taken into account. A viscous damping torque is also considered at the top-drive
system.

The following assumptions are made: (i) the borehole and the drillstring are both vertical and straight, (ii)
no lateral bit motion is present, (iii) the friction in the pipe connections and between the pipes and the borehole
are neglected, (iv) the drilling mud is simplified by a viscous-type friction element at the bit, (v) the drilling
mud fluids orbital motion is considered to be laminar, i.e., without turbulences, (vi) the motor dynamics is not
considered, the drive torque is supposed to be constant and positive, (vii) the drill pipes are considered to have
the same inertia. Under these assumptions and according to Fig. 2, the drillstring torsional model takes the
following form:

€jr ¼ �
ct

Jr

ð _jr � _j1Þ �
kt

Jr

ðjr � j1Þ þ
Tm � Tar ð _jrÞ

Jr

, ð1aÞ

€j1 ¼ �
ct

J
ð2 _j1 � _jr � _j2Þ �

kt

J
ð2j1 � jr � j2Þ, ð1bÞ
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Fig. 2. Mechanical model describing the torsional behaviour of a conventional drillstring. All functions and parameters are explained in

the text.
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€jj ¼ �
ct

J
ð2 _jj � _jjþ1 � _jj�1Þ �

kt

J
ð2jj � jjþ1 � jj�1Þ, ð1cÞ

..

.

€jp ¼ �
ct

J
ð _jp � _jp�1Þ �

kt

J
ðjp � jp�1Þ �

ctl

J
ð _jp � _jlÞ �

ktl

J
ðjp � jlÞ, ð1dÞ

€jl ¼ �
ctl

Jl

ð _jl � _jpÞ �
ktl

Jl

ðjl � jpÞ �
ctb

Jl

ð _jl � _jbÞ �
ktb

Jl

ðjl � jbÞ, ð1eÞ

€jb ¼ �
ctb

Jb

ð _jb � _jlÞ �
ktb

Jb

ðjb � jlÞ �
TbðxÞ

Jb

, ð1fÞ

with p the number of drill pipes, j ¼ 2; . . . ; p� 1. Eq. (1d) is used for the drill-pipe level p, i.e., for the
inertia connected to Jl through ktl and ctl . jr, jp, jl , jb are the angular displacements of the top-
rotary system, the drill pipes, the drill collars and the bit, respectively. _jr, _jp, _jl , _jb are the angular
velocities of the top-rotary system, the drill pipes, the drill collars and the bit, respectively. Tm is the
drive torque coming from the electrical motor at the surface. It is assumed that arbitrary torques
can be applied without taking into account the actuator dynamics generating this torque, then Tm ¼ u

with u40 one of the system control inputs. Tar is the viscous damping torque associated with Jr, it
corresponds to the lubrication of the mechanical elements of the top-rotary system and Tar ¼ cr _jr, with cr the
viscous damping coefficient. Tb is the torque on the bit, x is the system state vector, and they are defined
below.
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Let define,

x ¼ ðjr; _jr; . . . ;ji; _ji; . . . ;jl ; _jl ;jb; _jbÞ
T

¼ ðx1; x2; . . . ;x2ðiþ1Þ�1; x2ðiþ1Þ; . . . ; xn�3; xn�2;xn�1;xnÞ
T, ð2Þ

as the system state vector, with i ¼ 1; . . . ; p and n the order of the system or number of system variables. Note
that n is an even integer. Then, the system in Eq. (1) can be written as:

_xðtÞ ¼ AxðtÞ þ Buþ TfðxðtÞÞ, (3)

where B and Tf are given by

B ¼

0
1

Jr

0

..

.

0

0
BBBBBBBB@

1
CCCCCCCCA
; TfðxÞ ¼

0

0

..

.

0

�
Tf b
ðxÞ

Jb

0
BBBBBBBB@

1
CCCCCCCCA

(4)

and depending on the system dimension, A has the following form:
�
 For n ¼ 4. The system consists of two inertias (Jr and Jb) connected through kt and ct. The system with
n ¼ 4 is the most common drillstring model appeared in the literature. In this case,

A ¼

0 1 0 0

�
kt

Jr

�
ct þ cr

Jr

kt

Jr

ct

Jr

0 0 0 1
kt

Jb

ct

Jb

�
kt

Jb

�
ct þ cb

Jb

0
BBBBBB@

1
CCCCCCA. (5)
�
 For n ¼ 6. Three inertias are considered. Jr is connected to Jl through kt and ct, and Jl to Jb through ktb

and ctb. In this case,

A ¼

0 1 0 0 0 0

�
kt

Jr

�
ct þ cr

Jr

kt

Jr

ct

Jr

0 0

0 0 0 1 0 0
kt

Jl

ct

Jl

�
kt þ ktb

Jl

�
ct þ ctb

Jl

ktb

Jl

ctb

Jl

0 0 0 0 0 1

0 0
ktb

Jb

ctb

Jb

�
ktb

Jb

�
ctb þ cb

Jb

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
. (6)
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For nX8, that is, pX1. The inertia Jl is connected to its previous element by ktl and ctl . In this case,
�
A ¼

0 1 0 0 0 0 . . . . . . 0 0

�
kt

Jr

�
ct þ cr

Jr

kt

Jr

ct

Jr

0 0 . . . . . . 0 0

0 0 0 1 0 0 . . . . . . 0 0
kt

J

ct

J
�
2kt

J
�
2ct

J

kt

J

ct

J
0 . . . 0 0

0 0 0 0 0 1 0 . . . 0 0

0 0
kt

J

ct

J
�
2kt

J
�
2ct

J

kt

J

ct

J
. . . 0

0 0 0 0 0 0 0 1 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 . . .
kt

J|{z}
i¼2ðp�1Þþ1

ct

J
�

kt þ ktl

J
�

ct þ ctl

J

ktl

J

ctl

J
0 0

0 0 0 . . . . . . . . . . . . 1 0 0

0 0 0 . . .
ktl

Jl|{z}
i¼2pþ1

ctl

Jl

�
ktl þ ktb

Jl

�
ctl þ ctb

Jl

ktb

Jl

ctb

Jl

0 0 0 . . . . . . . . . 0 0 0 1

0 0 0 . . . . . . . . .
ktb

Jb|{z}
i¼n�3

ctb

Jb

�
ktb

Jb

�
ctb þ cb

Jb

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

(7)

Tb represents the dry friction torque plus the viscous damping torque associated with Jb, that is,

TbðxÞ ¼ Tab
ð _jbÞ þ Tf b

ðxÞ, (8)

Tab
¼ cb _jb is the viscous damping torque associated with the contact of the bit (Jb) and the formation. This

torque approximates the influence of the mud drilling on the bit behaviour. Tf b
ðxÞ is the friction that models

the bit–rock contact and is now defined.
The bit–rock contact is proposed as a variation of the Stribeck friction together with the dry friction model

[13]. The dry friction model when _jb ¼ 0, is approximated by a combination of the switch model proposed in
Ref. [14] and the model in which a zero velocity band is introduced (Karnopp’s model [15]). Thus,

Tf b
ðxÞ ¼

Teb
ðxÞ if j _jbjoDv; jTeb

jpTsb
ðstickÞ;

Tsb
sgnðTeb

ðxÞÞ if j _jbjoDv; jTeb
j4Tsb

ðstick-to-slip transitionÞ;

f bð _jbÞsgnð _jbÞ if j _jbjXDv ðslidingÞ;

8><
>: (9)

where Dv40, Teb
is the reaction torque, that is, the torque that the static friction torque Tsb

must
overcome so that the bit moves, and Tsb

¼ msb
W obRb, with Rb40 the bit radius. The function f bð _jbÞ is

given by,

f bð _jbÞ ¼ RbW obmbð _jbÞ, (10)

where mbð _jbÞ is the bit dry friction coefficient and W ob40 is the weight on the bit. mbð _jbÞ has the form,

mbð _jbÞ ¼ ½mcb
þ ðmsb

� mcb
Þe�gb=vf j _jbj�, (11)

where msb
, mcb

are the static and Coulomb friction coefficients associated with inertia Jb and 0ogbo1
is a constant defining the velocity decrease rate of Tf b

. The constant velocity vf is introduced in order
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Fig. 3. Friction at the bit (Tf b
): (a) dry friction with an exponential-decaying law at the sliding phase, (b) switch friction model with a

variation of Karnopp’s friction model. _jb (rad/s) bit angular velocity, Tsb
¼ msb

W obRb (Nm) static friction torque, Tcb
¼ mcb

W obRb (Nm)

Coulomb friction torque, Dv40.
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to have appropriate units. Note that mbð _jbÞ; msb
; mcb
2 ð0; 1Þ and msb

4mcb
. The reaction torque Teb

is
given by

Teb
ðxÞ ¼

ctð _jr � _jbÞ þ ktðjr � jbÞ � Tab
ð _jbÞ if n ¼ 4;

ctbð _jl � _jbÞ þ ktbðjl � jbÞ � Tab
ð _jbÞ if n44:

(
(12)

The model in Eq. (9) depicted in Fig. 3(b) will be used for simulations. However, for the sake of simplicity, the
function

Tf b
ð _jbÞ ¼ RbW ob½mcb

þ ðmsb
� mcb

Þe�gb=vf j _jbj�sgnð _jbÞ, (13)

depicted in Fig. 3(a) will be used for analysis purposes.
The exponential decaying behaviour of the torque-on-bit Tb coincides with experimental bit torque values

and is inspired in the models given in Refs. [1,7,16].
The model in Eq. (3) with Eq. (13) is an n-dimensional discontinuous nonlinear system. The discontinuity

introduced by the bit–rock friction causes different system complex dynamical phenomena.

3. Effects of the WOB and the torque u on stick–slip and other bit phenomena. Sliding motion-based analysis

The influence of the pair ðW ob; uÞ on the existence of stick–slip phenomenon and other non-desired bit
situations will be identified in this section. For this purpose, the existence of a sliding motion is shown, and it is
related to the presence of bit sticking phenomena. The drillstring sliding motion means that the bit is stuck.
The discontinuous model in Eq. (3) with Eq. (13) will be used.

An example of the stick–slip phenomenon appearing at the bit is shown in Fig. 4 for the system in Eqs. (3)–(7)
with Eq. (13) with n ¼ 8, W ob ¼ 100N, u ¼ 8:3Nm. The oscillations obtained for the drill pipe and the drill
collars associated with the stick–slip bit motion are in accordance with real drillstrings behaviour. The model
parameters used for the simulations presented along this section correspond to a reduced-scale model:

Jr ¼ 0:518 kgm2; Jb ¼ 0:0318 kgm2; ct ¼ 0:0001Nms/rad; kt ¼ 0:073Nm/rad,

cb ¼ 0:01Nms/rad; cr ¼ 0:18Nms/rad; ktb ¼ kt; ctb ¼ ctl ¼ ct; ktl ¼ kt; Jl ¼ Jb,

J ¼ 0:025 kgm2; mcb
¼ 0:5; msb

¼ 0:8; Rb ¼ 0:1m; Dv ¼ 10�6; gb ¼ 0:9; vf ¼ 1. ð14Þ
3.1. Sliding motion existence

The system in Eq. (3) with Eq. (13) can be written as a switching dynamical system:

_x ¼
fþðx;lÞ if sðxÞ40;

f�ðx;lÞ if sðxÞo0;

(
(15)
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Fig. 4. Dynamics for the system with n ¼ 8 for the stick–slip situation: (a) angular displacements, (b) angular velocities. xin (�) and

xout ð ) are the points at which the system trajectory enters and goes out of the sticking region. bit angular displacement and velocity

(jb, _jb), — angular displacement and velocity of the drill collars (jl , _jl), - - - angular displacement and velocity of the drill pipe (j1, _j1),

� � � top-rotary system angular displacement and velocity (jr, _jr).
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where sðxÞ ¼ xn ¼ _jb, l ¼W ob � u 2 R2 is a parameter vector, fþ; f� : Rnþ2 ! Rn are smooth vector
functions. fþðx;W ob; uÞ ¼ Axþ Buþ TfðxÞjTf b

¼Tþ
f b

and f�ðx;W ob; uÞ ¼ Axþ Buþ TfðxÞjTf b
¼T�

f b

. According
to Eq. (13),

Tþf b
ð _jbÞ ¼W obRb½mcb

þ ðmsb
� mcb

Þe�ðgb=vf Þ _jb �,

T�f b
ð _jbÞ ¼ �W obRb½mcb

þ ðmsb
� mcb

Þeðgb=vf Þ _jb �. ð16Þ

If the set

S:¼fx 2 Rn: sðxÞ ¼ 0g, (17)

which is referred to as switching manifold, has a subset ~S � S attractive from both sides, a sliding mode may
occur [17]. If the system trajectory crosses the sliding region ~S, it will evolve within ~S until it eventually reaches
its boundary. The next proposition establishes that, in a certain state region, a sliding motion occurs for the
system in Eq. (3) with Eq. (13).

Proposition 1. Consider a system in Eq. (3) with Eq. (13). Then, there is a set S 2 Rn in which the trajectories of

the system go into a sliding motion on a subset of S.

Proof. Let denote _s ¼ ðqs=qxÞfðx;W ob; uÞ the time derivative of function s along the system trajectories. _s has
the form:

_s ¼ _xn ¼

1

Jb

½ctðx2 � x4Þ þ ktðx1 � x3Þ � cbx4 � Tf b
ðx4Þ� if n ¼ 4;

1

Jb

½ctb
ðxn�2 � xnÞ þ ktbðxn�3 � xn�1Þ � cbxn � Tf b

ðxnÞ� if n44:

8>><
>>: (18)

It will be shown that there is a subset S of Rn where _sso0, that is, a sliding mode can exist [17]. For the sake
of simplicity, only the case n44 is taken into account.

Consider the two cases:
Case 1: so0. In this case, xno0 and Tf b

¼ T�f b
. Hence, _s40 in the set,

fx 2 Rn : jctb
xn�2 þ ktbðxn�3 � xn�1Þjoðctb þ cbÞjxnj � T�f b

g. (19)
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Case 2: s40. In this case, xn40 and Tf b
¼ Tþf b

. Hence, _so0 in the set,

fx 2 Rn : jctb
xn�2 þ ktbðxn�3 � xn�1Þjoðctb þ cbÞjxnj þ Tþf b

g. (20)

Combining both cases, _sso0 is met in the set,

S ¼ fx 2 Rn : jctb
xn�2 þ ktbðxn�3 � xn�1Þjoðctb þ cbÞjxnj

þ RbW ob½mcb
þ ðmsb

� mcb
Þe�ðgb=vf Þjxnj�g. ð21Þ

Since _sso0 in the set S, a sliding motion takes place when the system trajectory hits S within this set. &

From the form of S in Eq. (21), the sliding region ~S � S is obtained as the set,

~S ¼
fx 2 S : jktðjr � jbÞ þ ct _jrjomsb

W obRbg if n ¼ 4;

fx 2 S : jktbðjl � jbÞ þ ctb _jljomsb
W obRbg if n44:

(
(22)

Let q ~S denote the boundary of ~S, and q ~S ¼ q ~S
þ
[ q ~S

�
with:

q ~S
þ
¼ x 2 S :

qs
qx

fþðx;W ob; uÞ ¼ 0

� �
,

q ~S
�
¼ x 2 S :

qs
qx

f�ðx;W ob; uÞ ¼ 0

� �
. ð23Þ

For the system in Eq. (3) with Eq. (13), it is obtained,
�
 For n ¼ 4:
q ~S
þ
¼ fx 2 S : ktðjr � jbÞ þ ct _jr ¼ msb

W obRbg,

q ~S
�
¼ fx 2 S : ktðjr � jbÞ þ ct _jr ¼ �msb

W obRbg. ð24Þ
�
 For n44:
q ~S
þ
¼ fx 2 S : ktbðjl � jbÞ þ ctb _jl ¼ msb

W obRbg,

q ~S
�
¼ fx 2 S : ktbðjl � jbÞ þ ctb _jl ¼ �msb

W obRbg. ð25Þ

The sliding motion can be described by _x ¼ fsðx;W ob; uÞ, where fs is a vector field tangent to S for x 2 ~S. fs
can be calculated by means of the equivalent control method [17,18]. For the drillstring model in Eq. (3) with
Eq. (13), Tf b

plays the role of the equivalent control and,

fsðx;W ob; uÞ ¼ Axþ Buþ TfðxÞjTf b
¼Tfbeq

, (26)

where Tfbeq is the solution for Tf b
of equation _s ¼ 0, that is,

TfbeqðxÞ ¼
ktðjr � jbÞ þ ctð _jr � _jbÞ � cb _jb if n ¼ 4;

ktbðjl � jbÞ þ ctbð _jl � _jbÞ � cb _jb if n44:

(
(27)

The presence of a sliding mode makes necessary to distinguish different kinds of equilibrium points. The
change of properties of these equilibria will define different types of system bifurcations, and consequently,
different types of system behaviour which will be analysed in Section 3.2.

Definition 2 (Filippov [18], Cunha et al. [19]). x 2 Rn is addressed as standard equilibrium point of the
system in Eq. (15) if there exists l 2 R2 such that fþðx;lÞ ¼ 0 or f�ðx; lÞ ¼ 0. Let ~x 2 Rn, ~l 2 R2 be such that
fsð ~x; ~lÞ ¼ 0 and sð ~xÞ ¼ 0. ~x is said to be a real quasi-equilibrium point if ~x 2 ~S. If ~xe ~S, ~x is referred to as
virtual quasi-equilibrium point.



ARTICLE IN PRESS
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By making fsð ~x;W ob; uÞ ¼ 0, the quasi-equilibrium points on S can be calculated, and they have the
following form for each time the system trajectory enters S:
�
 For n ¼ 4:
~x2 ¼ ~x4 ¼ 0; ~x1 ¼
u

kt

þ jb. (28)
�
 For n ¼ 6:
~x2 ¼ ~x4 ¼ ~x6 ¼ 0,

~x1 ¼
1

kt

þ
1

ktb

� �
uþ jb,

~x3 ¼
u

ktb

þ jb. ð29Þ
�
 For n44:
~x2i ¼ 0; i ¼ 1; . . . ;
n

2
,

~xn�3 ¼ ~jl ¼
u

ktb

þ jb,

~xn�5 ¼ ~jp ¼
1

ktb

þ
1

ktl

� �
uþ jb,

~x2j�1 ¼
p� j þ 1

kt

þ
1

ktb

þ
1

ktl

� �
uþ jb; j ¼ 1; . . . ; p, ð30Þ

where jb is the constant value of jb during the time the trajectory of the system stays in S, this value varies
every time the system trajectory enters again S. See Fig. 4(a).

Proposition 3. The quasi-equilibrium point ~x given by Eqs. (28)–(30) is asymptotically stable.

Proof. In order to prove the stability of ~x, the following Lyapunov function is considered, which corresponds
to the sum of the kinetic and potential energy of the system on S:
�
 For n ¼ 4:
V ðx; ~xÞ ¼ 1
2
½ktðx1 � ~x1Þ

2
þ Jrx

2
2�. (31)
�
 For n ¼ 6:
V ðx; ~xÞ ¼ 1
2
fkt½ðx1 � x3Þ � ð ~x1 � ~x3Þ�

2 þ ktbðx3 � ~x3Þ
2
þ Jrx

2
2 þ Jx2

4g. (32)
�
 For n46:
V ðx; ~xÞ ¼ 1
2
ktf½ðx1 � x3Þ � ð ~x1 � ~x3Þ�

2 þ ½ðx3 � x5Þ � ð ~x3 � ~x5Þ�
2 þ � � �

þ ½ðxn�7 � xn�5Þ � ð ~xn�7 � ~xn�5Þ�
2g

þ 1
2
ktl ½ðxn�5 � xn�3Þ � ð ~xn�5 � ~xn�3Þ�

2 þ 1
2
ktbðxn�3 � ~xn�3Þ

2

þ 1
2
½Jrx

2
2 þ Jðx2

4 þ � � � þ x2
n�4Þ þ Jlx

2
n�2�, ð33Þ
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Fig. 5. Response of the system with n ¼ 4 for a varying W ob from 90N to 150N: (a) system trajectory in the space ðjr � jb; _jr; _jbÞ, � xin,

xout, quasi-equilibrium point ( ~x), (b) angular velocities, — bit angular velocity ( _jb), top-rotary system velocity ( _jr).
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with ~x1; . . . ; ~xn�3 as defined in Eqs. (28)–(30). The derivative of V along the trajectories of _x ¼ fsðx;W ob; uÞ is:
�
 For n ¼ 4:
_V ðxÞ ¼ �ðct þ crÞx
2
2. (34)
�
 For n ¼ 6:
_V ðxÞ ¼ �crx
2
2 � ctbx2

4 � ctðx2 � x4Þ
2. (35)
�
 For n46:
_V ðxÞ ¼ �crx
2
2 � ctbx2

n�2 � ct½ðx2 � x4Þ
2
� � � � � ðxn�6 � xn�4Þ

2
� � ctlðxn�4 � xn�2Þ

2. (36)

Consequently, _V ðxÞp0. Due to the fact that _V ðxÞ ¼ 0 only for x ¼ ~x, by LaSalle’s invariance principle [20],
the quasi-equilibrium ~x is asymptotically stable. &

From the form of the sliding region ~S, important system characteristics can be concluded, mainly, the ones
referring to the stick–slip behaviour. First, the importance of the drill collars and the bit dynamics in the
presence of a sliding motion. Second, the influence of W ob on bit sticking phenomena can be identified in the
following way. Considering u fixed and W ob as a varying parameter, for each W ob, a different ~S is obtained,
consequently, a different periodic orbit is obtained. This fact is clearly noticed in Fig. 5(a) where different
periodic orbits are obtained for each W ob; in the figure, a fixed u ¼ 8:1Nm is used. Furthermore, for a fixed u,
when W ob is greater than a value, the bit is permanently stuck (Fig. 5(b)). In addition, the smaller W ob is, the
smaller the sliding region ~S is, and the trajectory is less likely to enter the sliding domain. This explains the fact
that for a fixed u, reducing the W ob makes the stick–slip phenomenon disappear, and when W ob is too large
the bit is completely stopped. This is accordance with drillers’ experiences [1,11].
3.2. Identification of parameter regions for non-desired phenomena: bifurcations classification

Depending on variations of W ob and u, three kinds of dynamical behaviour can be identified in the system
related to the switching manifold S: (i) stick–slip at _jb, that is, the trajectory enters and leaves repeatedly the

sliding mode, (ii) permanent bit stuck, that is, xðtÞ 2 ~S;8t, (iii) the bit moves in a constant velocity, in other
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Fig. 6. Regions where stick–slip is possible (shadowed regions): (a) Region Dx in ðxn�3; xn�2Þ with x 2 S, q ~S
þ
, q ~S

�
(b) stick–slip

region D in the ðW ob; uÞ space, uþ ¼ msb
RbW ob ð ~x 2 q ~S

þ
Þ. Wide-lined region corresponds to ~S. ~xn�3 is the ðn� 3Þth component of the

system quasi-equilibrium point, x�n�3 is the intersection of q ~S
þ
with xn�2 ¼ 0, ðW �

ob; u
�Þ are reference values of W ob and u.
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words, the trajectory moves towards an equilibrium outside S. Different regions in the state space and in the
two-dimensional parameter space ðW ob; uÞ can be identified through the form of the sliding manifold ~S.

In Fig. 6(a), region ~S with the boundaries q ~S
þ
and q ~S

�
is given. The study is focused on q ~S

þ
due to the fact

that the points xout through which the system trajectories go out of ~S are near q ~S
þ
.

Two points are distinguished in Fig. 6(a) in the plane ðxn�3;xn�2Þ ¼ ðjl ; _jlÞ: the ðn� 3Þth component of the

quasi-equilibrium point, ~xn�3, and x�n�3 denoting the intersection of q ~S
þ

with xn�2 ¼ 0, which has the

following form:

x�n�3 ¼

msb
W obRb

kt

þ jb if n ¼ 4;

msb
W obRb

ktb

þ jb if n44:

8>>><
>>>: (37)

Note that if n ¼ 4, the study would be restricted to the plane ðjr; _jrÞ.
Two key characteristics which determine transitions between different dynamical system behaviours are the

fact that ~x is asymptotically stable and the change of ~x from real to virtual, or viceversa. The real or virtual
characteristic of ~x can be identified by the distance between ~xn�3 and x�n�3, which depends on the difference
between u and Tsb

¼ msb
W obRb. When ~xn�3 ¼ x�n�3, two reference values of u and W ob are obtained:

u� ¼ msb
W obRb; W �

ob ¼
u

msb
Rb

. (38)

Consequently, the following relations can be established:

~x 2 ~S ) �msb
W obRbouomsb

W obRb,

~x 2 q ~S
þ
) u ¼ msb

W obRb,

~x 2 q ~S
�
) u ¼ �msb

W obRb,

~xe ~S ) ðu4msb
W obRbÞ _ ðuo� msb

W obRbÞ. ð39Þ

A region in a neighbourhood of q ~S
þ
where stick–slip oscillations are present (see Fig. 6(a)) can be defined

as:

Dx:¼fx 2 S : x�n�3 � Z�pxn�3px�n�3 þ Zþg (40)

for some Zþ; Z�40. The region identified in the plane ðxn�3; xn�2Þ can be translated into the two-dimensional
parameter space ðW ob; uÞ considering the relative position of ~xn�3 with respect to the boundaries of ~S. The
boundaries q ~S

þ
, q ~S

�
are translated into the straight lines:

uþ ¼ msb
W obRb; u� ¼ �msb

W obRb,

respectively. The region D �W ob � u where stick–slip is present is obtained (see Fig. 6(b)). It is concluded that:
�
 For a fixed value of u, there exist constants ��40 and �þ40 such that:
(i) W ob4W �

ob þ �
þ ) the bit is permanently stuck (xðtÞ 2 S;8t).
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Fig. 7. Trajectory of the system in Eq. (3) with Eq. (13) with n ¼ 8 in the space ðjl � jb; _jl ; _jbÞ. ~S sliding region (shadowed region), q ~S
þ
,

q ~S
þ
boundaries of ~S, � xin, quasi-equilibrium point ( ~x). Parameters in Eq. (14) are used with W ob ¼ 160N, u ¼ 8:3Nm. The trajectory

of the system stays on ~S.

Fig. 8. Trajectory of the system in Eq. (3) with Eq. (13), with n ¼ 8 only for x 2 ~S: (a) projection of the trajectories in ðjl ; _jlÞ,

(b) trajectories in the space ðjl ; _jl ;jbÞ. Stick–slip is present and ~S varies with time. The first three inputs to ~S are considered. ~Si sliding

region for the ith input to ~S (shadowed region), q ~S
þ

i , q ~S
þ

i boundaries of ~Si, � xin, xout, quasi-equilibrium point ( ~x).

E.M. Navarro-López, D. Cortés / Journal of Sound and Vibration 307 (2007) 152–171164
(ii) W �
ob � �

�pW obpW �
ob þ �

þ ) stick–slip phenomenon at the bit.
(iii) W oboW � � �� ) the bit can move in a constant velocity (xðtÞ can converge to xe).
ob
�
 For a fixed value of W ob, there exist constants r�40 and rþ40 such that:
(i) uou� � r� ) the bit is permanently stuck (xðtÞ 2 S; 8t).
(ii) u� � r�pupu� þ rþ ) stick–slip phenomenon at the bit.
(iii) u4u� þ rþ ) xðtÞ the bit can move in a constant velocity (xðtÞ can converge to xe),
with xe the standard equilibrium point of the system with positive rotary velocities. The smaller W �
ob and u�

are, the smaller �þ, ��, rþ and r� are in order to have ðW ob; uÞ 2 D.
The types of dynamical behaviours described above have been identified in the system in Eq. (3) with

Eq. (13). In Fig. 7, the situation of permanently stuck bit is depicted. Here, the system trajectory hits the
sliding manifold only once and remains there, however, for other parameters, the system trajectory could hit ~S
several times before remaining on it.

Fig. 8 shows the stick–slip situation for n ¼ 8 (see Fig. 4). It must be pointed out that the smaller W ob is, the
smaller ~S is and the less time the system trajectories lie on ~S, i.e., the bit remains stuck during less time. ~S
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Fig. 9. Trajectory of the system in Eq. (3) with Eq. (13) with n ¼ 8. It approaches xe. Parameters in Eq. (14) are used with W ob ¼ 40N,

u ¼ 8:3Nm: (a) angular velocities, — _jb, — _jl , - - - _j1, � � � _jr, (b) trajectory in the space ðjl � jb; _jl ; _jbÞ, ~S sliding region (shadowed

region), q ~S
þ
, q ~S

þ
boundaries of ~S, � xin, xout, quasi-equilibrium point ( ~x), xe standard equilibrium point.
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varies with time, due to the change of xn�2, xn�3 � xn�1 and jb, which are the states defining the sliding
manifold. Thus, ~S ¼

Snin
i¼1

~Si with nin the number of times that system trajectory enters ~S.
Finally, Fig. 9 shows the desired situation when the drillstring is moving in a constant velocity. This is the

situation when the system trajectory moves further away ~S and approaches the equilibrium point (xe).
The local stability of xe will be studied in Section 4.

The three situations observed in simulations can be explained by means of relations given in Eq. (39) and the
asymptotic stability of the quasi-equilibrium ~x:
�
 ~x 2 ~S and ~x is far away enough from q ~S
þ
. If the system is in the sliding motion, then the system trajectories

tend asymptotically to ~x and the bit is permanently stuck. Depending on the distance between ~x and q ~S
þ
,

the trajectories may enter and leave ~S several times before remaining on it.

�
 ~x is next to q ~S

þ
(it can be inside or outside ~S). If the system is in the sliding motion, then when system

trajectories approach ~x, they can leave the sliding domain and tend to a system equilibrium point with
velocities greater than zero (xe). However, if they do not reach it, they can fall again into the sliding
domain. This is repeated continuously, and it gives rise to the stick–slip motion.

�
 ~xe ~S and it is far away enough from q ~S

þ
. If the system is in the sliding motion and the trajectories move

towards ~x, they can leave the sliding domain and fall into the domain of attraction of the system
equilibrium point xe for velocities greater than zero. As in the first situation, depending on the distance
between ~x and q ~S

þ
, the trajectories may enter and leave ~S several times before converging to xe.

To conclude with, a range of the weight of bit and the torque u for which bit stick–slip or permanent stuck bit
are present can be identified depending on drill collars dynamics, bit radius and bit-borehole friction
characteristics.

4. Assuring a desirable performance under fluctuating velocities and WOB by means of Hopf bifurcations

analysis

A desirable performance for the drillstring is that it moves in a constant positive velocity. In dynamical
terms, this means that system trajectories approach a standard equilibrium point with velocities greater than
zero. Therefore, the goal is to assure the stability of the system equilibrium under fluctuating parameters. In
this section, the local stability of the system standard equilibrium and the presence of periodic orbits around it
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due to Hopf bifurcations are studied. Ranges of velocities at equilibrium and the weight on the bit for which
Hopf bifurcations can appear will be identified.

4.1. Preliminary definitions

A new vector state will be defined in order to have a standard equilibrium point of the system with the same
equilibrium velocities and the possibility of choosing them greater than zero. Let define,

jr;1 ¼ jr � j1; jj;jþ1 ¼ jj � jjþ1; jp;l ¼ jp � jl ; jl;b ¼ jl � jb, (41)

with j ¼ 1; . . . ; p� 1, and p the number of drill pipes. The new vector state is:

x0 ¼ ð _jr;jr;1; . . . ; _jj ;jj;jþ1; . . . ; _jp;jp;l ; _jl ;jl;b; _jbÞ
T

¼ ðx01;x
0
2; . . . ;x

0
n�1Þ

T
2 Rn�1, ð42Þ

where n is the dimension of the system in Eq. (3). Let consider _jb ¼ x0n�140. The system is now rewritten as:

_x0ðtÞ ¼ A0x0ðtÞ þ B0uþ T0fðx
0ðtÞÞ, (43)

with:

B0 ¼

1

Jr

0

..

.

0

0
BBBBBB@

1
CCCCCCA; T0fðx

0Þ ¼

0

..

.

0

�
Tþf b
ðx0n�1Þ

Jb

0
BBBBBB@

1
CCCCCCA (44)

and A0 a constant matrix depending on system physical parameters. The dimension of the system in Eq. (43)
will be denoted by n0, therefore, x0 2 Rn0 with n0 ¼ n� 1. Note that n0 is an odd integer.

Let O40 be the rotary velocity at equilibrium. The system in Eq. (43) has an unique equilibrium point x0e
for each fixed O which is the solution of the set of equations:

_jr ¼ _j1 ¼ . . . _jp ¼ _jl ¼ _jb ¼ O;O40,

u� ðcr þ cbÞO� T
þ

f b
ðOÞ ¼ 0,

hðOÞ ¼ cbOþ T
þ

f b
ðOÞ,

jr;1 ¼ jj;jþ1 ¼
hðOÞ

kt

; j ¼ 1; . . . ; p� 1,

jp;l ¼
hðOÞ
ktl

; jl;b ¼
hðOÞ
ktb

, ð45Þ

with

u4msb
RbW ob; T

þ

f b
ðOÞ40; 8O40,

T
þ

f b
ðOÞ ¼W obRb½mcb

þ ðmsb
� mcb

Þe�gb=vf O�. ð46Þ

Let consider a system of the form

_x ¼ fðx; mÞ, (47)

where f : Rn0 � R! Rn0 is a smooth mapping, x 2 Rn0 and m 2 R.

Definition 4 (Hale and Koc-ak [21], Liu [22], Seydel [23]). A system in Eq. (47) with an isolated equilibrium
point x0e undergoes a Hopf bifurcation (HB) at x0e when a simple pair of complex conjugate eigenvalues of the
Jacobian Jðx0e;mÞ crosses the imaginary axis from left to right, while all other eigenvalues have negative real
parts.
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Theorem 5 (Liu [22]). A system in Eq. (47) with an isolated equilibrium point x0e undergoes a Hopf bifurcation

for m ¼ m if:

D1ðmÞ40; D2ðmÞ; . . . ;Dn0�2ðmÞ40; a0ðmÞ40; Dn0�1 ¼ 0 (48)

and

dDn0�1ðmÞ
dm

����
m¼m

a0, (49)

where DiðmÞ stands for the Hurwitz determinants of order i of the characteristic polynomial of Jðx0e; mÞ and a0ðmÞ is
the zero-order term of this polynomial. The condition in Eq. (49) is referred to as transversality condition. Under

conditions in Eqs. (48) and (49), in any neighbourhood U of x0e and any given m04m there is a m� with jm�jom0
such that the system has a periodic orbit in U.

4.2. Presence of Hopf bifurcation points for the system of two degrees of freedom

From Theorem 5, the following proposition can be established. It defines the region of angular velocities O
and parameter W ob for which Hopf bifurcations are present in the drillstring for n0 ¼ 3. Let consider the
characteristic polynomial of the Jacobian matrix of the system in Eq. (43) at the equilibrium point x0e ¼

ðO;jr;b;OÞ as: l3 þ a2l
2
þ a1lþ a0 ¼ 0, (50)

with:
a2ðO;W obÞ ¼

1

JbJr

½Jrðcb þ ct þ dbðOÞÞ þ Jbðcr þ ctÞ�,

a1ðO;W obÞ ¼
1

JbJr

½cbðcr þ ctÞ þ ctðcr þ dbðOÞÞ þ dbðOÞcr þ ktðJb þ JrÞ�,

a0ðO;W obÞ ¼
kt

JbJr

ðcb þ cr þ dbðOÞÞ,

dbðOÞ ¼ �W obRb

gb

vf

ðmsb
� mcb

Þe�ðgb=vf ÞO.

Proposition 6. Consider a system in Eq. (43) with the vector state x0 ¼ ð _jr; jr;b; _jbÞ, _jr40, _jb40 and the

equilibrium point x0e ¼ ðO;jr;b;OÞ with O 2 ð0;Of � and Of 40. Consider the characteristic polynomial of Eq.

(50). Let O; W ob 2 R
þ � f0g and D2ðO;W obÞ ¼ a1ðO;W obÞ a2ðO;W obÞ � a0ðO;W obÞ, Hþ:¼fO�W ob :

a0ðO;W obÞ40; a1ðO;W obÞ40g and H0:¼fO�W ob : D2ðO;W obÞ ¼ 0g. Then, for O�W ob 2Hþ \H0 the

system undergoes a Hopf bifurcation.

Proof. Conditions in Eqs. (48) and (49) of Theorem 5 will be checked. Considering O as a varying velocity,
relation D2 ¼ 0 yields to W ob1;2:

W ob1;2 ¼
vf e
ðgbO=vf Þ

2gbRbJrðmsb
� mcb

Þðcr þ ctÞ
½A	

ffiffiffiffi
B
p
�, (51)

where A, B depend on physical parameters.
The fact that ðO;W obÞ 2Hþ assures the complex eigenvalues to move from left (stability region) to right

(instability region) of the imaginary axis as W ob and O are varied.
The condition in Eq. (49) must be also accomplished. For the system in Eq. (43), it takes the form:

dD2ðO;W obÞ

dW ob

����
Wob¼Wob1;2

¼ 	
1

J2
bJ2

r v2f
½gbRbðmcb

� msb
Þe�gbO=vf

ffiffiffiffi
B
p
�a0. (52)

The condition in Eq. (52) is met for B40, which is the condition for W ob1;2 to be real. Due to the exponential
function in Eq. (52), function dD2ðO;W obÞ=dW objWob¼Wob1;2

approaches zero as O approaches infinity. As O is
bounded by Of from above, Eq. (52) will never equal zero.

In conclusion, a Hopf bifurcation appears for the set of values ðO;W obÞ 2Hþ \H0. &
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Fig. 10. ðO;W obÞ for which locally stability of the equilibrium in Eq. (45) is met (wide-lined region): (a) Parameters in Eq. (14) are used, (b)

parameters in Eq. (53) of a real drillstring are used. H1, H2 curves obtained making D2 ¼ 0. Curve H2 is the locus of Hopf bifurcation.
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The bifurcation behaviour of the system with n0 ¼ 3 will be studied through the conditions of Proposition 6
for parameters in Eq. (14) and for more realistic parameters, taken from a real drillstring. The following
drillstring design is used [26]: (i) a drill pipe line consisting of one hundred pipe lines of 5 inches of outer
diameter (OD), 4.408 in of inner diameter (ID) and 9m of length; (ii) two units of drill collars of 6

1
2 in and

18.60m of length; (iii) stabilizers of 6
1
2 (ID), 12

1
4 (OD) and 1.5m of length; (iv) a heavy-weight drill pipe of 6

1
2

of diameter and 9.30m of length; (v) a roller-cone bit of 6
1
2 (ID), 12

1
4 (OD), 1.5m of length. Thus:

Jr ¼ 2122 kgm2; Jb ¼ 471:9698 kgm2; Rb ¼ 0:155575m; kt ¼ 861:5336Nm/rad,

ct ¼ 172:3067Nms/rad; cr ¼ 425Nms/rad; cb ¼ 50Nms/rad,

mcb
¼ 0:5; msb

¼ 0:8; Dv ¼ 10�6; gb ¼ 0:9; vf ¼ 1. ð53Þ

For parameters in Eqs. (14) and (53), Fig. 10 depicts the curves H1 and H2, obtained making D2 ¼ 0. The
curveHþ \H0 ¼H2 is a locus of Hopf bifurcation points referred to as the Hopf bifurcation boundary. The
stability region of equilibrium point x0e is stated as the region below H2 in which a040, a140 and D240.

Bifurcation points must be avoided in order to have a desired performance of the system (no oscillations).
From Fig. 10, safe ranges of W ob and O can be established. In order to drive angular velocities at the
equilibrium (O) to a desired value, a control mechanism can be added at the top-rotary system in order to
maintain _jr to a desired value, and in consequence, the rest of velocities at the equilibrium (see Refs. [2,24]).
4.3. Multiple Hopf bifurcations for the generic model

Multiple Hopf bifurcations may occur in the system in Eq. (43) in a neighbourhood of the equilibrium point
in Eq. (45) for n043. In other words, an arbitrary number s of pairs of pure imaginary eigenvalues
	io1; . . . ;	ios with oj40; 8j may appear. Then, periodic and quasi-periodic motions are likely to happen.

Different methods for the identification of multiple Hopf bifurcations have been proposed, for example, see
Ref. [25]. For the drillstring, these methods become untractable. This section proposes the prevention of these
bifurcations by avoiding the crossings of multiple complex conjugate eigenvalues through the imaginary axis.

Let consider the characteristic equation of the linearized system in Eq. (43) around equilibrium x0e:

ln0
þ an0�1l

n0�1
þ � � � þ a1lþ a0 ¼ 0. (54)
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Fig. 11. Bifurcation diagrams varying W ob and u, for the system in Eq. (43) for O40 and parameters in Eq. (14): (a) n0 ¼ 3, u ¼ 8:1Nm,

(b) n0 ¼ 3, W ob ¼ 80N, (c) n0 ¼ 7, u ¼ 8:1Nm, (d) n0 ¼ 7, W ob ¼ 60N. — stable branch, — unstable branch, 
 periodic orbits, HBi Hopf

bifurcation points, LP turning points.
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The solutions of Eq. (54) would be of the form l ¼ 	ioj , l ¼ a 2 R, with j ¼ 1; . . . ; ðn0 � 1Þ=2 the number of
pairs of pure imaginary eigenvalues, if the following relations were met:

al � an0�1ak ¼ 0; l ¼ ðn0 � 1Þ � 2j; k ¼ n0 � 2j; j ¼ 1; . . . ;
n0 � 1

2
. (55)

Then, ðn0 � 1Þ=2 relations are obtained. Each of them establishes a second-order equation in W ob depending
on O. The values of W ob and O satisfying these relations should be avoided.

The region in which no Hopf bifurcation is present for the system with n0 ¼ 3 is a good estimation for this
region in case n043. This can be verified by means of the bifurcation diagrams with respect to parameters W ob

and u depicted in Fig. 11 for the system in Eq. (43) in the cases n0 ¼ 3 and n0 ¼ 7. The bifurcation diagrams
have been obtained by means of AUTO tool within XPPAUT [27].

In the bifurcation diagrams, a stable (the thickest one) and an unstable branches are given. The stable
branch represents the values of ðW ob;OÞ or ðu;OÞ for which the system converges to an equilibrium point;
whereas the unstable branch represents the values of the parameters for which the system has an unstable
equilibrium point. Two kinds of bifurcation points are given in the figures: (i) turning points (LP), (ii) Hopf
bifurcation points (HB). Periodic orbits are represented by circles, they emanate from Hopf bifurcation points.

Let consider the bifurcation diagram ðW ob;OÞ, and let W ob0
and W ob1

be the values of W ob corresponding
to the turning point of the unstable branch and the end point of the largest branch of periodic orbits,
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Fig. 12. Values ðW ob; uÞ at which a Hopf bifurcation point can appear for the system in (43) with parameters in (14): (a) n0 ¼ 3, (b) n0 ¼ 7.
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respectively. For values W ob1
pW obpW ob0

, the system may present oscillations. Notice that bifurcation
diagrams for varying W ob’s are obtained for a fixed u. If a different value of u were used, different values of
ðW ob;OÞ at which Hopf bifurcation points are located would be obtained, and consequently, different values of
W ob0

and W ob1
. This is confirmed by Fig. 12 where the values ðW ob; uÞ at which a Hopf bifurcation point is

present are depicted. The graphics have been also obtained by means of AUTO tool within XPPAUT [27]. The
same conclusions can be given for bifurcation diagrams ðu;OÞ. See Figs. 11(b) and (d), here, u0 and u1 are the
values of u corresponding to the turning point of the unstable branch and the end point of the largest branch
of periodic orbits, respectively. The interval u0pupu1 is a non-safe operation range for a fixed W ob. Notice
that u0 and u1 are different for n0 ¼ 3 and n0 ¼ 7 due to the fact that the bifurcation diagrams have been
obtained for a different fixed value of W ob in each case.

To conclude with, the drillstring has a desired performance, that is, it moves in a constant velocity when: (i)
for a fixed u, W ob is small enough, (ii) for a fixed W ob, u is high enough. This is accordance with results given
in Section 3, indeed, comparing Figs. 12 and 6(b), it can be seen that region D where stick–slip is present
intersects the values ðW ob; uÞ where a Hopf bifurcation point may appear.

The identified ranges of W ob, the torque supplied by the top-rotary mechanism (u) and the rotary speed for
which the drillstring has a desired performance are in accordance with field drillers’ experiences [1,5,6,26].
Then, by means of the proposed analysis method of identifying bit sticking phenomena (Section 3) and
oscillations around a constant velocity (Section 4), it is possible to estimate the problematic parameter ranges
for a specific drillstring design.

5. Conclusions

Different bifurcations have been identified in an n-dimensional model of a conventional oilwell drillstring.
Stick–slip oscillations at the bit have been shown to be related to the presence of a discontinuous dry friction
modelling the bit–rock contact. The drillstring has been considered as a piecewise-smooth system and a sliding
motion has been shown to be present. Ranges of key parameters in any drilling operation, such as, the weight
on the bit ðW obÞ, the motor torque given by the top-rotary mechanism (u) and the rotary speed have been
identified lest non-desired oscillatory phenomena appear in the system. Changes in drillstring behaviour have
been interpreted as different bifurcations types. Not only system parameters changes have been shown to play
an important role in the bifurcation behaviour, but also the characteristics of system equilibria.

Based on the analysis carried out, control methodologies can be designed in order to maintain system
parameters within the proposed safe operation ranges. Finally, the analysis proposed can be applied to other
mechanical systems exhibiting stick–slip oscillations which are described by similar models to the one studied
in this work.
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[9] N. Mihajlović, A.A. van Veggel, N. van de Wouw, H. Nijmeijer, Analysis of friction-induced limit cycling in an experimental drill-

string system, ASME Journal of Dynamic Systems, Measurement and Control 126 (2004) 709–720.

[10] A.F.A. Serrarens, M.J.G. van de Molengraft, J.J. Kok, L. van den Steen, H1 control for suppressing stick–slip in oil well drillstrings,

IEEE Control Systems (1998) 19–30.

[11] P. Sananikone, O. Kamoshima, D.B. White, A field method for controlling drillstring torsional vibrations, Proceedings of the IADC/

SPE Drilling Conference, New Orleans, Louisiana, 1992, pp. 443–452.

[12] J.P. Maratier, Optimum Rotary Speed and Bit Weight for Rotary Drilling, MSc Thesis, Louisiana State University, 1971.

[13] B. Armstrong-Hélouvry, P. Dupont, C. Canudas de Wit, A survey of models, analysis tools, and compensation methods for the

control of machines with friction, Automatica 30 (7) (1994) 1083–1183.

[14] R.I. Leine, D.H. van Campen, A. de Kraker, L. van den Steen, Stick–slip vibrations induced by alternate friction models, Nonlinear

Dynamics 16 (1998) 41–54.

[15] D. Karnopp, Computer simulation of stick–slip friction in mechanical dynamic systems, ASME Journal of Dynamics Systems,

Measurement, and Control 107 (1) (1985) 100–103.

[16] D.R. Pavone, J.P. Desplans, Application of high sampling rate downhole measurements for analysis and cure of stick–slip in drilling,

Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 1994, pp. 335–345.

[17] V.I. Utkin, Sliding Modes in Control Optimization, Springer, Berlin, 1992.

[18] A.F. Filippov, Differential Equations with Discontinuous Right-hand Sides, Kluwer Academic Publishers, Dordrecht, 1988.

[19] F.B. Cunha, D.J. Pagano, U.F. Moreno, Sliding bifurcations of equilibria in planar variable structure systems, IEEE Transactions on

Circuits and Systems-I: Fundamental Theory and Applications 50 (8) (2003) 1129–1134.

[20] J.P. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, Hamilton Press, 1976.

[21] J. Hale, H. Koc-ak, Dynamics and Bifurcations, Springer, New York, 1991.

[22] W.M. Liu, Criterion of Hopf bifurcations without using eigenvalues, Journal of Mathematical Analysis and Applications 182 (1994)

250–256.

[23] R. Seydel, Practical Bifurcation and Stability Analysis, Springer, New York, 1994.
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