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Optimal Demand Response Scheduling With
Real-Time Thermal Ratings of Overhead
Lines for Improved Network Reliability
Konstantinos Kopsidas, Member, IEEE, Alexandra Kapetanaki, Student Member, IEEE,

and Victor Levi, Senior Member, IEEE

Abstract—This paper proposes a probabilistic framework for1

optimal demand response scheduling in the day-ahead plan-2

ning of transmission networks. Optimal load reduction plans are3

determined from network security requirements, physical char-4

acteristics of various customer types, and by recognizing two5

types of reductions, voluntary and involuntary. Ranking of both6

load reduction categories is based on their values and expected7

outage durations, while sizing takes into account the inherent8

probabilistic components. The optimal schedule of load recovery9

is then found by optimizing the customers’ position in the joint10

energy and reserve market, while considering several operational11

and demand response constraints. The developed methodology is12

incorporated in the sequential Monte Carlo simulation procedure13

and tested on several IEEE networks. Here, the overhead lines14

are modeled with the aid of either static-seasonal or real-time15

thermal ratings. Wind generating units are also connected to the16

network in order to model wind uncertainty. The results show17

that the proposed demand response scheduling improves both18

reliability and economic indices, particularly when emergency19

energy prices drive the load recovery.20

Index Terms—Optimal demand response, reliability, sequential21

Monte-Carlo, real time thermal rating, risk.22

NOMENCLATURE23

The symbols used throughout this paper are defined below.24

Indices25

j Index of generating units running from 1 to J26

i Index of load points running from 1 to N27

s Index of load types running from 1 to s428

t Index of hours running from 1 to T29

y Index of simulation days running from 1 to Y.30

Parameters31

VOLLs
i Value of lost load at load point i and load32

type s33
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BÊDIi Normalized value of expected duration inter- 34

ruption index in the base case 35

Ds BASE
i Duration of interruption of load type s at load 36

point i under the base case 37

Pmax
g Maximum power output of a generation unit 38

Pmin
g Minimum power output of a generation unit 39

Pmax
d Maximum forecast load 40

VLs,max
i Upper limit of the voluntary load reduction for 41

customer type s 42

IVLs,max
i Upper limit of the involuntary load reduction 43

for customer type s 44

B System matrix including potential 45

contingencies 46

win Per unit window for load reduction sampling 47

rs Random number between {0,1} 48

tMAX Maximum hour limit of load recovery 49

f s
REC Customer’s availability to recover the load 50

Vci Cut in wind speed 51

Vr Rated wind speed 52

Vco Cut out wind speed 53

Pr Rated power output of wind turbine 54

Tc(t) Conductor temperature at hour t 55

R(t) AC conductor resistance at operating temper- 56

ature Tc at hour t 57

Pc(t) Convection heat loss at hour t 58

Pr(t) Radiated heat loss at hour t 59

Ps(t) Solar heat gain at hour t 60

I(t) Conductor current at hour t 61

Vm(t) Wind speed at hour t 62

Kangle(t) Wind direction at hour t 63

Ta(t) Ambient temperature at hour t. 64

Variables 65

Pgj(t) Active Power output of generation unit j at 66

hour t 67

θ Phase angles of nodal voltages 68

μi(t) Nodal marginal price of load point i at hour t 69

γ s
i (t) Slope coefficient for load recovery at node i, 70

type s, hour t 71

Pmax
f Overhead line real-time thermal rating 72

Pd i(t) Power supplied to load point i at hour t 73

σ s
i (t) Marginal offer value for voluntary load reduc- 74

tion, load type s at load point i at hour t 75
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VLs
i (t) Amount of voluntary load reduction of load76

type s at load point i at hour t77

IVLs
i (t) Amount of involuntary load reduction of load78

type s at load point i at hour t79

Ds
i (t) Duration of interruption of load type s at load80

point i at hour t81

Pcs
i (t) Total load shedding of load type s at load82

point i at hour t83

f s
RED(t) Load type s availability to respond to a demand84

response call at hour t85

CVLs
i (t) Contracted voluntary load reduction of load86

type s at load point i at hour t.87

Functions88

GRj(·) Revenue of generator j89

LCi(·) Cost of delivered demand at node i90

VLRi(·) Revenue for voluntary load type s reduction at91

node i92

IVLRi(·) Revenue for involuntary load type s reduction93

at node i94

R̂s
i (·) Ranking order for load type s at node i95

[�−]s
i (·) Size of load reduction for load point i type s96

[�+]s
i (·) Size of load recovery for load point i type s97

Savingss
i (·) Customer savings for load point i type s in the98

event that demand response materializes99

Cs
payback i(·) Payback cost due to load recovery at node i100

type s101

π s
i (·) Profit of load customer at load point i type s102

VaRNR
a (·) Value at risk for network rewards at confidence103

level α104

VaRNC
1−α Value at risk for network costs at confidence105

level 1-α106

P(·) Wind turbine power output for wind speed Vm.107

I. INTRODUCTION108

THE EVER increasing integration of intermittent renew-109

able energy into the electricity network, combined with110

a constantly growing demand, is likely to cause much greater111

stress on existing networks increasing the probability of112

severe contingencies [1]. To avoid this, several preventive and113

corrective actions, including demand response (DR), spin-114

ning reserve scheduling, application of real-time thermal rat-115

ings (RTTR) and energy storage scheduling, can be deployed116

to relieve stress in particular areas of the network.117

DR strategies currently under investigation consider dis-118

tribution level [2], [3], but their potential in transmission119

networks is often overlooked. Research related to the impact120

of DR on network reliability is very limited [4]–[6]. The121

model proposed in [5] evaluates short term operational ben-122

efits in terms of generation and interrupted energy costs123

from interruptible loads by using the contingency enumeration124

technique; however, it does not fully address the customer per-125

spective because there is no modelling of load recovery and126

associated costs, characteristics of different load and DR types127

and probabilistic nature of available interruptible demand.128

Even if a probabilistic approach is used to assess the DR129

contribution [6], only single contingencies are analysed.130

Physical characteristics of different types of load customers 131

need to be adequately represented in the studies. Domestic 132

and small commercial loads are analysed in [7]–[9] but fail to 133

assess how critical each customer type is for a network’s load 134

point in terms of interruptions. Next, examining different sizes 135

and shapes of both load reduction and recovery is essential for 136

a complete and accurate network assessment; however, load 137

recovery is usually ignored in the studies [4]. Load reduction 138

and recovery can be based on electricity market prices in order 139

to eliminate price spikes during peak hours [4], [10]. However, 140

these studies often ignore operational and security constraints 141

of the transmission networks and are run for intact networks 142

only. Enumeration techniques, as opposed to Monte Carlo sim- 143

ulation, are often used to calculate the DR contribution, and 144

thus fail to include the whole set of contingencies and a num- 145

ber of uncertainties a network might experience [11]. Finally, 146

instead of applying DR every time a contingency occurs, DR 147

should only be used when the reliability is improved and when 148

savings are higher than the expected payback costs. 149

This paper proposes a probabilistic approach for optimal 150

demand response scheduling in the day-ahead planning of 151

transmission networks. Uncertainties related to forecast load, 152

network component availability, available amount of demand 153

response and wind speeds are incorporated into the sequential 154

Monte Carlo simulation framework. Synchronous and wind 155

generating units, as well as four types of load customers (large, 156

industrial, commercial and residential) are modelled. Optimal 157

nodal load reductions are calculated using the optimum power 158

flow model, and are then disaggregated into voluntary and 159

involuntary components. Recognizing that directly-controlled 160

loads can certainly be shed and indirectly-controlled contain 161

a probabilistic component, optimal amounts of voluntary and 162

involuntary nodal reductions are determined. Different load 163

recovery profiles for customer types are considered next within 164

‘payback periods’ and they are initiated when the load cus- 165

tomer’s revenue is highest. Here, delivered load is priced at 166

nodal marginal price, voluntary load reduction at marginal 167

offer price and involuntary load reduction at damage cost. The 168

whole analysis is implemented from the load customer’s per- 169

spective to maximise their revenues, whilst the load recoveries 170

are controlled by the transmission system operator (TSO); they 171

may represent either physical paybacks from specific appli- 172

ances or controlled paybacks whereby the TSO schedules its 173

customer loads so as to have the desired shape. The benefits 174

of optimal DR strategies are evaluated in combination with 175

real-time thermal ratings of overhead lines to reveal the true 176

potential of the DR. The outputs of the model also include 177

financial risk quantifiers that the revenues are below, or costs 178

are above a threshold. 179

II. OVERVIEW OF THE METHODOLOGY 180

Optimal DR scheduling is determined using the sequen- 181

tial Monte Carlo probabilistic approach. The main features 182

of the proposed DR modeling framework are: a) Load 183

reduction scheduling driven by network security; b) Optimal 184

scheduling of load recovery using economic criteria; 185

c) Modelling of real-time thermal ratings of overhead lines; 186
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and d) Modelling of renewable energy sources, such as wind187

generation.188

The overall methodology is realized within two indepen-189

dent sequential Monte Carlo simulation (SMCS) procedures.190

The first SMCS is the initialization module, which is used to191

calculate several components required by the second SMCS192

that determines optimal day-ahead operation of the power sys-193

tem. The main building blocks of the first SMCS procedure194

are: a) Calculation of reliability indices needed for ranking195

of load types for demand reduction; b) Calculation of real-196

time thermal ratings of overhead lines; and c) Determination197

of nodal marginal prices and several economic indicators used198

for finding the optimal schedule of load recoveries.199

The second SMCS consists of four modules: a) Demand200

reduction scale module; b) Load recovery scale module;201

c) Demand reduction and load recovery (DRLR) control mod-202

ule, and d) The outputs module. The first module contains203

ranking of different load types for demand reduction, calcu-204

lation of required amounts of voluntary and involuntary DR,205

as well as the customer revenues. The load recovery scale206

module considers load recovery profiles and sizes, and deter-207

mines a matrix with the most appropriate schedule hours for208

load recovery. The DRLR-control module contains logics for209

initiation of load reductions and load recoveries, whilst the210

outputs module includes optimal load reduction and recovery211

schedules, as well as reliability and financial indicators.212

III. METHODOLOGY213

The proposed demand scheduling methodology is aimed214

at determining the optimal demand response plan for the215

next day, when the committed generation units, status of net-216

work switching devices and forecast loads are well defined.217

However, several uncertainties in the day-ahead operation are218

still present, so that the overall problem is formulated as219

a probabilistic model and solved with the SMCS. The pro-220

posed DR methodology is applied for post contingency states;221

however it is general enough to also consider pre-contingency222

events. The main building blocks are briefly presented below.223

A. Sequential Monte Carlo Simulation224

Sequential Monte Carlo simulation performs analysis of225

time intervals in chronological order whilst taking into account226

various uncertainties [11]. It can model the chronological227

phenomena, such as load reduction and recovery, real-time228

thermal ratings and wind generations. Following uncertainties229

were assumed for a day-ahead operation of the transmission230

network:231

• Load varies in a window around the forecast hourly loads.232

The uncertainty window is defined by the MAPE of the233

short-term forecast by hourly intervals obtained using the234

neural network approach [12].235

• Availability of all generation and network units was mod-236

elled with the aid of two-state Markovian model with237

exponentially distributed up and down times [11].238

• Wind speed hourly predictions and a window around the239

predicted values are applied within the random sampling.240

Fig. 1. Computations within the initialization module.

An alternative approach is to use wind speed probability 241

distribution functions (PDFs) by hourly periods. 242

• Amount of voluntary load reduction that varies by cus- 243

tomer and DR type. For example, DR from residential 244

customers responding to price signals is highly uncertain, 245

whilst DR from incentive-based contracted commercial 246

customers has much less uncertainty – see Section III-D. 247

One SMCS period is equal to 24 hours and simulations are 248

repeated until convergence is obtained. Any failure that goes 249

over the planning horizon (i.e., 24:00) was considered in the 250

‘next day’ simulation. The same simulation principles were 251

applied in both SMCS procedures. 252

B. Initialization Module 253

The initialization module is used to calculate several quan- 254

tities required by the main simulation loop. Following the 255

data input, network model with real-time thermal ratings and 256

load customer characteristics is built and fed into the first 257

SMCS procedure, as shown in Fig. 1. The outputs from this 258

stage are some pricing and reliability indicators. 259

1) Input Data: The input data include network, reliabil- 260

ity, customer, economic data, overhead line (OHL) data and 261

weather data. Beside the standard network data, forecast in- 262

service generation units with technical characteristics and 263

chronological hourly load point demands are input. Reliability 264

data are failure rates and repair times of all components, whilst 265

customer data encompass customer and DR types, contracted 266

voluntary load reductions, normalized load recovery profiles 267

and customer availability to respond to a DR call. Essential 268

economic data are generation costs, values of lost load (VOLL) 269

and marginal offer prices for voluntary load reduction. Average 270

VOLL data by customer types were obtained from the latest 271

U.K. national study [13]. 272

Weather data include ambient temperatures, wind speeds 273

and directions required for the calculation of RTTRs of OHLs, 274

as well as either forecast hourly wind speeds or hourly wind 275

speed PDFs used to calculate wind generations. Several other 276
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OHL construction and heat dissipation/gain data are further277

required to calculate RTTRs.278

The input data are fed into the thermal ratings and network279

modelling modules, whose outputs are then used by the SMCS280

procedures.281

2) Thermal Ratings of Overhead Lines: Two different OHL282

rating models are used in the developed simulation proce-283

dures, the ‘seasonal’ thermal rating (STR) and the RTTR. The284

STR is defined by seasons and for different design conductor285

temperatures [14]. The lowest ratings are for summer con-286

ditions and design temperature of 50◦C [15]; they are of287

conservative nature.288

To get the RTTRs, it is possible to do a thermal analysis on289

an hourly basis. Assuming a steady-state thermal equilibrium290

is achieved in each hourly period, static thermal balance is291

achieved by equating heat dissipated by convection and radi-292

ation (or ‘cooling’) with solar and Joule heat generated. In293

the applied IEEE model [15], the convection heat loss varies294

with the change in wind speed (Vm), wind direction factor295

(Kangle) and the difference between the conductor (Tc) and296

ambient air temperature (Ta). The radiation heat loss is the297

energy of the electromagnetic waves emitted to the ambient298

space; it is a function of the temperature difference between299

the conductor and air, and the emissivity of the conductor. The300

solar radiation is a function of several parameters including301

solar azimuth, total radiated heat flux rate, etc. Finally, Joule302

(I2R) losses are calculated in the standard way using AC resis-303

tance dependent on conductor temperature, so that the RTTR304

of OHLs is determined as:305

I =
√(

Pc
(
Tc, Ta, Kangle, Vm

) + Pr(Ta, Tc) − Ps
)/

R(Tc) (1)306

where Pc(·) is the convection heat loss, Pr(·) is the radiated307

heat loss, Ps is solar heat gain and R(Tc) is the conductor308

resistance at operating temperature Tc. The conductor temper-309

ature needs to be set to one of the standard design values310

(i.e., 50◦C, or 65◦C, or 75◦C) to get the OHL ampacity; an311

increased value can be used during system emergencies.312

The average values of 5-year hourly weather data were313

obtained from the BADC MIDAS metheorogical stations for314

Aonach, U.K. [16]. The rest of the required data were obtained315

from the U.K. consultants.316

3) Analysis Within the SMCS Procedure: The initialization317

module is used for two purposes; the first is to determine318

the base expected duration interruption (BEDI) index of loads319

needed for ranking of loads within the demand reduction320

scale module. The second is to compute the probabilistic321

energy nodal prices used within the DRLR-control module322

to find the optimal load recovery strategy. The probabilistic323

nodal prices at different confidence intervals α are further324

analysed to make decision about the most appropriate load325

recovery times.326

Each hour within the simulation period is characterized by327

available generating units, transformers and circuits, as well328

as nodal loads and operational constraints. An optimum power329

flow (OPF) model is solved to find the levels of voluntary330

and involuntary load reductions and revenues to generator331

and demand customers. The formulation of the OPF model is332

a modification of the market-clearing model proposed in [17];333

the main difference is that there is no preventive control 334

and corrective scheduling is applied to the already sampled 335

contingent case. Mathematical formulation of the model is: 336

Min

⎧
⎨
⎩

∑
j∈J

Cg j · Pg j +
∑
i∈I

∑
s∈S

VOLLs
i · IVLs

i 337

+
∑
i∈I

∑
s∈S

σ s
i · VLs

i

⎫
⎬
⎭ (2) 338

subject to: Pg − Pd − Bθ = 0 (μ) (3) 339

Pf = Hθ (4) 340

− Pmax
f ≤ Pf ≤ Pmax

f (5) 341

− Pmin
g ≤ Pg ≤ Pmax

g (6) 342

0 ≤ VLs
i ≤ VLs,max

i (7) 343

0 ≤ IVLs
i ≤ IVLs,max

i − VLs,max
i (8) 344

Pmax
d −

∑
s

IVLs −
∑

s

VLs ≤ Pd ≤ Pmax
d (9) 345

The objective function to be minimized (2) is the sum of 346

the offered cost functions for generating power plus the sum 347

of the cost of involuntary load reduction for all load nodes 348

and types plus the sum of offered costs for voluntary load 349

reduction for all load nodes and types. The involuntary load 350

reduction is valued at VOLL that is dependent on the general 351

load type; dependency on the connection node is taken into 352

account because there may exist special loads whose curtail- 353

ment must be avoided. Voluntary load reduction is priced at 354

the rates offered by consumers to provide this service. They 355

are closely linked to the offers made by generators for the ‘up- 356

spinning reserve’ in the joint energy and reserve market [17]. 357

It is again envisaged that the rates can vary with customer 358

type and connection location. Finally, note that time index t 359

is avoided for simplicity. 360

Using a dc load flow model, constraints (3) represent the 361

nodal power balance equations for the considered state, which 362

includes potential contingencies within the system matrix B. 363

A Lagrange multiplier (or dual variable) μi is associated with 364

each of the equations. Constraints (4) express the branch flows 365

in terms of the nodal phase angles, while constraints (5) 366

enforce the corresponding branch flow capacity limits. Here, 367

modelling of OHL ratings can be done using the RTTR model, 368

in which case limit Pf
max is a function of the time step t. 369

Constraints (6) set the generation limits for the consid- 370

ered state, while considering available units and requirements 371

for the down- and up-spinning reserve in the analysed time 372

step [17]. Reserve requirements depend on the system load and 373

contingency state [17]. For the non-controllable units, such as 374

wind turbines, upper and lower limits are the same. 375

Constraints (7), (8) and (9) set the limits of the demand; they 376

are expressed as inequality constraints on the voluntary and 377

involuntary load reductions and the total delivered load. The 378

upper limit of the voluntary load reduction VLs,max
i can contain 379

a probabilistic component for some DR types and is dependent 380

on the considered time step. As a consequence, the upper limit 381

of the involuntary load reduction is the difference between of 382

the absolute limit IVLs,max
i and the voluntary load reduction 383
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limit VLs,max
i . Finally, the delivered demand Pd is equal to384

the forecast load in the considered time interval Pmax
d if there385

is no load reduction. The lower limit is specified in terms of386

the forecast load, voluntary and involuntary load reductions,387

which are a part of the optimal solution.388

Solving the optimization model (2) to (9) gives the optimal389

values of the unknown variables, as well as dual variables390

associated with the constraints of this problem [18]. The391

significance of the dual variables is discussed below.392

4) Nodal Marginal Costs: The optimal solution of the393

problem (2) to (9) is equal to the optimal solution of the cor-394

responding dual problem whose unknowns are dual variables395

associated with the constraints (3) to (9) [18]. The objective396

function of the dual problem is a sum of products of the dual397

variables and the right-hand sides of the constraints, showing398

that the total optimal cost can be recovered in another way399

using the dual variables as charging rates. The dual variables400

represent the additional cost of changing the right-hand side401

of the constraints by unity; they are therefore called marginal402

costs or prices [19].403

Dual variables μ are the nodal marginal costs of meeting the404

power balance at each system node for the considered oper-405

ating regime. The nodal marginal costs have been extensively406

used for electricity energy and reserve pricing [6], [9], [20].407

The nodal marginal prices vary over the system nodes and408

during the day due to load variation and congestion in the409

system [21]. The greatest variation of marginal prices is410

experienced due to unexpected failures of lines and/or gener-411

ator units [6]. Consequently, these prices should be carefully412

considered for the load recovery scheduling.413

In our approach, we have applied a concept similar to414

the real time pricing scheme proposed in [22]. The following415

quantities are calculated in each time step t:416

• The revenue of generator j:417

GRj(t) = Pgj(t) · μj(t) (10)418

• The cost of demand i delivery:419

LCi(t) = Pd i(t) · μi(t) (11)420

• Revenue for voluntary load i reduction:421

VLRi(t) =
s4∑

s=1

(
σ s

i (t) · VLs
i (t)

)
(12)422

• Revenue for involuntary load i reduction:423

IVLRi(t) =
s4∑

s=1

(
VOLLs

i · IVLs
i (t)

)
(13)424

We have defined VOLL by load types in the initialization mod-425

ule, as presented in equation (13). However, in the second426

SMCS there is an option to use a look-up table where VOLLs427

are functions of interruption duration [23]. The interruption428

duration is estimated as:429

Ds
i =

{
mean

(
Ds BASE

i

)
, if Ds

i ≤ mean
(
Ds BASE

i

)
Ds

i , if Ds
i > mean

(
Ds BASE

i

) (14)430

where Ds BASE
i denotes the interruption duration calculated431

in the initialization module. The estimated duration of432

Fig. 2. Optimal demand response computational framework.

interruption is equal to the mean base value unless the inter- 433

ruption already lasts for more than the base value; it then takes 434

the actual duration value. 435

C. Optimal Demand Response Scheduling 436

The computational framework for optimal demand response 437

scheduling is illustrated in Fig. 2. The load reduction and 438

recovery scale modules feed into the DRLR control module. 439

Ranking of different load types and calculation of available 440

sizes for voluntary load reduction is performed within the load 441

reduction scale module. The order of ranking the load points 442

and types is represented by (i, s)r in Fig. 2. Hence, in the load 443

reduction matrix, if load reduction takes places at hour t1 the 444

load reduction of (i, s)r1 customer will be evaluated first, while 445

the (i, s)rk customer will be evaluated at the end. 446

The load recovery scale module computes the most appro- 447

priate schedule hours for load recovery, as well as the potential 448

recovery sizes and profiles. The order of ranking the load 449

points and types is represented by (i, s)rc in Fig. 2. Hence, in 450

the load recovery matrix, if load recovery takes places at hour 451

t1 the load reduction of (i, s)rc1 customer will be evaluated 452

first, while the (i, s)rck customer will be evaluated at the end. 453

Both load reduction and recovery are managed by the DRLR 454

control module in which the OPF is used to determine optimal 455

voluntary and involuntary load reductions, and the developed 456

control scheme gives the optimal load recovery profiles. The 457

outputs module finally gives optimal DR and LR schedules, 458

as well as financial and reliability indicators. 459

D. Load Reduction Scale Module 460

Load reduction scale module is required for each load point 461

and load type when load shedding takes place at the considered 462

hour tRED. The physics of demand response are presented first, 463

which is followed by the ranking and sizing. 464

Four load types, industrial, commercial, large user and 465

residential, have been defined in our approach. Different 466

characteristics have been associated with these four types, 467

such as temporal load variations, total amounts available for 468



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON SMART GRID

voluntary and involuntary load reductions, relative load recov-469

ery profiles and economic data. Two categories of demand470

response have been recognised, namely direct and indirect471

load control [24]. In direct load control, the contracted cus-472

tomers (usually large and industrial) are directly disconnected473

during emergency conditions and they receive revenue for par-474

ticipating in the ‘reserve market’ [25]. The contracted amounts475

are certain and they are of deterministic nature. In indirect476

load control, incentive- and price-based demand responses477

can be distinguished. The former group refers to the cus-478

tomers contractually incentivised to curtail load during system479

emergencies [26], [27]. This category can be considered semi-480

probabilistic; we have used sampling within a window around481

the contracted value. Finally, in price based demand response482

customers move their consumption from periods of higher to483

periods of lower prices. This demand response is a probabilis-484

tic quantity which can vary from zero up to the estimated485

maximum amount.486

Load ranking at each node i and for each load type s at487

the considered hour tRED is based on the financial implica-488

tions of reducing the load. The ranking order is a product of489

the normalized value of the base expected duration interrup-490

tion index (BEDIi) calculated in the initialization module, the491

normalized marginal offer price σ̂ s
i for voluntary load reduc-492

tion or customer interruption cost VOLLs
i for involuntary load493

reduction, and the required load shedding Pcs
i . This is shown494

in relations below:495

R̂s
i (tRED) =

{
BÊDIi · Pcs

i · σ̂ s
i , voluntary load

BÊDIi · Pcs
i · VOLLs

i , involuntary load
(15)496

BEDIi =
Y∑

y=1

T∑
t=1

s4∑
s=1

ζ s
i · Ds BASE

i

/
Y (16)497

Relation (15) shows that independent ranking lists for vol-498

untary and involuntary load reductions can be built. Ranking499

of all ‘voluntary customers’ is based on submitted marginal500

offer prices, which can be normalised with the average price501

of up-spinning reserve in the energy-reserve markets [17]. On502

the other hand, involuntary load reductions are ranked using503

VOLL. The VOLL is defined either by load types, or customer504

damage functions are used; it is normalised using the average505

VOLL in the entire GB [13]. The base expected interruption506

index BEDIi is found from the number of interruptions ζ s
i507

having duration Ds BASE
i across the entire simulation period.508

The total required amount of load reduction Pcs
i is deter-509

mined from the OPF model and it consists of voluntary510

and involuntary components. When considering industrial511

and large customers under the direct load control, it was512

assumed that available voluntary load reduction is equal to513

the contracted voluntary reduction (CVLs
i ). Then the (part of)514

voluntary load reduction is:515

[
�−]s

i (tRED) =
{

Pcs
i (t), if Pcs

i (t) < CVLs
i (t)

CVLs
i (t), if Pcs

i (t) > CVLs
i (t)

(17)516

Available voluntary load reductions from industrial and517

commercial incentivised customers and residential customers518

contain a probabilistic component that can be determined519

using random sampling. It is calculated using the availability520

factor f s
RED: 521

f s
RED =

{
1 + (rs − 1)win, industrial & commercial
rs, domestic customers

(18) 522

where rs is a random number generated from the uniform 523

distribution between {0,1} and win is the per unit window. 524

In case of incentivised (industrial and commercial) customers, 525

the available amount is based on average probability that the 526

contracted amount is available; for example, if the probabil- 527

ity is 0.9 then win=0.2. Residential customers respond to 528

price signals and the uncertainty window is the entire available 529

range. The available voluntary load reduction is then calculated 530

by multiplying the availability factor (18) and the contracted 531

value (CVLs
i ) in case of incentivised industrial and commercial 532

customers, or estimated maximum load reduction of residential 533

customers. 534

After having obtained available voluntary load reductions 535

for all types of customers s at node i, the total voluntary and 536

involuntary load reductions are calculated using the ranking 537

order and a relation similar to expression (17). The minimum 538

amount of involuntary load reduction is always used to meet 539

the network security constraints. 540

E. Load Recovery Scale Module 541

This module determines the amounts of potential load 542

recoveries in the period following load reduction in time slot 543

tRED. The actual load recovery is determined in the DRLR 544

control module using the hourly nodal marginal prices. 545

Load recovery profiles can be very different for the con- 546

sidered customer types, and moreover, for different customers 547

within a single group; a good example is industry [28]. We 548

applied a general normalized load recovery profile of triangu- 549

lar shape, which is modelled by two straight lines in discrete 550

form. The upward line models load pick-up after the cus- 551

tomer reconnection, whilst the downward line brings it back 552

from the ‘overshot point’ to the pre-disconnection value. The 553

discrete modelling is done using the upward/downward slope 554

coefficients in consecutive time intervals. 555

The amount of load recovery at time period tREC + t, 556

[�+]s
i (tREC + t), is computed by using the following 557

expression: 558

[
�+]s

i (tREC + t) = [
�−]s

i (tRED) · γ s
i (tREC + t) · f s

REC (19) 559

where [�−]s
i (tRED) is amount of load reduction of load type 560

s at node i, γ s
i (tREC + t) is upward or downward slope coeffi- 561

cient and f s
REC is the availability factor of type s load recovery. 562

This factor was introduced because not all customers may 563

come back when supplies are restored or signalled [29]. In 564

the current approach, availability factors fREC are determinis- 565

tic quantities defined by customer types and network nodes. It 566

is also worth noting that the load recovery can be higher than 567

the amount of the initial load reduction [28]; the slope factors 568

can take values greater than unity. 569

Modelling of load recovery profiles over a specified time 570

period introduces additional complexities in the developed 571

SMCS methodology. Each time a load recovery is initiated, the 572

corresponding nodal load needs to be modified over a specified 573
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period in line with the load recovery profile. Besides, a record574

must be kept of all load recoveries at different time steps,575

because they cannot be considered for further load reduction.576

This is reflected in the next DRLR module.577

F. Demand Reduction Load Recovery Control Module578

The DRLR control module is used to control the initiation579

of load reductions and recoveries and to produce their optimal580

schedules within the forecast 24 hourly period. Some of the581

control principles are listed below:582

• Loads whose recovery process is underway cannot be583

considered for load reduction.584

• Loads eligible for load reduction will not be disconnected585

if there is no improvement in the energy-not-served586

following the load reduction.587

• Only those loads, whose reduction including recovery588

generates revenue to the customers, will be actually589

disconnected and reconnected.590

• The best timing of load recovery is determined using591

the (forecast) nodal marginal prices over the recovery592

period.593

Assume the OPF analysis has generated non-zero load cur-594

tailments. Those loads which are not a part of previous load595

recoveries are ranked and sizes of voluntary and involuntary596

reductions are determined. The first load reduction from the597

ranking list is applied and it is checked with the aid of the598

OPF whether the total energy-not-served has reduced. If this599

is the case, the nodal customer profits are computed based on600

the savings acquired due to the load reduction and the pro-601

jected payback cost due to the load recovery. The optimum602

load recovery always takes place when the nodal marginal603

prices are ‘low’ over the recovery window. If the load cus-604

tomer projected profit is negative, the load reduction is not605

activated even if the reliability of the network might improve.606

Calculation of customer savings, costs and profits is briefly607

presented below.608

1) Customer Savings: The customer savings incurred dur-609

ing load reduction are the consequence of reduced load610

payments to the generators. These payments are valued at611

nodal marginal prices μi(t), as shown in equation (11), which612

are in turn dependent on the considered regime. The customer613

savings are therefore calculated from two OPF runs: the first614

without load reduction and the second with load reduction.615

The change in load payments, 	LC, represents the customer616

savings at tRED:617

	LCs
i (tRED) = LCs NO −DR

i (tRED) − LCs DR
i (tRED) (20)618

The total savings are then found for the entire interval when619

the load reduction is in place:620

Savingss
i (tRED) =

tREC∑
t=tRED

	LCs
i (t) (21)621

2) Payback Costs: If customer savings are positive then the622

algorithm proceeds to the load recovery stage to project the623

optimal load recovery schedule. The optimization is based on624

the following principles:625

• Load recovery is always scheduled after the correspond- 626

ing load reduction and it can continue into the ‘following’ 627

simulated day. There are periods within a day when the 628

load recovery does not take place; for example between 629

12am and 5pm on weekdays for residential customers. 630

• Load recovery blocks due to involuntary load reduction 631

are always committed before voluntary load recovery 632

blocks. They are prioritized based on their VOLL; where 633

the VOLL is the same, ranking is based on the size of 634

load reduction, the largest loads being reconnected first. 635

Similar criteria are applied to voluntary load reductions, 636

where marginal offer prices are used instead of VOLL. 637

• Optimal timing of load recovery is determined by find- 638

ing the weighted average of (base) nodal marginal prices 639

over the recovery window. The weights are equal to the 640

slope coefficients γ s
i (tREC + t) of the normalized recov- 641

ery profile. The window with the smallest average nodal 642

marginal price is selected for the load recovery. This 643

approach is the best for load customers, because they 644

will be exposed to the least additional payback cost. 645

• After having determined the optimal starting hour of load 646

recovery, it will only be materialized if there will be no 647

new load curtailments within the recovery window. This 648

is checked by running OPF over consecutive time periods 649

within the recovery window; where curtailments occur, 650

the next best recovery window is examined and so on. 651

The payback costs due to the selected optimal load recovery 652

schedule are again computed from two OPF runs in each time 653

step within the recovery window. Since load recovery increases 654

the amount of load, additional cost ΔLC is calculated as the 655

difference between costs with and without load recovery over 656

the load recovery period tREC to tMAX: 657

	LCs
i (tREC) = LCs DR

i (tREC) − LCs NO −DR
i (tREC) (22) 658

C s
payback i =

tMAX∑
t=tREC

	LCs
i (t) (23) 659

3) Customer Profits: The total customer profit π s
i (tRED) 660

needs to account for savings due to reduced load, costs due to 661

load recovery, as well as rewards for voluntary and involuntary 662

load shedding. This is summarised in the equation below: 663

π s
i (tRED) = Savingss

i − Cs
payback i +

tREC∑
t=tRED

IVLRs
i (t) 664

+
tREC∑

t=tRED

VLRs
i (t) (24) 665

Only load customer with a positive profit π s
i (tRED) evaluated 666

at time tREC proceeds into the DR strategy. The analysis con- 667

tinues until the convergence criterion on expected energy not 668

served is met. After having completed the SMCS procedure, 669

the algorithm goes straight to the outputs module. 670

G. Outputs Module 671

The outputs module generates several results related to the 672

load reductions, nodal prices, generation outputs, reliability 673

and financial indicators. They are briefly discussed below. 674
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1) Optimal Load Reductions and Recoveries: PDFs of vol-675

untary and involuntary load reductions by load types and/or676

nodes are calculated for each hour in the 24-hourly period.677

These can be directly converted into energy not served PDFs.678

The corresponding mean and percentile values show the679

‘likely’ distributions in the next 24-hourly period. PDFs of680

daily totals are also computed. Besides, conditional PDFs of681

the load recovery initiation times given the load reduction at682

certain hour are also produced.683

2) Generation Outputs: PDFs of generator hourly produc-684

tions and costs, as well as total daily costs are computed.685

3) Nodal Marginal Prices: PDFs of nodal marginal prices686

are produced for each hour in the considered 24-hourly period.687

Their expectations can be used as an indicator what the prices688

for rewarding generation and charging load customers will be689

next day.690

4) Reliability Indices: Reliability indices relating to energy691

not served as well as frequency of customer interruptions and692

duration of interruptions are computed. For example, expected693

energy not supplied (EENS), expected frequency of interrup-694

tions (EFI) and expected duration of interruptions (EDI) are695

calculated as:696

EENS =
Y∑

y=1

T∑
t=1

N∑
i=1

s4∑
s=1

Pcs
i

/
Y,697

EFI =
Y∑

y=1

T∑
t=1

N∑
i=1

s4∑
s=1

ζ s
i

/
Y698

EDI =
Y∑

y=1

T∑
t=1

N∑
i=1

s4∑
s=1

ζ s
i · Ds

i

/
Y. (25)699

5) Financial Indicators: PDFs of load customer pay-700

ments (LC), voluntary (VLR) and involuntary load reduction701

rewards (IVLR) are computed by hours and for the considered702

day. The latter curves are then used to quantify the financial703

risk of implementing the proposed demand response schedul-704

ing. The concept of value-at-risk (VaR) [30] was applied705

to measure the potentially ‘low’ revenues or ‘excessive’706

payments.707

Assuming network reward (NR) denotes any category of708

revenues, the corresponding cumulative distribution func-709

tion (CDFNR) is used to calculate the network reward NRX710

that exceeds the network reward at the confidence level α,711

NRa, with probability 1 – α. The value at risk is [31]:712

VaRNR
a (NRX) = inf{NRα ∈ R : CDFNRx(NRα) ≥ α} (26)713

Similarly, the CDF of any network cost (NC) can be used714

to determine value-at-risk at confidence level α. In this case,715

network cost NCX that does not exceed the network cost at716

probability 1 – α, NC1−a, is calculated as:717

VaRNC
1−a(NCX)718

= sup{NC1−a ∈ R : CDFNCx(NC1−a) ≤ 1 − α}. (27)719

IV. BULK ELECTRIC POWER SYSTEM720

This section describes some practical aspects of the ampac-721

ity calculation of OHLs, modelling of wind farms, as well as722

the designed case studies.723

TABLE I
CONDUCTOR PROPERTIES MODELED IN IEEE-RTS NETWORK

A. Thermal Ratings of Overhead Lines 724

The IEEE-RTS 96 test system does not provide any OHL 725

data required for the RTTR calculations. A simple ACSR tech- 726

nology was assumed with conductor sizes that provide similar 727

ratings to those in the IEEE-RTS 96 system with AAAC and 728

ACSR conductors. Table I provides the information on the con- 729

ductors used in the analysis. Under normal operation conductor 730

temperature, Tc, is set to 60◦C. A line is considered in emer- 731

gency state when another transmission line connected at the 732

same bus fails. The maximum conductor temperature in emer- 733

gencies is set to 75◦C based on avoidance of the conductor 734

annealing [32]. 735

B. Integration of Wind Farms 736

The power output of a wind turbine generator (WTG) is 737

driven by the wind speed and the corresponding relationship is 738

nonlinear. It can be described using the operational parameters 739

of the WTG, such as cut-in, rated and cut out wind speeds. 740

The hourly power output is obtained from the simulated hourly 741

wind speed using the relations [33]: 742

P(Vm) 743

=

⎧
⎪⎪⎨
⎪⎪⎩

0, 0 ≤ Vm < Vci(
A + B × Vm + C × V2

m

) × Pr, Vci ≤ Vm < Vr

Pr, Vr ≤ Vmt < Vco

0, Vm ≥ Vco

⎫
⎪⎪⎬
⎪⎪⎭

744

(28) 745

where Pr, Vci, Vr, and Vco are, respectively, rated power out- 746

put, cut-in wind speed, rated wind speed and cut-out wind 747

speed of the WTG, whilst Vm is simulated wind speed at 748

hour t. The power output constants A, B and C are determined 749

by Vci, Vr, and Vco, as shown in [33]. All WTG units used 750

in this study are assumed to have cut-in, rated, and cut-out 751

speeds of 14.4, 36, and 80km/h, respectively. The failure rates 752

and average repair times are assumed to be two failures/year 753

and 44 hours. 754

C. Case Study Description 755

OHL thermal ratings are modelled as STR or RTTR, as 756

shown in Table II below. Three seasons (winter, summer and 757

fall),denoted as λs = 1, 2, 3, are studied. The first day of 758

the 50th peak week of the year is used for winter (hours: 759

8425-8449); the 2nd day of the 22nd week of the year is 760

used for summer (hours: 3721-3744) and the 2nd day of the 761

32nd week is used for fall (hours: 5401-5424). Availability 762

factor f s
RED is a random number, whilst availability factor 763

for load recovery f s
REC varies in the specified range. Load 764
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TABLE II
MODELING SCENARIOS OF DR METHODOLOGY

recovery is based on either hourly emergency energy prices765

(i.e., ϑREC = 1) or load profiles (i.e., ϑREC = 0). The presence766

of wind generators is denoted by wg=1.767

Eight scenarios are described in Table II. Scenario S1 is the768

base case, where the system is evaluated without DR schedul-769

ing and with standard thermal ratings for OHLs. Scenario770

S2 models load recovery by using the hourly load curve at771

each load point (ϑREC = 0). Scenario S3 models all seasons772

and load recovery on the basis of expected marginal prices at773

each load point (ϑREC = 1). Scenario S4 models time-varying774

load recovery profiles. Sensitivity studies are done here in775

order to assess the impact of different recovery sizes and pro-776

files on DR performance. Factor f s
REC is set from 0 to 1.2pu777

increasing in 0.2pu increments; the 1.2pu is taken as a high-778

risk scenario. Scenario S5 incorporates the RTTR of OHLs779

without DR operation, while Scenario S6 includes the DR780

scheduling. Finally, Scenario S7 incorporates wind farms with-781

out DR, while in Scenario S8 the benefits of demand response782

are evaluated incorporating wind generation (wg=1).783

The original IEEE-RTS 96 was modified: all scenarios784

assume an increase in load by 1.2pu compared to the origi-785

nal load, as well as increase of 0.55pu and 0.6pu transmission786

capacity for the 138kV and 230kV levels, respectively, and787

1.2pu in generation capacity. Next, the WTGs are connected788

at seven sites and it was assumed that they operate at power789

factor mode with power factor equal 35% [34]. Wind farms790

are designed to deliver 20% of the peak load [35], equiva-791

lent to 684MW on the studied power network. Geographically,792

70% of the wind farms’ maximum capacity is installed in793

the northern part of the network at buses 15, 17, 19, 20, 22,794

while in the southern part of the network, the remaining 30%795

of the wind capacity is installed to at buses 1, 2, 7, 8. The796

total wind farm capacity is 2394 MW obtained from a total797

number of 240 WTG, each representing a nominal capac-798

ity of 10MW. There is significant transmission utilization in799

this modified system as the bulk of the generating capacity is800

located mainly in the northern areas and considerable power801

is transferred from the north to the south aiming to repre-802

sent the existing topology of the U.K. network. The analysis803

will study potential low wind output conditions in combination804

with unexpected network components failures.805

V. CASE STUDY ANALYSIS806

The IEEE-RTS 96 is composed of 38 lines circuits, 32 gen-807

erating units and 17 load delivery points [36].808

It is studied by using the algorithms developed in Matlab809

that make use of a modified version of Matpower and MIPS810

Fig. 3. Probability to respond to a DR signal for different customer types
based on the voluntary load reduction amount at 17h00.

solver for the power flow calculations [37]. Essential study 811

results on the eight scenarios related to the availability for 812

load reduction, impact of nodal marginal prices, load recov- 813

ery profile – availability, and impact of RTTR, DR and wind 814

generation, are presented below. 815

A. Customer Availability for Load Reductions 816

In this section, the impact of the availability of customers 817

responding to a DR call is examined. Uncertainty in load 818

availability for each customer type is given by equation (18). 819

In particular, domestic customers’ load reduction takes values 820

from the entire possible range, while for industrial and com- 821

mercial loads it is within the assumed window, win=0.8-1pu. 822

Scenario 3 (S3) is used to evaluate the impact of customers 823

responding to a DR on the EENS, mean and VaR values of 824

voluntary (VLR) and involuntary load reductions (IVLR) – 825

eqs. (12) and (13). For VLRs, Fig. 3 (generated over the entire 826

MCS period) shows that the probability for residential loads 827

to give ‘small’ response (up to 25 MWh) is much higher than 828

to produce ‘large’ response (up to 50MWh). 829

However, industrial, commercial and large users are more 830

likely to give ‘larger’ responses as they have bigger contracted 831

amounts compared to residential users, and the uncertainty 832

in response (if any) is much lower. For low load reductions, 833

industrial loads have higher probability to respond than com- 834

mercial and large users, while large users have the highest 835

probability for larger amounts of load reductions; they are 836

followed by commercial and industrial users. 837

The PDFs for voluntary (VL) and involuntary (IVL) load 838

reductions for different hours in a day are illustrated in Fig. 4 839

and compared with the PDF of IVL without DR (IVLNO DR). 840

The results show that the probability of having IVL is reduced 841

when doing DR (IVLDR) with higher amounts (right side of 842

x-axis), while the probability is much higher for low amounts 843

of IVL. This clearly shows the effectiveness of voluntary DR 844

on the EENS. In particular, the mean value of IVLDR at 845

17h00 is around 60% less than the mean value of IVLNO DR. 846

A similar conclusion applies to all hours; for example, the 847

mean of IVLDR at 21h00 and 22h00 is, respectively, 61% 848

and 60% lower when applying the voluntary DR. Applying 849
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Fig. 4. Probability of voluntary and involuntary load reductions under DR
for different hours in a day.

TABLE III
VAR VALUES OF CUSTOMERS COSTS AND REWARDS (K£)

voluntary load reduction (VL) helps eliminate the need for850

involuntary one (IVLNO DR), particularly when larger VL851

amounts are used. This is further highlighted when convert-852

ing VL and IVL into the EENS index (see Table IV in853

Section V-B).854

Table III shows the mean (VaR50%) and the 90% confidence855

VaR (VaR90%) for the costs for demand (LC), for VLR and856

IVLR revenues for the most critical load points (B6, B8 and857

B14) under scenarios S1 and S3. Both the VaRLC
50% and VaRLC

90%858

are much lower under S3 for all load points, since under DR,859

demand is recovered under cheaper nodal marginal prices.860

In addition, VaRVLR
90% is much larger than VaRVLR

50% since861

marginal nodal prices are significantly higher under emergency862

conditions. Furthermore, the VaRIVLR
50% is much lower under863

S3 than under S1, where it decreases by 60% for B6, 44%864

for B8 and 47% for B14. This also shows that voluntary DR865

significantly decreases the need for IVL (an average VOLL866

value was assumed for all customer types).867

B. Impact of Nodal Prices on Reliability Analysis868

Most DR studies would recover reduced load during load869

troughs and/or system normal if only network adequacy were870

looked at.871

However, we have used the approach to investigate impact872

of hourly nodal prices on load recovery and customers’ well-873

being. Fig. 5 shows an example of the nodal marginal price874

and the demand variation in time for the most frequently875

interrupted bus in the network (B6) under both intact and876

emergency conditions.877

When no failures occur, load can be recovered almost at878

any time since intact prices do not change significantly with879

Fig. 5. Hourly marginal prices and demand curve under emergency for Bus 6.

Fig. 6. Emergency marginal price for different confidence levels.

respect to load. However, nodal prices under emergency condi- 880

tions may vary considerably. For instance, a significant shape 881

difference between intact and emergency nodal prices is shown 882

at 15h00. Our analysis has proven that the magnitude of the 883

emergency nodal price can be almost 5 times higher than the 884

intact one. Thus, scheduling of ‘optimal’ load recoveries based 885

on marginal nodal prices has proven effective in providing 886

system security and customer benefits. Furthermore, compar- 887

ative studies were conducted to quantify the improvements 888

from implementing load recovery under nodal marginal prices 889

rather than under load profile only. 890

The hourly nodal price at bus B6 for different confidence 891

levels is given in Fig. 6. In the event of an emergency at B6, 892

TSOs may be provided with the illustrated confidence level 893

dependent prices to decide which load recovery hour would 894

be the most appropriate to restore load. For example, the TSO 895

can know that if a violation occurs at 11h00, the load can be 896

recovered between 13h00 and 16h00, since there is an 80% 897

probability that the price will be between zero and 90£/MWh 898

and a 90% probability that the price will be between zero and 899

420£/MWh. In this paper, a conservative confidence level of 900

α =95% was selected. This gives flexibility to TSOs to apply 901

operational decisions so they can guarantee making a profit 902

for the demand customers for almost all nodal prices in the 903

feasible range, since the load recovery will be at either the 904

emergency nodal prices or (lower) intact prices. 905

The results presented in Table IV show that DR strategy 906

under scenario S3 improves the reliability of the network in 907

terms of EENS by 66% in winter (λs = 1) compared with S1, 908

allowing for almost a 5% decrease in EENS compared to S2. 909

The S3 strategy also substantially improves reliability indices 910
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TABLE IV
RELIABILITY INDICES FOR SCENARIOS 1, 2 AND 3

Fig. 7. Distribution of demand costs for load at Bus 6.

TABLE V
RELIABILITY INDICES FOR SCENARIO 4

for summer (λs = 2) and fall (λs = 3), which demonstrates911

the effectiveness of the algorithm throughout the year.912

In order to show the necessity to quantify the economic risk913

of DR operation, results for the base case S1 are compared914

to scenario S3 to investigate the VaR of the load cost (LC).915

Fig. 7 illustrates frequency of occurrence of various load costs916

seen at the most critical bus, B6, with and without DR. In917

particular, it is shown that there is a high variation in nodal918

costs at 11h00, resulting from outages of lines 12 and 13 that919

connect B6 with cheaper generators. Consequently, VaRLC
90%920

is 55.64k£ under the base case, whereas it is only 52.81k£921

under S3, which shows that DR can help reduce nodal costs922

by 5% (2.83k£). Clearly, both reliability and financial indices923

can be improved using nodal energy prices (S3) rather than924

the load profile only (S2).925

C. Impact of Customer Availability to Recover the Load926

The load recovery of a DR customer can be of different size927

compared to the corresponding load reduction. As a result, this928

can affect both the network performance and customer profits,929

as exemplified by scenario S4.930

Assuming load recovery size is specified by availability fac-931

tor f s
REC, Table V shows an increase of around 5% in EENS932

for f s
REC =1.2pu compared to f s

REC =1pu. When load recovery933

sizes are lower than 100%, network reliability is improved934

compared to fREC=1pu. This is due to the higher probabil-935

ity of implementing voluntary DR since less load recoveries936

TABLE VI
DIFFERENCE IN MEAN AND VAR FOR LC (£) AND

PROFITS (£/KWH ) S4 VS. S3

TABLE VII
IEEE RTS NETWORK EVALUATION WITH RTTR & DR

are required. There is also a substantial decrease in reliability 937

indices EDI and EFI. 938

Differences in the mean (VaR50%) and VaR90% values for 939

demand costs (LC) and customer profits (π) between scenar- 940

ios S4 and S3 are shown in Table VI for different load recovery 941

sizes f s
REC. This table gives the cost and revenue differences 942

following various load payback sizes compared to applying 943

DR with a load payback of 100% for a winter day-ahead oper- 944

ation. For instance, when S4 is modeled with fREC =1.2pu, 945

the VaRLC
50% is 912£ higher than under scenario S3. This is 946

because as load recovery gets larger, the operating conditions 947

become more difficult and the marginal prices increase, imply- 948

ing higher costs for demand. For low load recovery sizes, 949

however, very high profits can be incurred (over 2,100£) as the 950

demand cost VaR shows the largest decrease, thus suggesting 951

a much lower probability of high LC. 952

D. Impact of RTTR and DR on Network Reliability and 953

Customer Costs & Revenues 954

In scenario S5 only RTTR is used, whilst scenario S6 makes 955

use of DR in conjunction with RTTR. Table VII shows that 956

the more reliable and cheapest scenario is S6. 957

The use of RTTR and DR under S6 results in, respectively, 958

61% and 6.6% reduction in EENS compared with DR alone 959

(S3) and with S5. Indices EFI and EDI are also improved. 960

When RTTR is considered alone (S5), the greater utilization 961

of the three most critical lines improves network performance 962

by 18% compared to S1. Besides, the load cost index for S3 963

VaRLC
50% is slightly higher than VaRLC

50% for S5. This is because 964

RTTR allows greater generation from cheaper units. 965

In terms of VLR and IVLR, both average values are lower 966

under S6. 967
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TABLE VIII
IEEE RTS NETWORK EVALUATION OF WIND FARMS & DR

We can note that DR provides the greatest benefits since all968

indices are drastically improved with DR, whilst benefits are969

only slightly higher under RTTR.970

E. Impact of Wind Farms and DR on Network Reliability971

and Customer Costs & Revenues972

In scenario S7, only wind farms are used, whilst scenario973

S8 uses DR in conjunction with wind farms. Table VIII shows974

that the more reliable and less expensive scenario is S8; the975

wind farms contribute to improving network reliability by 4%976

in EENS compared with S3 alone. Besides, a considerable977

reduction in EDI is achieved, whilst frequency of interrup-978

tions, EFI, remains the same as under S3. If compared with S1,979

wind farms alone (S7) improve network performance by 14%980

due to wind farms’ network reinforcements. Also, VaRLC
50%981

for S3 is slightly higher than VaRLC
50% for S7 as wind farms982

are considered to have near-zero marginal costs. When wind983

farms are used in conjunction with DR (S8), this has the best984

effect on network performance and customer costs & revenues.985

This is because DR implementation helps when wind output986

is low and network components fail. Next, when wind output987

is high, spillage can occur as there is not enough capacity on988

the network to transfer the total amount of wind, thus leading989

to congestion when using STR for OHL operation. This can990

result in a small reduction of EENS.991

VI. CONCLUSION992

A probabilistic methodology for optimal scheduling of load993

reductions/recoveries in a day-ahead planning of transmission994

networks is proposed in the paper. The methodology recog-995

nizes several types of uncertainties, and finds optimal demand996

response scheduling using the network security and customer997

economics criteria. Impacts of wind generation and real-time998

thermal ratings of overhead lines are also studied.999

The developed case studies have demonstrated that the value1000

of optimal demand scheduling combined with real-time ther-1001

mal ratings can be significant when using nodal marginal1002

prices compared to using the hourly loads only. In particular,1003

both reliability and financial metrics can be improved by a fac-1004

tor of around 66% for expected energy not served and around1005

5% for value at risk for costs of demand. Improvements in1006

other reliability indicators and expected generation costs were1007

also observed. Nonetheless, selection of the reliability indica-1008

tor to base the operational decisions on demand scheduling can1009

be of highest importance; having multiple indices can there- 1010

fore help system operators to make more informed decisions 1011

on ‘best’ demand response practice. As a final comment, the 1012

consistent use of a probabilistic approach to model various 1013

network uncertainties and variability of nodal marginal prices 1014

provides a superior analysis compared to traditional analytical 1015

techniques. 1016

The future work considers inclusion of optimal energy stor- 1017

age scheduling to increase system reliability. Combined impact 1018

of energy storage, demand response and wind generation will 1019

be studied in greater detail. 1020
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Real-Time Thermal Ratings of Overhead
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Abstract—This paper proposes a probabilistic framework for1

optimal demand response scheduling in the day-ahead plan-2

ning of transmission networks. Optimal load reduction plans are3

determined from network security requirements, physical char-4

acteristics of various customer types, and by recognizing two5

types of reductions, voluntary and involuntary. Ranking of both6

load reduction categories is based on their values and expected7

outage durations, while sizing takes into account the inherent8

probabilistic components. The optimal schedule of load recovery9

is then found by optimizing the customers’ position in the joint10

energy and reserve market, while considering several operational11

and demand response constraints. The developed methodology is12

incorporated in the sequential Monte Carlo simulation procedure13

and tested on several IEEE networks. Here, the overhead lines14

are modeled with the aid of either static-seasonal or real-time15

thermal ratings. Wind generating units are also connected to the16

network in order to model wind uncertainty. The results show17

that the proposed demand response scheduling improves both18

reliability and economic indices, particularly when emergency19

energy prices drive the load recovery.20

Index Terms—Optimal demand response, reliability, sequential21

Monte-Carlo, real time thermal rating, risk.22

NOMENCLATURE23

The symbols used throughout this paper are defined below.24

Indices25

j Index of generating units running from 1 to J26

i Index of load points running from 1 to N27

s Index of load types running from 1 to s428

t Index of hours running from 1 to T29

y Index of simulation days running from 1 to Y.30

Parameters31

VOLLs
i Value of lost load at load point i and load32

type s33
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BÊDIi Normalized value of expected duration inter- 34

ruption index in the base case 35

Ds BASE
i Duration of interruption of load type s at load 36

point i under the base case 37

Pmax
g Maximum power output of a generation unit 38

Pmin
g Minimum power output of a generation unit 39

Pmax
d Maximum forecast load 40

VLs,max
i Upper limit of the voluntary load reduction for 41

customer type s 42

IVLs,max
i Upper limit of the involuntary load reduction 43

for customer type s 44

B System matrix including potential 45

contingencies 46

win Per unit window for load reduction sampling 47

rs Random number between {0,1} 48

tMAX Maximum hour limit of load recovery 49

f s
REC Customer’s availability to recover the load 50

Vci Cut in wind speed 51

Vr Rated wind speed 52

Vco Cut out wind speed 53

Pr Rated power output of wind turbine 54

Tc(t) Conductor temperature at hour t 55

R(t) AC conductor resistance at operating temper- 56

ature Tc at hour t 57

Pc(t) Convection heat loss at hour t 58

Pr(t) Radiated heat loss at hour t 59

Ps(t) Solar heat gain at hour t 60

I(t) Conductor current at hour t 61

Vm(t) Wind speed at hour t 62

Kangle(t) Wind direction at hour t 63

Ta(t) Ambient temperature at hour t. 64

Variables 65

Pgj(t) Active Power output of generation unit j at 66

hour t 67

θ Phase angles of nodal voltages 68

μi(t) Nodal marginal price of load point i at hour t 69

γ s
i (t) Slope coefficient for load recovery at node i, 70

type s, hour t 71

Pmax
f Overhead line real-time thermal rating 72

Pd i(t) Power supplied to load point i at hour t 73

σ s
i (t) Marginal offer value for voluntary load reduc- 74

tion, load type s at load point i at hour t 75
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VLs
i (t) Amount of voluntary load reduction of load76

type s at load point i at hour t77

IVLs
i (t) Amount of involuntary load reduction of load78

type s at load point i at hour t79

Ds
i (t) Duration of interruption of load type s at load80

point i at hour t81

Pcs
i (t) Total load shedding of load type s at load82

point i at hour t83

f s
RED(t) Load type s availability to respond to a demand84

response call at hour t85

CVLs
i (t) Contracted voluntary load reduction of load86

type s at load point i at hour t.87

Functions88

GRj(·) Revenue of generator j89

LCi(·) Cost of delivered demand at node i90

VLRi(·) Revenue for voluntary load type s reduction at91

node i92

IVLRi(·) Revenue for involuntary load type s reduction93

at node i94

R̂s
i (·) Ranking order for load type s at node i95

[�−]s
i (·) Size of load reduction for load point i type s96

[�+]s
i (·) Size of load recovery for load point i type s97

Savingss
i (·) Customer savings for load point i type s in the98

event that demand response materializes99

Cs
payback i(·) Payback cost due to load recovery at node i100

type s101

π s
i (·) Profit of load customer at load point i type s102

VaRNR
a (·) Value at risk for network rewards at confidence103

level α104

VaRNC
1−α Value at risk for network costs at confidence105

level 1-α106

P(·) Wind turbine power output for wind speed Vm.107

I. INTRODUCTION108

THE EVER increasing integration of intermittent renew-109

able energy into the electricity network, combined with110

a constantly growing demand, is likely to cause much greater111

stress on existing networks increasing the probability of112

severe contingencies [1]. To avoid this, several preventive and113

corrective actions, including demand response (DR), spin-114

ning reserve scheduling, application of real-time thermal rat-115

ings (RTTR) and energy storage scheduling, can be deployed116

to relieve stress in particular areas of the network.117

DR strategies currently under investigation consider dis-118

tribution level [2], [3], but their potential in transmission119

networks is often overlooked. Research related to the impact120

of DR on network reliability is very limited [4]–[6]. The121

model proposed in [5] evaluates short term operational ben-122

efits in terms of generation and interrupted energy costs123

from interruptible loads by using the contingency enumeration124

technique; however, it does not fully address the customer per-125

spective because there is no modelling of load recovery and126

associated costs, characteristics of different load and DR types127

and probabilistic nature of available interruptible demand.128

Even if a probabilistic approach is used to assess the DR129

contribution [6], only single contingencies are analysed.130

Physical characteristics of different types of load customers 131

need to be adequately represented in the studies. Domestic 132

and small commercial loads are analysed in [7]–[9] but fail to 133

assess how critical each customer type is for a network’s load 134

point in terms of interruptions. Next, examining different sizes 135

and shapes of both load reduction and recovery is essential for 136

a complete and accurate network assessment; however, load 137

recovery is usually ignored in the studies [4]. Load reduction 138

and recovery can be based on electricity market prices in order 139

to eliminate price spikes during peak hours [4], [10]. However, 140

these studies often ignore operational and security constraints 141

of the transmission networks and are run for intact networks 142

only. Enumeration techniques, as opposed to Monte Carlo sim- 143

ulation, are often used to calculate the DR contribution, and 144

thus fail to include the whole set of contingencies and a num- 145

ber of uncertainties a network might experience [11]. Finally, 146

instead of applying DR every time a contingency occurs, DR 147

should only be used when the reliability is improved and when 148

savings are higher than the expected payback costs. 149

This paper proposes a probabilistic approach for optimal 150

demand response scheduling in the day-ahead planning of 151

transmission networks. Uncertainties related to forecast load, 152

network component availability, available amount of demand 153

response and wind speeds are incorporated into the sequential 154

Monte Carlo simulation framework. Synchronous and wind 155

generating units, as well as four types of load customers (large, 156

industrial, commercial and residential) are modelled. Optimal 157

nodal load reductions are calculated using the optimum power 158

flow model, and are then disaggregated into voluntary and 159

involuntary components. Recognizing that directly-controlled 160

loads can certainly be shed and indirectly-controlled contain 161

a probabilistic component, optimal amounts of voluntary and 162

involuntary nodal reductions are determined. Different load 163

recovery profiles for customer types are considered next within 164

‘payback periods’ and they are initiated when the load cus- 165

tomer’s revenue is highest. Here, delivered load is priced at 166

nodal marginal price, voluntary load reduction at marginal 167

offer price and involuntary load reduction at damage cost. The 168

whole analysis is implemented from the load customer’s per- 169

spective to maximise their revenues, whilst the load recoveries 170

are controlled by the transmission system operator (TSO); they 171

may represent either physical paybacks from specific appli- 172

ances or controlled paybacks whereby the TSO schedules its 173

customer loads so as to have the desired shape. The benefits 174

of optimal DR strategies are evaluated in combination with 175

real-time thermal ratings of overhead lines to reveal the true 176

potential of the DR. The outputs of the model also include 177

financial risk quantifiers that the revenues are below, or costs 178

are above a threshold. 179

II. OVERVIEW OF THE METHODOLOGY 180

Optimal DR scheduling is determined using the sequen- 181

tial Monte Carlo probabilistic approach. The main features 182

of the proposed DR modeling framework are: a) Load 183

reduction scheduling driven by network security; b) Optimal 184

scheduling of load recovery using economic criteria; 185

c) Modelling of real-time thermal ratings of overhead lines; 186
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and d) Modelling of renewable energy sources, such as wind187

generation.188

The overall methodology is realized within two indepen-189

dent sequential Monte Carlo simulation (SMCS) procedures.190

The first SMCS is the initialization module, which is used to191

calculate several components required by the second SMCS192

that determines optimal day-ahead operation of the power sys-193

tem. The main building blocks of the first SMCS procedure194

are: a) Calculation of reliability indices needed for ranking195

of load types for demand reduction; b) Calculation of real-196

time thermal ratings of overhead lines; and c) Determination197

of nodal marginal prices and several economic indicators used198

for finding the optimal schedule of load recoveries.199

The second SMCS consists of four modules: a) Demand200

reduction scale module; b) Load recovery scale module;201

c) Demand reduction and load recovery (DRLR) control mod-202

ule, and d) The outputs module. The first module contains203

ranking of different load types for demand reduction, calcu-204

lation of required amounts of voluntary and involuntary DR,205

as well as the customer revenues. The load recovery scale206

module considers load recovery profiles and sizes, and deter-207

mines a matrix with the most appropriate schedule hours for208

load recovery. The DRLR-control module contains logics for209

initiation of load reductions and load recoveries, whilst the210

outputs module includes optimal load reduction and recovery211

schedules, as well as reliability and financial indicators.212

III. METHODOLOGY213

The proposed demand scheduling methodology is aimed214

at determining the optimal demand response plan for the215

next day, when the committed generation units, status of net-216

work switching devices and forecast loads are well defined.217

However, several uncertainties in the day-ahead operation are218

still present, so that the overall problem is formulated as219

a probabilistic model and solved with the SMCS. The pro-220

posed DR methodology is applied for post contingency states;221

however it is general enough to also consider pre-contingency222

events. The main building blocks are briefly presented below.223

A. Sequential Monte Carlo Simulation224

Sequential Monte Carlo simulation performs analysis of225

time intervals in chronological order whilst taking into account226

various uncertainties [11]. It can model the chronological227

phenomena, such as load reduction and recovery, real-time228

thermal ratings and wind generations. Following uncertainties229

were assumed for a day-ahead operation of the transmission230

network:231

• Load varies in a window around the forecast hourly loads.232

The uncertainty window is defined by the MAPE of the233

short-term forecast by hourly intervals obtained using the234

neural network approach [12].235

• Availability of all generation and network units was mod-236

elled with the aid of two-state Markovian model with237

exponentially distributed up and down times [11].238

• Wind speed hourly predictions and a window around the239

predicted values are applied within the random sampling.240

Fig. 1. Computations within the initialization module.

An alternative approach is to use wind speed probability 241

distribution functions (PDFs) by hourly periods. 242

• Amount of voluntary load reduction that varies by cus- 243

tomer and DR type. For example, DR from residential 244

customers responding to price signals is highly uncertain, 245

whilst DR from incentive-based contracted commercial 246

customers has much less uncertainty – see Section III-D. 247

One SMCS period is equal to 24 hours and simulations are 248

repeated until convergence is obtained. Any failure that goes 249

over the planning horizon (i.e., 24:00) was considered in the 250

‘next day’ simulation. The same simulation principles were 251

applied in both SMCS procedures. 252

B. Initialization Module 253

The initialization module is used to calculate several quan- 254

tities required by the main simulation loop. Following the 255

data input, network model with real-time thermal ratings and 256

load customer characteristics is built and fed into the first 257

SMCS procedure, as shown in Fig. 1. The outputs from this 258

stage are some pricing and reliability indicators. 259

1) Input Data: The input data include network, reliabil- 260

ity, customer, economic data, overhead line (OHL) data and 261

weather data. Beside the standard network data, forecast in- 262

service generation units with technical characteristics and 263

chronological hourly load point demands are input. Reliability 264

data are failure rates and repair times of all components, whilst 265

customer data encompass customer and DR types, contracted 266

voluntary load reductions, normalized load recovery profiles 267

and customer availability to respond to a DR call. Essential 268

economic data are generation costs, values of lost load (VOLL) 269

and marginal offer prices for voluntary load reduction. Average 270

VOLL data by customer types were obtained from the latest 271

U.K. national study [13]. 272

Weather data include ambient temperatures, wind speeds 273

and directions required for the calculation of RTTRs of OHLs, 274

as well as either forecast hourly wind speeds or hourly wind 275

speed PDFs used to calculate wind generations. Several other 276
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OHL construction and heat dissipation/gain data are further277

required to calculate RTTRs.278

The input data are fed into the thermal ratings and network279

modelling modules, whose outputs are then used by the SMCS280

procedures.281

2) Thermal Ratings of Overhead Lines: Two different OHL282

rating models are used in the developed simulation proce-283

dures, the ‘seasonal’ thermal rating (STR) and the RTTR. The284

STR is defined by seasons and for different design conductor285

temperatures [14]. The lowest ratings are for summer con-286

ditions and design temperature of 50◦C [15]; they are of287

conservative nature.288

To get the RTTRs, it is possible to do a thermal analysis on289

an hourly basis. Assuming a steady-state thermal equilibrium290

is achieved in each hourly period, static thermal balance is291

achieved by equating heat dissipated by convection and radi-292

ation (or ‘cooling’) with solar and Joule heat generated. In293

the applied IEEE model [15], the convection heat loss varies294

with the change in wind speed (Vm), wind direction factor295

(Kangle) and the difference between the conductor (Tc) and296

ambient air temperature (Ta). The radiation heat loss is the297

energy of the electromagnetic waves emitted to the ambient298

space; it is a function of the temperature difference between299

the conductor and air, and the emissivity of the conductor. The300

solar radiation is a function of several parameters including301

solar azimuth, total radiated heat flux rate, etc. Finally, Joule302

(I2R) losses are calculated in the standard way using AC resis-303

tance dependent on conductor temperature, so that the RTTR304

of OHLs is determined as:305

I =
√(

Pc
(
Tc, Ta, Kangle, Vm

) + Pr(Ta, Tc) − Ps
)/

R(Tc) (1)306

where Pc(·) is the convection heat loss, Pr(·) is the radiated307

heat loss, Ps is solar heat gain and R(Tc) is the conductor308

resistance at operating temperature Tc. The conductor temper-309

ature needs to be set to one of the standard design values310

(i.e., 50◦C, or 65◦C, or 75◦C) to get the OHL ampacity; an311

increased value can be used during system emergencies.312

The average values of 5-year hourly weather data were313

obtained from the BADC MIDAS metheorogical stations for314

Aonach, U.K. [16]. The rest of the required data were obtained315

from the U.K. consultants.316

3) Analysis Within the SMCS Procedure: The initialization317

module is used for two purposes; the first is to determine318

the base expected duration interruption (BEDI) index of loads319

needed for ranking of loads within the demand reduction320

scale module. The second is to compute the probabilistic321

energy nodal prices used within the DRLR-control module322

to find the optimal load recovery strategy. The probabilistic323

nodal prices at different confidence intervals α are further324

analysed to make decision about the most appropriate load325

recovery times.326

Each hour within the simulation period is characterized by327

available generating units, transformers and circuits, as well328

as nodal loads and operational constraints. An optimum power329

flow (OPF) model is solved to find the levels of voluntary330

and involuntary load reductions and revenues to generator331

and demand customers. The formulation of the OPF model is332

a modification of the market-clearing model proposed in [17];333

the main difference is that there is no preventive control 334

and corrective scheduling is applied to the already sampled 335

contingent case. Mathematical formulation of the model is: 336

Min

⎧
⎨
⎩

∑
j∈J

Cg j · Pg j +
∑
i∈I

∑
s∈S

VOLLs
i · IVLs

i 337

+
∑
i∈I

∑
s∈S

σ s
i · VLs

i

⎫
⎬
⎭ (2) 338

subject to: Pg − Pd − Bθ = 0 (μ) (3) 339

Pf = Hθ (4) 340

− Pmax
f ≤ Pf ≤ Pmax

f (5) 341

− Pmin
g ≤ Pg ≤ Pmax

g (6) 342

0 ≤ VLs
i ≤ VLs,max

i (7) 343

0 ≤ IVLs
i ≤ IVLs,max

i − VLs,max
i (8) 344

Pmax
d −

∑
s

IVLs −
∑

s

VLs ≤ Pd ≤ Pmax
d (9) 345

The objective function to be minimized (2) is the sum of 346

the offered cost functions for generating power plus the sum 347

of the cost of involuntary load reduction for all load nodes 348

and types plus the sum of offered costs for voluntary load 349

reduction for all load nodes and types. The involuntary load 350

reduction is valued at VOLL that is dependent on the general 351

load type; dependency on the connection node is taken into 352

account because there may exist special loads whose curtail- 353

ment must be avoided. Voluntary load reduction is priced at 354

the rates offered by consumers to provide this service. They 355

are closely linked to the offers made by generators for the ‘up- 356

spinning reserve’ in the joint energy and reserve market [17]. 357

It is again envisaged that the rates can vary with customer 358

type and connection location. Finally, note that time index t 359

is avoided for simplicity. 360

Using a dc load flow model, constraints (3) represent the 361

nodal power balance equations for the considered state, which 362

includes potential contingencies within the system matrix B. 363

A Lagrange multiplier (or dual variable) μi is associated with 364

each of the equations. Constraints (4) express the branch flows 365

in terms of the nodal phase angles, while constraints (5) 366

enforce the corresponding branch flow capacity limits. Here, 367

modelling of OHL ratings can be done using the RTTR model, 368

in which case limit Pf
max is a function of the time step t. 369

Constraints (6) set the generation limits for the consid- 370

ered state, while considering available units and requirements 371

for the down- and up-spinning reserve in the analysed time 372

step [17]. Reserve requirements depend on the system load and 373

contingency state [17]. For the non-controllable units, such as 374

wind turbines, upper and lower limits are the same. 375

Constraints (7), (8) and (9) set the limits of the demand; they 376

are expressed as inequality constraints on the voluntary and 377

involuntary load reductions and the total delivered load. The 378

upper limit of the voluntary load reduction VLs,max
i can contain 379

a probabilistic component for some DR types and is dependent 380

on the considered time step. As a consequence, the upper limit 381

of the involuntary load reduction is the difference between of 382

the absolute limit IVLs,max
i and the voluntary load reduction 383
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limit VLs,max
i . Finally, the delivered demand Pd is equal to384

the forecast load in the considered time interval Pmax
d if there385

is no load reduction. The lower limit is specified in terms of386

the forecast load, voluntary and involuntary load reductions,387

which are a part of the optimal solution.388

Solving the optimization model (2) to (9) gives the optimal389

values of the unknown variables, as well as dual variables390

associated with the constraints of this problem [18]. The391

significance of the dual variables is discussed below.392

4) Nodal Marginal Costs: The optimal solution of the393

problem (2) to (9) is equal to the optimal solution of the cor-394

responding dual problem whose unknowns are dual variables395

associated with the constraints (3) to (9) [18]. The objective396

function of the dual problem is a sum of products of the dual397

variables and the right-hand sides of the constraints, showing398

that the total optimal cost can be recovered in another way399

using the dual variables as charging rates. The dual variables400

represent the additional cost of changing the right-hand side401

of the constraints by unity; they are therefore called marginal402

costs or prices [19].403

Dual variables μ are the nodal marginal costs of meeting the404

power balance at each system node for the considered oper-405

ating regime. The nodal marginal costs have been extensively406

used for electricity energy and reserve pricing [6], [9], [20].407

The nodal marginal prices vary over the system nodes and408

during the day due to load variation and congestion in the409

system [21]. The greatest variation of marginal prices is410

experienced due to unexpected failures of lines and/or gener-411

ator units [6]. Consequently, these prices should be carefully412

considered for the load recovery scheduling.413

In our approach, we have applied a concept similar to414

the real time pricing scheme proposed in [22]. The following415

quantities are calculated in each time step t:416

• The revenue of generator j:417

GRj(t) = Pgj(t) · μj(t) (10)418

• The cost of demand i delivery:419

LCi(t) = Pd i(t) · μi(t) (11)420

• Revenue for voluntary load i reduction:421

VLRi(t) =
s4∑

s=1

(
σ s

i (t) · VLs
i (t)

)
(12)422

• Revenue for involuntary load i reduction:423

IVLRi(t) =
s4∑

s=1

(
VOLLs

i · IVLs
i (t)

)
(13)424

We have defined VOLL by load types in the initialization mod-425

ule, as presented in equation (13). However, in the second426

SMCS there is an option to use a look-up table where VOLLs427

are functions of interruption duration [23]. The interruption428

duration is estimated as:429

Ds
i =

{
mean

(
Ds BASE

i

)
, if Ds

i ≤ mean
(
Ds BASE

i

)
Ds

i , if Ds
i > mean

(
Ds BASE

i

) (14)430

where Ds BASE
i denotes the interruption duration calculated431

in the initialization module. The estimated duration of432

Fig. 2. Optimal demand response computational framework.

interruption is equal to the mean base value unless the inter- 433

ruption already lasts for more than the base value; it then takes 434

the actual duration value. 435

C. Optimal Demand Response Scheduling 436

The computational framework for optimal demand response 437

scheduling is illustrated in Fig. 2. The load reduction and 438

recovery scale modules feed into the DRLR control module. 439

Ranking of different load types and calculation of available 440

sizes for voluntary load reduction is performed within the load 441

reduction scale module. The order of ranking the load points 442

and types is represented by (i, s)r in Fig. 2. Hence, in the load 443

reduction matrix, if load reduction takes places at hour t1 the 444

load reduction of (i, s)r1 customer will be evaluated first, while 445

the (i, s)rk customer will be evaluated at the end. 446

The load recovery scale module computes the most appro- 447

priate schedule hours for load recovery, as well as the potential 448

recovery sizes and profiles. The order of ranking the load 449

points and types is represented by (i, s)rc in Fig. 2. Hence, in 450

the load recovery matrix, if load recovery takes places at hour 451

t1 the load reduction of (i, s)rc1 customer will be evaluated 452

first, while the (i, s)rck customer will be evaluated at the end. 453

Both load reduction and recovery are managed by the DRLR 454

control module in which the OPF is used to determine optimal 455

voluntary and involuntary load reductions, and the developed 456

control scheme gives the optimal load recovery profiles. The 457

outputs module finally gives optimal DR and LR schedules, 458

as well as financial and reliability indicators. 459

D. Load Reduction Scale Module 460

Load reduction scale module is required for each load point 461

and load type when load shedding takes place at the considered 462

hour tRED. The physics of demand response are presented first, 463

which is followed by the ranking and sizing. 464

Four load types, industrial, commercial, large user and 465

residential, have been defined in our approach. Different 466

characteristics have been associated with these four types, 467

such as temporal load variations, total amounts available for 468



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON SMART GRID

voluntary and involuntary load reductions, relative load recov-469

ery profiles and economic data. Two categories of demand470

response have been recognised, namely direct and indirect471

load control [24]. In direct load control, the contracted cus-472

tomers (usually large and industrial) are directly disconnected473

during emergency conditions and they receive revenue for par-474

ticipating in the ‘reserve market’ [25]. The contracted amounts475

are certain and they are of deterministic nature. In indirect476

load control, incentive- and price-based demand responses477

can be distinguished. The former group refers to the cus-478

tomers contractually incentivised to curtail load during system479

emergencies [26], [27]. This category can be considered semi-480

probabilistic; we have used sampling within a window around481

the contracted value. Finally, in price based demand response482

customers move their consumption from periods of higher to483

periods of lower prices. This demand response is a probabilis-484

tic quantity which can vary from zero up to the estimated485

maximum amount.486

Load ranking at each node i and for each load type s at487

the considered hour tRED is based on the financial implica-488

tions of reducing the load. The ranking order is a product of489

the normalized value of the base expected duration interrup-490

tion index (BEDIi) calculated in the initialization module, the491

normalized marginal offer price σ̂ s
i for voluntary load reduc-492

tion or customer interruption cost VOLLs
i for involuntary load493

reduction, and the required load shedding Pcs
i . This is shown494

in relations below:495

R̂s
i (tRED) =

{
BÊDIi · Pcs

i · σ̂ s
i , voluntary load

BÊDIi · Pcs
i · VOLLs

i , involuntary load
(15)496

BEDIi =
Y∑

y=1

T∑
t=1

s4∑
s=1

ζ s
i · Ds BASE

i

/
Y (16)497

Relation (15) shows that independent ranking lists for vol-498

untary and involuntary load reductions can be built. Ranking499

of all ‘voluntary customers’ is based on submitted marginal500

offer prices, which can be normalised with the average price501

of up-spinning reserve in the energy-reserve markets [17]. On502

the other hand, involuntary load reductions are ranked using503

VOLL. The VOLL is defined either by load types, or customer504

damage functions are used; it is normalised using the average505

VOLL in the entire GB [13]. The base expected interruption506

index BEDIi is found from the number of interruptions ζ s
i507

having duration Ds BASE
i across the entire simulation period.508

The total required amount of load reduction Pcs
i is deter-509

mined from the OPF model and it consists of voluntary510

and involuntary components. When considering industrial511

and large customers under the direct load control, it was512

assumed that available voluntary load reduction is equal to513

the contracted voluntary reduction (CVLs
i ). Then the (part of)514

voluntary load reduction is:515

[
�−]s

i (tRED) =
{

Pcs
i (t), if Pcs

i (t) < CVLs
i (t)

CVLs
i (t), if Pcs

i (t) > CVLs
i (t)

(17)516

Available voluntary load reductions from industrial and517

commercial incentivised customers and residential customers518

contain a probabilistic component that can be determined519

using random sampling. It is calculated using the availability520

factor f s
RED: 521

f s
RED =

{
1 + (rs − 1)win, industrial & commercial
rs, domestic customers

(18) 522

where rs is a random number generated from the uniform 523

distribution between {0,1} and win is the per unit window. 524

In case of incentivised (industrial and commercial) customers, 525

the available amount is based on average probability that the 526

contracted amount is available; for example, if the probabil- 527

ity is 0.9 then win=0.2. Residential customers respond to 528

price signals and the uncertainty window is the entire available 529

range. The available voluntary load reduction is then calculated 530

by multiplying the availability factor (18) and the contracted 531

value (CVLs
i ) in case of incentivised industrial and commercial 532

customers, or estimated maximum load reduction of residential 533

customers. 534

After having obtained available voluntary load reductions 535

for all types of customers s at node i, the total voluntary and 536

involuntary load reductions are calculated using the ranking 537

order and a relation similar to expression (17). The minimum 538

amount of involuntary load reduction is always used to meet 539

the network security constraints. 540

E. Load Recovery Scale Module 541

This module determines the amounts of potential load 542

recoveries in the period following load reduction in time slot 543

tRED. The actual load recovery is determined in the DRLR 544

control module using the hourly nodal marginal prices. 545

Load recovery profiles can be very different for the con- 546

sidered customer types, and moreover, for different customers 547

within a single group; a good example is industry [28]. We 548

applied a general normalized load recovery profile of triangu- 549

lar shape, which is modelled by two straight lines in discrete 550

form. The upward line models load pick-up after the cus- 551

tomer reconnection, whilst the downward line brings it back 552

from the ‘overshot point’ to the pre-disconnection value. The 553

discrete modelling is done using the upward/downward slope 554

coefficients in consecutive time intervals. 555

The amount of load recovery at time period tREC + t, 556

[�+]s
i (tREC + t), is computed by using the following 557

expression: 558

[
�+]s

i (tREC + t) = [
�−]s

i (tRED) · γ s
i (tREC + t) · f s

REC (19) 559

where [�−]s
i (tRED) is amount of load reduction of load type 560

s at node i, γ s
i (tREC + t) is upward or downward slope coeffi- 561

cient and f s
REC is the availability factor of type s load recovery. 562

This factor was introduced because not all customers may 563

come back when supplies are restored or signalled [29]. In 564

the current approach, availability factors fREC are determinis- 565

tic quantities defined by customer types and network nodes. It 566

is also worth noting that the load recovery can be higher than 567

the amount of the initial load reduction [28]; the slope factors 568

can take values greater than unity. 569

Modelling of load recovery profiles over a specified time 570

period introduces additional complexities in the developed 571

SMCS methodology. Each time a load recovery is initiated, the 572

corresponding nodal load needs to be modified over a specified 573
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period in line with the load recovery profile. Besides, a record574

must be kept of all load recoveries at different time steps,575

because they cannot be considered for further load reduction.576

This is reflected in the next DRLR module.577

F. Demand Reduction Load Recovery Control Module578

The DRLR control module is used to control the initiation579

of load reductions and recoveries and to produce their optimal580

schedules within the forecast 24 hourly period. Some of the581

control principles are listed below:582

• Loads whose recovery process is underway cannot be583

considered for load reduction.584

• Loads eligible for load reduction will not be disconnected585

if there is no improvement in the energy-not-served586

following the load reduction.587

• Only those loads, whose reduction including recovery588

generates revenue to the customers, will be actually589

disconnected and reconnected.590

• The best timing of load recovery is determined using591

the (forecast) nodal marginal prices over the recovery592

period.593

Assume the OPF analysis has generated non-zero load cur-594

tailments. Those loads which are not a part of previous load595

recoveries are ranked and sizes of voluntary and involuntary596

reductions are determined. The first load reduction from the597

ranking list is applied and it is checked with the aid of the598

OPF whether the total energy-not-served has reduced. If this599

is the case, the nodal customer profits are computed based on600

the savings acquired due to the load reduction and the pro-601

jected payback cost due to the load recovery. The optimum602

load recovery always takes place when the nodal marginal603

prices are ‘low’ over the recovery window. If the load cus-604

tomer projected profit is negative, the load reduction is not605

activated even if the reliability of the network might improve.606

Calculation of customer savings, costs and profits is briefly607

presented below.608

1) Customer Savings: The customer savings incurred dur-609

ing load reduction are the consequence of reduced load610

payments to the generators. These payments are valued at611

nodal marginal prices μi(t), as shown in equation (11), which612

are in turn dependent on the considered regime. The customer613

savings are therefore calculated from two OPF runs: the first614

without load reduction and the second with load reduction.615

The change in load payments, 	LC, represents the customer616

savings at tRED:617

	LCs
i (tRED) = LCs NO −DR

i (tRED) − LCs DR
i (tRED) (20)618

The total savings are then found for the entire interval when619

the load reduction is in place:620

Savingss
i (tRED) =

tREC∑
t=tRED

	LCs
i (t) (21)621

2) Payback Costs: If customer savings are positive then the622

algorithm proceeds to the load recovery stage to project the623

optimal load recovery schedule. The optimization is based on624

the following principles:625

• Load recovery is always scheduled after the correspond- 626

ing load reduction and it can continue into the ‘following’ 627

simulated day. There are periods within a day when the 628

load recovery does not take place; for example between 629

12am and 5pm on weekdays for residential customers. 630

• Load recovery blocks due to involuntary load reduction 631

are always committed before voluntary load recovery 632

blocks. They are prioritized based on their VOLL; where 633

the VOLL is the same, ranking is based on the size of 634

load reduction, the largest loads being reconnected first. 635

Similar criteria are applied to voluntary load reductions, 636

where marginal offer prices are used instead of VOLL. 637

• Optimal timing of load recovery is determined by find- 638

ing the weighted average of (base) nodal marginal prices 639

over the recovery window. The weights are equal to the 640

slope coefficients γ s
i (tREC + t) of the normalized recov- 641

ery profile. The window with the smallest average nodal 642

marginal price is selected for the load recovery. This 643

approach is the best for load customers, because they 644

will be exposed to the least additional payback cost. 645

• After having determined the optimal starting hour of load 646

recovery, it will only be materialized if there will be no 647

new load curtailments within the recovery window. This 648

is checked by running OPF over consecutive time periods 649

within the recovery window; where curtailments occur, 650

the next best recovery window is examined and so on. 651

The payback costs due to the selected optimal load recovery 652

schedule are again computed from two OPF runs in each time 653

step within the recovery window. Since load recovery increases 654

the amount of load, additional cost ΔLC is calculated as the 655

difference between costs with and without load recovery over 656

the load recovery period tREC to tMAX: 657

	LCs
i (tREC) = LCs DR

i (tREC) − LCs NO −DR
i (tREC) (22) 658

C s
payback i =

tMAX∑
t=tREC

	LCs
i (t) (23) 659

3) Customer Profits: The total customer profit π s
i (tRED) 660

needs to account for savings due to reduced load, costs due to 661

load recovery, as well as rewards for voluntary and involuntary 662

load shedding. This is summarised in the equation below: 663

π s
i (tRED) = Savingss

i − Cs
payback i +

tREC∑
t=tRED

IVLRs
i (t) 664

+
tREC∑

t=tRED

VLRs
i (t) (24) 665

Only load customer with a positive profit π s
i (tRED) evaluated 666

at time tREC proceeds into the DR strategy. The analysis con- 667

tinues until the convergence criterion on expected energy not 668

served is met. After having completed the SMCS procedure, 669

the algorithm goes straight to the outputs module. 670

G. Outputs Module 671

The outputs module generates several results related to the 672

load reductions, nodal prices, generation outputs, reliability 673

and financial indicators. They are briefly discussed below. 674
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1) Optimal Load Reductions and Recoveries: PDFs of vol-675

untary and involuntary load reductions by load types and/or676

nodes are calculated for each hour in the 24-hourly period.677

These can be directly converted into energy not served PDFs.678

The corresponding mean and percentile values show the679

‘likely’ distributions in the next 24-hourly period. PDFs of680

daily totals are also computed. Besides, conditional PDFs of681

the load recovery initiation times given the load reduction at682

certain hour are also produced.683

2) Generation Outputs: PDFs of generator hourly produc-684

tions and costs, as well as total daily costs are computed.685

3) Nodal Marginal Prices: PDFs of nodal marginal prices686

are produced for each hour in the considered 24-hourly period.687

Their expectations can be used as an indicator what the prices688

for rewarding generation and charging load customers will be689

next day.690

4) Reliability Indices: Reliability indices relating to energy691

not served as well as frequency of customer interruptions and692

duration of interruptions are computed. For example, expected693

energy not supplied (EENS), expected frequency of interrup-694

tions (EFI) and expected duration of interruptions (EDI) are695

calculated as:696

EENS =
Y∑

y=1

T∑
t=1

N∑
i=1

s4∑
s=1

Pcs
i

/
Y,697

EFI =
Y∑

y=1

T∑
t=1

N∑
i=1

s4∑
s=1

ζ s
i

/
Y698

EDI =
Y∑

y=1

T∑
t=1

N∑
i=1

s4∑
s=1

ζ s
i · Ds

i

/
Y. (25)699

5) Financial Indicators: PDFs of load customer pay-700

ments (LC), voluntary (VLR) and involuntary load reduction701

rewards (IVLR) are computed by hours and for the considered702

day. The latter curves are then used to quantify the financial703

risk of implementing the proposed demand response schedul-704

ing. The concept of value-at-risk (VaR) [30] was applied705

to measure the potentially ‘low’ revenues or ‘excessive’706

payments.707

Assuming network reward (NR) denotes any category of708

revenues, the corresponding cumulative distribution func-709

tion (CDFNR) is used to calculate the network reward NRX710

that exceeds the network reward at the confidence level α,711

NRa, with probability 1 – α. The value at risk is [31]:712

VaRNR
a (NRX) = inf{NRα ∈ R : CDFNRx(NRα) ≥ α} (26)713

Similarly, the CDF of any network cost (NC) can be used714

to determine value-at-risk at confidence level α. In this case,715

network cost NCX that does not exceed the network cost at716

probability 1 – α, NC1−a, is calculated as:717

VaRNC
1−a(NCX)718

= sup{NC1−a ∈ R : CDFNCx(NC1−a) ≤ 1 − α}. (27)719

IV. BULK ELECTRIC POWER SYSTEM720

This section describes some practical aspects of the ampac-721

ity calculation of OHLs, modelling of wind farms, as well as722

the designed case studies.723

TABLE I
CONDUCTOR PROPERTIES MODELED IN IEEE-RTS NETWORK

A. Thermal Ratings of Overhead Lines 724

The IEEE-RTS 96 test system does not provide any OHL 725

data required for the RTTR calculations. A simple ACSR tech- 726

nology was assumed with conductor sizes that provide similar 727

ratings to those in the IEEE-RTS 96 system with AAAC and 728

ACSR conductors. Table I provides the information on the con- 729

ductors used in the analysis. Under normal operation conductor 730

temperature, Tc, is set to 60◦C. A line is considered in emer- 731

gency state when another transmission line connected at the 732

same bus fails. The maximum conductor temperature in emer- 733

gencies is set to 75◦C based on avoidance of the conductor 734

annealing [32]. 735

B. Integration of Wind Farms 736

The power output of a wind turbine generator (WTG) is 737

driven by the wind speed and the corresponding relationship is 738

nonlinear. It can be described using the operational parameters 739

of the WTG, such as cut-in, rated and cut out wind speeds. 740

The hourly power output is obtained from the simulated hourly 741

wind speed using the relations [33]: 742

P(Vm) 743

=

⎧
⎪⎪⎨
⎪⎪⎩

0, 0 ≤ Vm < Vci(
A + B × Vm + C × V2

m

) × Pr, Vci ≤ Vm < Vr

Pr, Vr ≤ Vmt < Vco

0, Vm ≥ Vco

⎫
⎪⎪⎬
⎪⎪⎭

744

(28) 745

where Pr, Vci, Vr, and Vco are, respectively, rated power out- 746

put, cut-in wind speed, rated wind speed and cut-out wind 747

speed of the WTG, whilst Vm is simulated wind speed at 748

hour t. The power output constants A, B and C are determined 749

by Vci, Vr, and Vco, as shown in [33]. All WTG units used 750

in this study are assumed to have cut-in, rated, and cut-out 751

speeds of 14.4, 36, and 80km/h, respectively. The failure rates 752

and average repair times are assumed to be two failures/year 753

and 44 hours. 754

C. Case Study Description 755

OHL thermal ratings are modelled as STR or RTTR, as 756

shown in Table II below. Three seasons (winter, summer and 757

fall),denoted as λs = 1, 2, 3, are studied. The first day of 758

the 50th peak week of the year is used for winter (hours: 759

8425-8449); the 2nd day of the 22nd week of the year is 760

used for summer (hours: 3721-3744) and the 2nd day of the 761

32nd week is used for fall (hours: 5401-5424). Availability 762

factor f s
RED is a random number, whilst availability factor 763

for load recovery f s
REC varies in the specified range. Load 764
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TABLE II
MODELING SCENARIOS OF DR METHODOLOGY

recovery is based on either hourly emergency energy prices765

(i.e., ϑREC = 1) or load profiles (i.e., ϑREC = 0). The presence766

of wind generators is denoted by wg=1.767

Eight scenarios are described in Table II. Scenario S1 is the768

base case, where the system is evaluated without DR schedul-769

ing and with standard thermal ratings for OHLs. Scenario770

S2 models load recovery by using the hourly load curve at771

each load point (ϑREC = 0). Scenario S3 models all seasons772

and load recovery on the basis of expected marginal prices at773

each load point (ϑREC = 1). Scenario S4 models time-varying774

load recovery profiles. Sensitivity studies are done here in775

order to assess the impact of different recovery sizes and pro-776

files on DR performance. Factor f s
REC is set from 0 to 1.2pu777

increasing in 0.2pu increments; the 1.2pu is taken as a high-778

risk scenario. Scenario S5 incorporates the RTTR of OHLs779

without DR operation, while Scenario S6 includes the DR780

scheduling. Finally, Scenario S7 incorporates wind farms with-781

out DR, while in Scenario S8 the benefits of demand response782

are evaluated incorporating wind generation (wg=1).783

The original IEEE-RTS 96 was modified: all scenarios784

assume an increase in load by 1.2pu compared to the origi-785

nal load, as well as increase of 0.55pu and 0.6pu transmission786

capacity for the 138kV and 230kV levels, respectively, and787

1.2pu in generation capacity. Next, the WTGs are connected788

at seven sites and it was assumed that they operate at power789

factor mode with power factor equal 35% [34]. Wind farms790

are designed to deliver 20% of the peak load [35], equiva-791

lent to 684MW on the studied power network. Geographically,792

70% of the wind farms’ maximum capacity is installed in793

the northern part of the network at buses 15, 17, 19, 20, 22,794

while in the southern part of the network, the remaining 30%795

of the wind capacity is installed to at buses 1, 2, 7, 8. The796

total wind farm capacity is 2394 MW obtained from a total797

number of 240 WTG, each representing a nominal capac-798

ity of 10MW. There is significant transmission utilization in799

this modified system as the bulk of the generating capacity is800

located mainly in the northern areas and considerable power801

is transferred from the north to the south aiming to repre-802

sent the existing topology of the U.K. network. The analysis803

will study potential low wind output conditions in combination804

with unexpected network components failures.805

V. CASE STUDY ANALYSIS806

The IEEE-RTS 96 is composed of 38 lines circuits, 32 gen-807

erating units and 17 load delivery points [36].808

It is studied by using the algorithms developed in Matlab809

that make use of a modified version of Matpower and MIPS810

Fig. 3. Probability to respond to a DR signal for different customer types
based on the voluntary load reduction amount at 17h00.

solver for the power flow calculations [37]. Essential study 811

results on the eight scenarios related to the availability for 812

load reduction, impact of nodal marginal prices, load recov- 813

ery profile – availability, and impact of RTTR, DR and wind 814

generation, are presented below. 815

A. Customer Availability for Load Reductions 816

In this section, the impact of the availability of customers 817

responding to a DR call is examined. Uncertainty in load 818

availability for each customer type is given by equation (18). 819

In particular, domestic customers’ load reduction takes values 820

from the entire possible range, while for industrial and com- 821

mercial loads it is within the assumed window, win=0.8-1pu. 822

Scenario 3 (S3) is used to evaluate the impact of customers 823

responding to a DR on the EENS, mean and VaR values of 824

voluntary (VLR) and involuntary load reductions (IVLR) – 825

eqs. (12) and (13). For VLRs, Fig. 3 (generated over the entire 826

MCS period) shows that the probability for residential loads 827

to give ‘small’ response (up to 25 MWh) is much higher than 828

to produce ‘large’ response (up to 50MWh). 829

However, industrial, commercial and large users are more 830

likely to give ‘larger’ responses as they have bigger contracted 831

amounts compared to residential users, and the uncertainty 832

in response (if any) is much lower. For low load reductions, 833

industrial loads have higher probability to respond than com- 834

mercial and large users, while large users have the highest 835

probability for larger amounts of load reductions; they are 836

followed by commercial and industrial users. 837

The PDFs for voluntary (VL) and involuntary (IVL) load 838

reductions for different hours in a day are illustrated in Fig. 4 839

and compared with the PDF of IVL without DR (IVLNO DR). 840

The results show that the probability of having IVL is reduced 841

when doing DR (IVLDR) with higher amounts (right side of 842

x-axis), while the probability is much higher for low amounts 843

of IVL. This clearly shows the effectiveness of voluntary DR 844

on the EENS. In particular, the mean value of IVLDR at 845

17h00 is around 60% less than the mean value of IVLNO DR. 846

A similar conclusion applies to all hours; for example, the 847

mean of IVLDR at 21h00 and 22h00 is, respectively, 61% 848

and 60% lower when applying the voluntary DR. Applying 849
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Fig. 4. Probability of voluntary and involuntary load reductions under DR
for different hours in a day.

TABLE III
VAR VALUES OF CUSTOMERS COSTS AND REWARDS (K£)

voluntary load reduction (VL) helps eliminate the need for850

involuntary one (IVLNO DR), particularly when larger VL851

amounts are used. This is further highlighted when convert-852

ing VL and IVL into the EENS index (see Table IV in853

Section V-B).854

Table III shows the mean (VaR50%) and the 90% confidence855

VaR (VaR90%) for the costs for demand (LC), for VLR and856

IVLR revenues for the most critical load points (B6, B8 and857

B14) under scenarios S1 and S3. Both the VaRLC
50% and VaRLC

90%858

are much lower under S3 for all load points, since under DR,859

demand is recovered under cheaper nodal marginal prices.860

In addition, VaRVLR
90% is much larger than VaRVLR

50% since861

marginal nodal prices are significantly higher under emergency862

conditions. Furthermore, the VaRIVLR
50% is much lower under863

S3 than under S1, where it decreases by 60% for B6, 44%864

for B8 and 47% for B14. This also shows that voluntary DR865

significantly decreases the need for IVL (an average VOLL866

value was assumed for all customer types).867

B. Impact of Nodal Prices on Reliability Analysis868

Most DR studies would recover reduced load during load869

troughs and/or system normal if only network adequacy were870

looked at.871

However, we have used the approach to investigate impact872

of hourly nodal prices on load recovery and customers’ well-873

being. Fig. 5 shows an example of the nodal marginal price874

and the demand variation in time for the most frequently875

interrupted bus in the network (B6) under both intact and876

emergency conditions.877

When no failures occur, load can be recovered almost at878

any time since intact prices do not change significantly with879

Fig. 5. Hourly marginal prices and demand curve under emergency for Bus 6.

Fig. 6. Emergency marginal price for different confidence levels.

respect to load. However, nodal prices under emergency condi- 880

tions may vary considerably. For instance, a significant shape 881

difference between intact and emergency nodal prices is shown 882

at 15h00. Our analysis has proven that the magnitude of the 883

emergency nodal price can be almost 5 times higher than the 884

intact one. Thus, scheduling of ‘optimal’ load recoveries based 885

on marginal nodal prices has proven effective in providing 886

system security and customer benefits. Furthermore, compar- 887

ative studies were conducted to quantify the improvements 888

from implementing load recovery under nodal marginal prices 889

rather than under load profile only. 890

The hourly nodal price at bus B6 for different confidence 891

levels is given in Fig. 6. In the event of an emergency at B6, 892

TSOs may be provided with the illustrated confidence level 893

dependent prices to decide which load recovery hour would 894

be the most appropriate to restore load. For example, the TSO 895

can know that if a violation occurs at 11h00, the load can be 896

recovered between 13h00 and 16h00, since there is an 80% 897

probability that the price will be between zero and 90£/MWh 898

and a 90% probability that the price will be between zero and 899

420£/MWh. In this paper, a conservative confidence level of 900

α =95% was selected. This gives flexibility to TSOs to apply 901

operational decisions so they can guarantee making a profit 902

for the demand customers for almost all nodal prices in the 903

feasible range, since the load recovery will be at either the 904

emergency nodal prices or (lower) intact prices. 905

The results presented in Table IV show that DR strategy 906

under scenario S3 improves the reliability of the network in 907

terms of EENS by 66% in winter (λs = 1) compared with S1, 908

allowing for almost a 5% decrease in EENS compared to S2. 909

The S3 strategy also substantially improves reliability indices 910
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TABLE IV
RELIABILITY INDICES FOR SCENARIOS 1, 2 AND 3

Fig. 7. Distribution of demand costs for load at Bus 6.

TABLE V
RELIABILITY INDICES FOR SCENARIO 4

for summer (λs = 2) and fall (λs = 3), which demonstrates911

the effectiveness of the algorithm throughout the year.912

In order to show the necessity to quantify the economic risk913

of DR operation, results for the base case S1 are compared914

to scenario S3 to investigate the VaR of the load cost (LC).915

Fig. 7 illustrates frequency of occurrence of various load costs916

seen at the most critical bus, B6, with and without DR. In917

particular, it is shown that there is a high variation in nodal918

costs at 11h00, resulting from outages of lines 12 and 13 that919

connect B6 with cheaper generators. Consequently, VaRLC
90%920

is 55.64k£ under the base case, whereas it is only 52.81k£921

under S3, which shows that DR can help reduce nodal costs922

by 5% (2.83k£). Clearly, both reliability and financial indices923

can be improved using nodal energy prices (S3) rather than924

the load profile only (S2).925

C. Impact of Customer Availability to Recover the Load926

The load recovery of a DR customer can be of different size927

compared to the corresponding load reduction. As a result, this928

can affect both the network performance and customer profits,929

as exemplified by scenario S4.930

Assuming load recovery size is specified by availability fac-931

tor f s
REC, Table V shows an increase of around 5% in EENS932

for f s
REC =1.2pu compared to f s

REC =1pu. When load recovery933

sizes are lower than 100%, network reliability is improved934

compared to fREC=1pu. This is due to the higher probabil-935

ity of implementing voluntary DR since less load recoveries936

TABLE VI
DIFFERENCE IN MEAN AND VAR FOR LC (£) AND

PROFITS (£/KWH ) S4 VS. S3

TABLE VII
IEEE RTS NETWORK EVALUATION WITH RTTR & DR

are required. There is also a substantial decrease in reliability 937

indices EDI and EFI. 938

Differences in the mean (VaR50%) and VaR90% values for 939

demand costs (LC) and customer profits (π) between scenar- 940

ios S4 and S3 are shown in Table VI for different load recovery 941

sizes f s
REC. This table gives the cost and revenue differences 942

following various load payback sizes compared to applying 943

DR with a load payback of 100% for a winter day-ahead oper- 944

ation. For instance, when S4 is modeled with fREC =1.2pu, 945

the VaRLC
50% is 912£ higher than under scenario S3. This is 946

because as load recovery gets larger, the operating conditions 947

become more difficult and the marginal prices increase, imply- 948

ing higher costs for demand. For low load recovery sizes, 949

however, very high profits can be incurred (over 2,100£) as the 950

demand cost VaR shows the largest decrease, thus suggesting 951

a much lower probability of high LC. 952

D. Impact of RTTR and DR on Network Reliability and 953

Customer Costs & Revenues 954

In scenario S5 only RTTR is used, whilst scenario S6 makes 955

use of DR in conjunction with RTTR. Table VII shows that 956

the more reliable and cheapest scenario is S6. 957

The use of RTTR and DR under S6 results in, respectively, 958

61% and 6.6% reduction in EENS compared with DR alone 959

(S3) and with S5. Indices EFI and EDI are also improved. 960

When RTTR is considered alone (S5), the greater utilization 961

of the three most critical lines improves network performance 962

by 18% compared to S1. Besides, the load cost index for S3 963

VaRLC
50% is slightly higher than VaRLC

50% for S5. This is because 964

RTTR allows greater generation from cheaper units. 965

In terms of VLR and IVLR, both average values are lower 966

under S6. 967
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TABLE VIII
IEEE RTS NETWORK EVALUATION OF WIND FARMS & DR

We can note that DR provides the greatest benefits since all968

indices are drastically improved with DR, whilst benefits are969

only slightly higher under RTTR.970

E. Impact of Wind Farms and DR on Network Reliability971

and Customer Costs & Revenues972

In scenario S7, only wind farms are used, whilst scenario973

S8 uses DR in conjunction with wind farms. Table VIII shows974

that the more reliable and less expensive scenario is S8; the975

wind farms contribute to improving network reliability by 4%976

in EENS compared with S3 alone. Besides, a considerable977

reduction in EDI is achieved, whilst frequency of interrup-978

tions, EFI, remains the same as under S3. If compared with S1,979

wind farms alone (S7) improve network performance by 14%980

due to wind farms’ network reinforcements. Also, VaRLC
50%981

for S3 is slightly higher than VaRLC
50% for S7 as wind farms982

are considered to have near-zero marginal costs. When wind983

farms are used in conjunction with DR (S8), this has the best984

effect on network performance and customer costs & revenues.985

This is because DR implementation helps when wind output986

is low and network components fail. Next, when wind output987

is high, spillage can occur as there is not enough capacity on988

the network to transfer the total amount of wind, thus leading989

to congestion when using STR for OHL operation. This can990

result in a small reduction of EENS.991

VI. CONCLUSION992

A probabilistic methodology for optimal scheduling of load993

reductions/recoveries in a day-ahead planning of transmission994

networks is proposed in the paper. The methodology recog-995

nizes several types of uncertainties, and finds optimal demand996

response scheduling using the network security and customer997

economics criteria. Impacts of wind generation and real-time998

thermal ratings of overhead lines are also studied.999

The developed case studies have demonstrated that the value1000

of optimal demand scheduling combined with real-time ther-1001

mal ratings can be significant when using nodal marginal1002

prices compared to using the hourly loads only. In particular,1003

both reliability and financial metrics can be improved by a fac-1004

tor of around 66% for expected energy not served and around1005

5% for value at risk for costs of demand. Improvements in1006

other reliability indicators and expected generation costs were1007

also observed. Nonetheless, selection of the reliability indica-1008

tor to base the operational decisions on demand scheduling can1009

be of highest importance; having multiple indices can there- 1010

fore help system operators to make more informed decisions 1011

on ‘best’ demand response practice. As a final comment, the 1012

consistent use of a probabilistic approach to model various 1013

network uncertainties and variability of nodal marginal prices 1014

provides a superior analysis compared to traditional analytical 1015

techniques. 1016

The future work considers inclusion of optimal energy stor- 1017

age scheduling to increase system reliability. Combined impact 1018

of energy storage, demand response and wind generation will 1019

be studied in greater detail. 1020
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