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Bound-State Pairing Singularities in the 3He 
Galitskii-Feynman T-Matrix: Temperature 

Dependence 

R. F. Bishop, M. R. Strayer, and J. M. Irvine 

Department of  Theoretical Physics, University o f  Manchester, Manchester, England 
and Daresbury Laboratory, Daresbury, Warrington, England 

( R e c e i v e d  F e b r u a r y  6, 1975) 

The temperature-dependent Galitskii-Feynman T-matrix, which sums the 
two-body scattering series, allowing any number of pairs of either particles 
outside or holes inside the Fermi sea in intermediate states, for a two-body 
potential appropriate to liquid 3He, is shown to exhibit a bound-state singu- 
larity. The two-body binding energy within the 3He background is shown to be 
highly sensitive to both the temperature and the density of the system. A critical 
density below which the binding disappears is observed to be a function of the 
temperature and of the total momentum of the interacting pair. Detailed 
numerical computations of this structure are presented using the modified 
Frost-Musulin potential. To our knowledge, these computations represent the 
first attempt at a temperature-dependent many-body calculation based on a 
realistic 3He potential. Possible consequences are drawn for more detailed and 
realistic calculations of the properties of liquid 3He. 

1. I N T R O D U C T I O N  

In a previous communicat ion 1 (hereafter referred to as I) it was reported 
that the zero-temperature Gal i tski i -Feynman (GF) T-matrix 2 possesses a 
first-order pole in the bound-state region for two separate strongly interacting 
fermion systems of interest, whereas the corresponding Bethe-Goldstone 3 
(BG) T-matrix does not exhibit such a pole in either case. Both T-matrices 
sum the ladder diagrams for repeated two-body interactions in the medium, 
the difference being that in the G F  case the intermediate states are either two- 
particle or two-hole states, whereas in the BG case the interactions are 
restricted to be between two particles outside the Fermi sea. In the language 
of diagrammatic perturbation theory the BG T-matrix sums the two-body 
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ladder diagrams reckoned as Goldstone or time-ordered diagrams, and the 
GF T-matrix sums the same ladder diagrams but reckoned as Feynman or 
non-time-ordered diagrams. The diagrams summed by the GF T-matrix 
thus correspond to the set of Goldstone diagrams summed by the BG T- 
matrix after all allowable time orderings have been performed, whereas the 
BG T-matrix sums the diagrams with just that particular time ordering 
that permits only two particles outsde the Fermi sea in intermediate states. 

The BG and GF T-matrices arise quite naturally in the respective 
contexts of time-independent and time-dependent many-body perturbation 
theory, when one attempts to describe two-body scattering inside the many- 
body background. Both formalisms provide an equally valid starting point 
for any microscopic calculation of a many-body system, and must provide 
identical results for any physical observable when carried to infinite order, 
i.e., when all diagrams have been summed in both formalisms. In practice, of 
course, this aim is never realizable, and one has to be content with summing 
that class of diagrams in either formalism that is physically most important. 
In particular it has been known since the pioneering work of Brueckner 4 
that for any many-body system where the two-body interaction contains a 
strong short-range repulsion, it is necessary to at least sum the ladder 
diagrams as a complete set in order to obtain convergence of any physical 
observable. Both the BG and GF T-matrices serve this purpose in the context 
of their respective formalisms. 

It is clear that the GF T-matrix sums many more terms in the perturba- 
tion series than does the corresponding BG T-matrix, and that the BG T- 
matrix can be regarded as the low-density limit of the corresponding GF 
quantity, since in this limit hole propagation becomes negligible. It was 
shown in I that for at least two many-fermion systems of interest the singu- 
larity structure of the two respective T-matrices is different. In particular it 
was shown that for realistic interparticle potentials appropriate to both 
neutron matter and liquid 3He the S-wave GF T-matrix possesses a bound- 
state pole whereas the corresponding BG T-matrix does not. The structure 
of the singularity was documented in detail, and in particular it was shown to 
be present at all densities above a certain critical density in both cases. In the 
case of 3He the critical density was somewhat less than that of the actual 
liquid. For this reason particular attention was focused on the case of 
liquid 3He. 

It was shown in I that a pole in the T-matrix corresponds to a bound 
pair in the medium. In the case of the GF T-matrix, which treats both 
particles and holes symmetrically, the bound pair corresponds necessarily 
to binding between quasiparticles that are a linear combination of particle 
and hole states, and the absence of a pole in the BG T-matrix indicates that 
the hole states are vital to obtain this binding. It is possible that in a more 



Pairing Singularities in the 3He Galitskii-Feynman T-Matrix 575 

realistic theory of liquid 3He, which starts from the simple T-matrix (in either 
formalism) and is then extended to include other diagrams, this pairing is 
not destroyed. By analogy to the BCS theory of superconductivity, 5 where 
the Cooper pairs 6 are directly responsible for the physical phenomenon of 
superconductivity, it is to be expected that the pairing in this case may have 
physical consequences. In any case, we argued in I that it is of interest to 
compare two different lowest order microscopic theories applied to liquid 
3He and to focus attention on a distinct difference between them. It is clear 
that if the pairing that occurs in the lowest order GF T-matrix persists in a 
more realistic calculation and is not destroyed by the addition of higher order 
perturbation terms, then this formalism is to be preferred to the BG formalism, 
which would probably have to be extended to infinite order to reproduce a 
singularity that is absent in the lowest order. 

The calculations in ! were restricted to the case of zero temperature, 
which is not necessarily a good approximation for systems of interest. The 
zero-temperature approximation is presumably only justified if a typical 
microscopic energy (such as the energy hZk~/2M of a free particle of mass M 
at the Fermi momentum kF corresponding to the physical density) is con- 
siderably less than the thermal energy kB T. Taking the two cases considered 
in I as examples, the microscopic energy scale defined above corresponds 
to a temperature of the order of 5 x 1011 K for neutron matter at ordinary 
nuclear matter density, and to a temperature of the order of 5 K for liquid 
3He. Thus the zero-temperature approximation is probably well justified 
for neutron stars, which are believed to exist at temperatures v about 10 8 K, 
whereas temperature dependence should be explicitly included in calculations 
of liquid 3He. 

The zero-temperature many-body perturbation theory employing 
non-time-ordered Feynman Green's functions has been extended to finite 
temperatures in a completely consistent way by several authors, 8 and results 
in a graph-theoretic perturbation series in complete analogy with the zero- 
temperature theory. The diagrams enumerated at finite temperature can be 
put into a one-to-one correspondence with those in the zero-temperature 
theory, the only difference being that the one-body propagator is explicitly 
temperature dependent.* Thus the same reasoning that dictates the necessity 
of summing the two-body ladder diagrams at zero temperature for a potential 
with a strong short-range repulsive core requires that a similar summation 
be performed at finite temperatures. Our philosophy in summing the ladder 
diagrams at zero temperature has been that it is a necessary precursor in 

*There are actually two equivalent but distinct temperature-dependent many-body perturbation 
theories--the so-called real-time and imaginary-time formulations. The GF T-matrices 
obtained in the two formulations are simply related to one another by an analytic continuation 
in the CM energy variable of the interacting pair. 
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determining the properties of the many-body system, alhough it is probably 
not sufficient for any physical system of interest. However, even were 
sufficiency of summing the two-body ladder diagrams guaranteed for the 
zero-temperature case, one could not necessarily guarantee their sufficiency 
for calculations of properties of the system at finite temperatures. 

For these reasons, in the present work we have extended the calculations 
of I for the GF T-matrix obtained from the same two-body potential appro- 
priate to liquid 3He to include temperature dependence. In complete analogy 
with the zero-temperature theory, it is possible to obtain a temperature- 
dependent GF T-matrix, from which one can again determine (to this 
approximation of keeping only the ladder diagrams) a corresponding 
temperature-dependent self-energy function. The self-energy function in 
turn can then be used to self-consistently obtain the single-particle excitation 
spectrum and the thermodynamic functions at finite temperature. We adopt 
the same dual philosophy as in I, namely that these results are both interesting 
in their own right and form a necessary first step for a detailed investigation, 
within the formalism outlined, of the thermodynamic functions for liquid 
3He, in particular, and other many-fermion systems in general. Furthermore, 
to within our knowledge this work presents the first detailed microscopic 
calculations for a many-body system at finite temperatures employing 
realistic interparticle potentials. 

The temperature-dependent GF formalism adopted in this work is 
described in the next section, and the details of the numerical results obtained 
for the bound-state pole appropriate to liquid 3He are presented in Section 3. 
Detailed numerical results are presented for the binding energy of a pair (in a 
relative S-wave state) as a function of each of their total linear momentum, the 
density of the system, and its temperature. The results are summarized in 
Section 4, where possible consequences for a more detailed and realistic 
calculation are drawn. 

2. THE TEMPERATURE-DEPENDENT T-MATRIX FORMALISM 

Using finite-temperature many-body theory in either the real-time or 
imaginary-time Green's function formalism, 8 the temperature-dependent 
GF T-matrix, which sums the ladder diagrams in the many-body medium, 
evolves exactly as that for the zero-temperature case. 2'9 An infinite number of 
non-time-ordered Feynman diagrams are summed, in which the virtual 
intermediate states comprise either pairs of particles outside or pairs of holes 
inside the Fermi sea, propagating as free states except for the effects of the 
exclusion principle. Considering the GF T-matrix equation, one can show in 
either the real-time or imaginary-time formalism that the introduction of 
finite temperatures affects only the two-body propagator of the intermediate 
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scattering states. Thus the single-particle occupation probabilities [which at 
zero temperature are given by the unit-step function O(k - kF) in momentum 
space] appearing in the intermediate propagator are replaced by the tempera- 
ture-dependent Fermi-Dirac distribution functions. In the CM frame of the 
interacting pair, the resulting GF T-matrix is the solution of the operator 
equation 

T(s ,  P;/7) = u - u{Q(P, fi)go(s) - Q(P,/7)gt0(s)} T(s,  P;/7) (1) 

The T-matrix depends parametrically* on s and P, respectively the total 
available energy of the interacting pair in the CM frame and their total 
momentum, and also the temperature/7-1. The function u is proportional 
to the two-body interaction potential V, u = Mh-zv--�89 and the free 
two-body Green's function go(s) is specified in terms of the relative kinetic 
energy operator Ho of the pair as go(s) = (�89 - s - iq)- 1, with q a positive 
infinitesimal in the scattering region (s > 0) and zero otherwise. In the 
momentum-space representation of Eq. (1), the operators Q and C) are 
diagonal in the relative momentum variable k of the intermediate scattering 
states, 

<k[Q(P,/7)[k'> = (2n) 3 6(k - k')Q(k, P,/~) 

and similarly for the operator C), with 

Q(k, P,/~) = no(P + k)no(P - k) 
(2) 

C)(k, P,/7) = [1 - no(P + k)][1 - no(P - k)] 

defined in terms of the Fermi-Dirac distribution function 

no(k) = {1 + exp [f/(k~ - k2)]} - '  

We find it most convenient to study Eq. (1) in the relative momentum 
representation, where 

~Pl T(s ,  P ;/7)[p') = T(p, p'; s, P;/7) 

and where operator multiplication is defined by 

(pIABIp') = ( 2 7 0  - 3  f dk (plA[k)(klB[p') 

As in I, the dependence of Eq. (1) on the angular orientation of the 
momenta of the virtual scattering states through the operators Q and 
is a formidable complication to its numerical study, and we make the same 
approximation of angle-averaging these operators, whence this dependence 

*We use t h r o u g h o u t  uni t s  2 M  = h = k s = 1, where  M is the  par t ic le  mass  a n d  k B is the  
B o l t z m a n n  c o n s t a n t .  
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on the angular variables vanishes. The averaging reduction over the orienta- 
tion of the CM momentum can be performed analytically, with the result 

fl Q(k, P, ~) - �89 d~ Q(k, P, 9) 
1 

= [2flkP{1 - exp [ -2f l (P  2 + k 2 - k~)]}]-XL(k, P) 

f O(k, e,  9) - ~ d~ 0 ( k ,  P ,  9)  (3) 
- 1  

= [2flkP {exp [2fl(P 2 + k 2 - k2F)] -- 1}~-~L(k, P) 

c o s h  { l ~ [ ( e  + k) 2 - kg]}  
L(k, P) = In 

c o s h  { � 8 9  - k) 2 - k~ l}  

where # =/r  P. In the limit as fi- ~ approaches zero, the functions in Eqs. (3) 
smoothly and continuously approach their zero-temperature counterparts 
defined in I. Using this approximation, Eq. (1) can be written in an uncoupled 
partial-wave series for the functions Tl(p, p' ; s, P; fi), 

T(p, p'; s, P ; fl) = ~ (21 + 1)Tz(p, p'; s, P;  fi)Pt(io �9 if) 
I 

exactly as in I. Defining p~, P2 and p], p~, respectively, as the initial and 
final momentum states of the interacting pair in the many-body background, 
and taking matrix elements in the CM frame, with the conventions 

P -- �89 P2)" p, 1 , , 1 , - ~(Pl P2), P = �89 + P2) = + , = - ~(p~ p l )  

Eq. (1) becomes, after the angle-averaging approximation has been made, 

~. o~ k 2 dk 
~(p, p' ; s, P;  9) = u,(p, p') - Jo 5~-~ u~(P' k) 

f Q(k, P, 9) Q(k, P, 9) ] Tl(k ' p,; s, P; 9) (4) 
•  k ~-s+iv 

The study of the numerical solutions to the one-dimensional integral equation 
(4) for a potential u~(p, p') appropriate to liquid 3He forms the basis of the 
remainder of this work. In principle, the solution to Eq. (4) leads directly to 
the ladder contribution to the proper self-energy in either the real-time or 
imaginary-time formalism, whence contact is immediately made with the 
excitation spectrum and the thermodynamic functions, respectively, s 

3. NUMERICAL RESULTS 

In the current study the results reported in I are extended to include 
finite temperatures by performing a numerical investigation of Eq. (4), and 
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the behavior of the bound-state singularity as a function of temperature is 
examined in detail. Using the same S-wave modified Frost-Musulin (MFM) 
potential as described in I, the GF T-matrix defined by Eq. (4) has been 
investigated using numerical techniques identical to those used in I, and 
for a range of temperatures from zero to over 100 K. Equation (4) is basically 
solved by discretization on a 96-point Gaussian grid and directly inverting 
the resulting matrix equation. The T-matrix in the S-wave channel was found 
to be everywhere a continuous, slowly varying function of the temperature 
except for values of its other arguments near those responsible for the 
singularity structure reported in I. The basic structure of the singularity as a 
first-order pole with factorizable residue, 

To( p, p' ; s, P ; fl) ~--I~o - [ f (P '  P'fl)--f(P"s - s o P' fl)l 

is unchanged at finite values of the temperature. The position of the singu- 
larity s o, which corresponds to the binding energy of the pair, is a function of 
the magnitude of the total momentum P of the pair, the density (or equiva- 
lently the Fermi momentum kF), and the temperature fl- 1 of the many-body 
system in which they are imbedded. The singularity s o is independent of any 
particular representation of the T-matrix; i.e., independent of p and p' in the 
relative momentum representation. 

The function so(P, kF, fl) exhibits a rather complicated dependence on 
the temperature. The surface described by choosing the total momentum P 
to be zero is characteristic of the entire hypersurface, and is shown in Fig. 1, 
where the position of the singularity is shown plotted as a function of tempera- 
ture for 11 values of k F. For a given value of k v there is seen to exist a critical 
temperature fl- 1 = 137 l(kv) above which the singularity vanishes, or inverting 
this relation, we can define a critical Fermi momentum k F = kFc(fl-1) as a 
function of temperature. For values of kv greater than the zero-temperature 
critical Fermi momentum [kFc(0 ) = 0.7146 ~ -1  at P = 01 and for tempera- 
tures less than fl[ l(kF) , the pole exists, and as the temperature approaches 
zero the pole smoothly and continuously approaches the shelflike structure 
described in I. For values of k F less than kFc(0 ) the singularity in the T-matrix 
does not exist at zero temperature, by definition. However, for k v in the range 
kFn~ in < k F < kFc(0), the pole reappears at finite temperature above a certain 
lower critical temperature, say fl;- l(kF) ' and again disappears as the tempera- 

t u re  is increased above the upper critical temperature tic-l(kv) as described 
above for the case kv > kvc(O). The minimal critical Fermi momentum, which 
is found to occur at a value kvm~ n ~ 0.70674 A-1, is characterized as being 
that value of kvc at which the upper and lower critical temperatures become 

l[/~min] /'~,- ~tvmin~ 6.38 K. For densities equal, in this case at a value fl[ ~,~vc J = ec ~Fc J = 
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Fig. l. The position of the singularity s o in the S-wave G F  T-matrix 
for the M F M  potential at zero CM m o m e n t u m  of the pair as a 
function of temperature f l-  1 for 11 values of  k v. 

rain corresponding to k v < kvc , the pole is absent  for all values of the t empera -  
ture. This entire s tructure for the case of zero C M  m o m e n t u m  of the pair  
(P = 0) is detailed in Fig. 1, and the b o t t o m  curve of Fig. 2 shows the func- 
t ion kvc(f1-1) for the case P = 0. F r o m  this last curve, one readily sees 
that  the inverse function tic-~(kv) at P = 0 is double-valued in the range 
k~'~"< k v < kw(O), and the second branch in this region cor responds  to 
what  was identified as/3'r f rom observat ion of Fig. 1. 

The  general s tructure of  the function so(P, kv, fl) discussed above  for the 
case P -- 0 persists at nonzero  values of  the C M  m o m e n t u m  P. As the C M  
m o m e n t u m  is increased f rom P = 0, it is found that  the critical quant i ty  
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kFc(fl-1, p) Varies smoothly as a function of P, some typical curves being 
plotted in Fig. 2, where an arbitrary constant momentum (equal to 0.70650 
A-1) has been subtracted from kFc, purely for ease of display. One observes 
that the number of relative maxima and minima of the family of curves, 
considered as functions of temperature, depends on the value of P, although 
the positions of these extrema are themselves smooth functions of the param- 
eter P. The number of extrema is obviously directly related to the number 
of branches of the multivalued inverse functions fl~-l(p, kF). Thus each 
relative minimum in a given member of the family determined by its value of 
the parameter P is responsible for a separate "seedlike" structure, centered 
at the minimal value of the temperature, in a contour plot for the function 
so(P, kF, #), similar to that shown in Fig. 1 centered at a temperature of 6.38 K 
for the case P = 0. Similarly, each relative maximum for a member of the 
family represents the demarcation contour in kv which separates two dis- 
connected seedlike structures. That the relative extrema in members of the 
family move smoothly as functions of the parameter P can be seen clearly 
from Fig. 2. Thus, for example, the relative minimum at 6.38 K in the P = 0 

I0-' 

'~ IC#2 
0 
in 

0 

d 
I 

~ I0 -3 P = 0.~0 

I O  L l I t l  i t I I I  I I I I 

I0-' I I0 I0 2 

iB-ti~ 
Fig. 2. The critical Fermi m o m e n t u m  kvc for the S-wave M F M  potential 
as a function of temperature f l-  1 for five values of the CM m o m e n t u m  
P of the pair. The arrows indicate the positions of the relative extrema 
of the curves. 
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member of the family moves smoothly to lower temperatures as P is increased, 
until at a value P = 0.172 A -1 it has merged continuously with a relative 
minimum (to form an inflection point in this member of the family) at a 
value of the temperature of 3.5 K. For all values ofP  > 0.172 A -1, the func- 
tions kvc(fi- 1, p) are everywhere increasing functions of the temperature fi- 1 

The detailed numerical results presented in this section are summarized 
in Section 4, and are discussed with particular reference to their pertinence 
for realistic microscopic calculations of liquid 3He. 

4. DISCUSSION AND SUMMARY 

To summarize, the singularity structure of the GF T-matrix described in 
I and in the present work manifests itself as a first-order pole in the CM 
energy variable, with factorizable residue at the pole. The position s o (< 0) 
of the (bound-state) pole is a function of the CM momentum of the pair, of 
the density of the system, and of the temperature. The value s o measures the 
binding energy of the bound-state pair interacting in the presence of the many- 
fermion background. 

The function so(P, kv, fl) was shown to exhibit a critical Fermi momen- 
tum kFc = kFc(fl- ~, P), at which density the pair has zero binding energy and 
below which binding does not occur. For the MFM potential, which appears 
to be a good approximation to the interaction between 3He atoms, the 
critical values kvc for temperatures in the range from zero to about 100 K and 
for most values of the CM momentum are close to and below the value 
0.79 A- i appropriate to real liquid 3He. 

Such a bound-state singularity in the GF T-matrix will almost certainly 
qualitatively affect, and in certain instances possibly dominate, the behavior 
of the (lowest order) proper self-energy function calculated from it, and 
consequently influence both the single-particle energy spectrum and the 
quasiparticle lifetimes, as well as the thermodynamic functions. The results 
of this study indicate that the position of the pole, or indeed its presence or 
absence, is strongly dependent on both temperature and density in the range 
of interest for these parameters, and would seem to indicate in particular 
that a proper study of this system should include temperature dependence. 

The two-body binding within the many-body 3He background that we 
have documented for the relative S-wave channel of the pair occurs only for 
the GF T-matrix. A similar investigation of the corresponding BG T-matrix 
with the same two-body potential reveals the absence of any binding for this 
case for a comparable range of temperatures and densities. The absence of a 
pole in the BG T-matrix highlights the importance of including the inter- 
mediate hole states accessible to the pair imbedded in the many-body 
medium. The pairing in the GF formalism corresponds to pairing between 
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quasiparticles that are linear combinations of hole and particle states, or 
equivalently to pairing between pairs of particles dressed by hole states 
within the 3He background. 

The most interesting open question at this point is whether or not the 
remaining many-body interactions in the medium will destroy the two-body 
pairing obtained with the GF T-matrix. Both the BG and GF T-matrices sum 
exactly all of the two-body interactions between a pair in the medium, where 
the pair in the former case is restricted to be two particles, while in the latter 
the possibility of the pair being two holes is also included. If it were known 
that all explicitly three- or more-body effects* were small, then presumably 
the GF T-matrix would adequately describe the system, whereas the BG T- 
matrix would not. That is to say, in the time-dependent perturbation theory 
one would have to include many more diagrams than are summed by just 
the BG T-matrix. Unfortunately, no such guarantee exists for real liquid 3He. 
While either T-matrix presumably accounts for the strong short-range 
repulsion, neither is likely to be sufficiently weak that higher order terms in 
either the time-dependent or time-independent perturbation theory may be 
safely neglected. The three-body (and possibly the four-body) cluster terms 
are likely to be of importance, just as in the case of nuclear matter. Worse than 
this is the fact that even though summing the ladder diagrams to obtain a T- 
matrix takes care of "softening" the short-range repulsion, the 3He inter- 
particle potential also contains a long-range attractive tail, the strong 
effects of which are liable to remain in all n-body clusters. 

In order to investigate the effects of the first of these two complications 
on the pairing in the GF T-matrix, we are currently investigating the structure 
of the three-body terms using the GF T-matrix. In order to determine the 
effect of the long-range part of the interaction in higher orders, we are investi- 
gating the effect of screening the bare interaction with the so-called bubble 
diagrams that correspond to the random-phase approximation. Should the 
bound-state singularity in the GF T-matrix turn out not to be destroyed (but 
merely shifted) by these higher order effects, the question remains of how the 
binding will manifest itself in the framework of the physical observables for 
liquid aHe, and this, too, is currently being investigated. As a final point we 
note that the current work has been restricted to the MFM potential, whereas 
there exist in the literature numerous alternative potentials which fit the 
available 3He data. We are presently comparing the properties of the GF T- 
matrices obtained from these various bare potentials. Results of these 
investigations will be published elsewhere. It should be stressed at this point 

*By an n-body contribution, we mean in this context contributions from an n-body cluster (in 
the non-t ime-ordered or Feynman diagram sense) interacting together in the medium through 
the same two-body potential. The effect of three- or more-body forces is an added complication 
which we presently ignore. 
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that the S-wave pairing investigated by us for the bare potential appears to be 
absent in the P- and higher-wave channels, and in its present form thus bears 
no resemblance at all to the pairing presumably responsible for the super- 
fluid phases of 3He. Whether this situation will change as higher order 
effects are taken into consideration and as the bare potential is screened by 
particle-hole pairs due to its long-range tail remains to be seen. 

It should be finally emphasized that the results reported in this study 
can easily be extended to other dense Fermi systems. In particular, neutron 
matter was shown in I to havo a similar singularity structure in the GF T- 
matrix, the temperature dependence of which is expected to be comparable 
to that reported here. However, the internucleon potential has added 
complications, such as a tensor component (and other explicit state depend- 
ence), and at densities high enough for binding to occur, mesonic degrees of 
freedom (suppressed in a static potential formalism) can substantially alter 
the binding mechanism. We are also studying such effects. 
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