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THE SPIN-1/2 AND SPIN-1 QUANTUM J1-J{-J2
HEISENBERG MODELS ON THE SQUARE LATTICE

R. F. BISHOPt· and P. H. Y. LI

School of Physics and Astronomy, The University of Manchester,
Manchester, M13 9PL, UK

t E-mail: raymond.bishop@manchester.ac. uk

R. DARRADI and J. RlCHTER

Institut fUr Ttieoretische Physik, Otto-uoti-Guericke Universitiit Maqdeburq,
39016 Magdeburg, Germany

We study the J: -J~-h quantum 'spin model on the two-dimensional square lattice using
the coupled cluster method. We compare and contrast the influence of the interchain
coupling Jf on the zero-temperature phase diagrams for the two spin values s = 1/2
and s = 1. Our most important result for the s = 1/2 case is the predicted existence
of a quantum triple point (QTP) at (Jf ;:::j 0.60 ± 0.03, J: ;:::j 0.33 ± 0.02) when h = 1.
Below the QTP (JU J1 ;S 0.60) we predict a second-order phase transition between
the quasi-classical Neel and stripe-ordered phases, whereas the corresponding classical
model, which contains only these two phases for all spin values s, yields a first-order
transition. Above the QTP (JU J1 2: 0.60) an intermediate disordered phase emerges,
which has no classical counterpart. By contrast, the situation for s = 1 is qualitatively
different. Instead of a QTP where three phases co-exist, we now predict a quantum
tricritical point at (Jf ;:::j 0.66 ± 0.03, Jz ~ 0.35 ± 0.02) when Jv = 1, where a line of
second-order phase transitions between the quasi-classical Neel and stripe-ordered phases
(for JU J: ;S 0.66) meets a line of first-order phase transitions between the same two
states (for JU h 2: 0.66). Surprisingly, we find no evidence at all for any intermediate
disordered phase in the s = 1 case. .

Keywords: h-Jf-h model; coupled cluster method; quantum phase transition; frus-
trated magnet; spin-lattice system; quantum triple point; quantum tricritical point; spin-
half model; spin-one model.

1. Introduction

The frustrated Heisenberg antiferromagnet with nearest-neighbour h and compet-
ing next- nearest- neighbour h coupling (J1 -hmodel) has received renewed interest
both theoretically (see Refs. [1-7] and references cited therein) and experimentallys-?
due to the recent discovery or successful syntheses of such new magnetic materials,

'On sabbatical leave during 2007-08 at William 1. Fine Theoretical Physics Institute, School of
Physics and Astronomy, University ofMinnesota, 116 Church Street S.E., Minneapolis, MN 55455,
USA.
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as the layered-oxide high-temperature superconductors, whose undoped precursors
can be well described by the model. The interplay between frustration and quan-
tum fluctuations in two-dimensional (2D) quantum spin systems can lead to rich
and unusual phase scenarios between magnetically ordered semiclassical phases and
novel quantum paramagnetic ground state phases (see Ref. [10] and references cited
therein). An interesting generalization of the pure h-h model has also been intro-
duced recently by Nersesyan and Tsvelik. 11They consider a 2D spatiallyanisotropic
spin-1/2 J1-J{-h model on the square lattice, where the nearest-neighbour bond~
have different strengths J1 and J{ in, say, the x (intrachain) and y (interchain)
directions respectively. This model has been further studied by other groups using
the exact diagonalization (ED) of small lattice samples of N ::; 36 sites,12 and the
continuum limit of the mcdel.P Both groups support the prediction by Nersesyan
and Tsvelikll of a resonating valence bond state for h = 0.5J{ « J1, and the
limit of small interchain coupling extends along a curve nearly coincident. with the
line where the energy per spin is maximum. The model has also been studied by
Moukoun+? using a two-step density-matrix renormalization group approach.

Although spin problems are conceptually simple, they often exhibit rich and
interesting phase diagrams due to the strong influence of quantum fluctuations in
these strongly correlated systems. The strength of the quantum fluctuations can
be tuned by varying either the anisotropy terms in the Hamiltonian 15 or the spin
quantum number 8.16 Thus, lattice quantum spin problems maintain an important
role in the study of quantum phase transitions. Very few calculations have been
performed for the J1-J{-J2 model for the case of 8 = 1 up till now. It has, however,
been studied using the two-step density-matrix renormalization group method, but
only for the specific value of JU J1 = 0.2, and a second-order transition from a Neel
phase to a disordered phase is observed with a spin gap." It has also been observed
that quantum fluctuations can destabilize the ordered classical ground state (GS),
even for large values of 8, for large enough values of the frustration.v''

Furthermore, it has been argued recently that the quantum phase transition
between the semiclassical Neel phase and the quantum paramagnetic phase present
in the 2D J1-h model is not described by a Ginzburg-Landau type critical theory,
but rather may exhibit a deconfined quantum critical point. 17,18

The aim of this paper is to further the study of the J1-J{ -h model by using
the coupled cluster method (CCM). The CCM (and see Refs. [19-21] and references
cited therein) is one of the most powerful and universally applicable techniques of
quantum many-body theory. It has been applied successfully to calculate with high
accuracy the ground- and excited-state properties of many lattice quantum spin
systems (and see Refs. [7,21-25] and references cited therein). The CCM is appro-
priate for studying frustrated systems for which such other methods as quantum
Monte Carlo techniques are limited by the infamous minus-sign problem, and exact
diagonalization methods are restricted in practice to such small lattices that may
be insensitive to the details of the often subtle phase order present.
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Fig. 1. (a) h-Ji-h model; - J1; - - - Ji; - . - h; (b) Neel state; (c) stripe state - columnar;
and (d) stripe state - row. Arrows in (b), (c), and (d) represent spins situated on the sites of the
square lattice (indicated by. in (a».

2. The Model

The J1-J{ -J2 model is a general spin-s Heisenberg model on a square lattice with
three kinds of exchange bonds, with strenth J1 along the row direction, J{ along
the column direction, and h along the diagonals, as shown in Fig. 1. All exchanges
are assumed positive here, and we set J1 = 1. The Hamiltonian of the model is
described by

H = J1 I::Si,1 . Si+l,l + J{ 2: Si,l . Si,I+1
i,l i,l

+ J2 2:(Si,1 . sH1,1+1 + Si+l,l . Si,I+I).
ill

(1)

This model has two types of classical ground state, namely, the Neel (n, n) state
and stripe states (columnar stripe (n, 0) and row stripe (0, n)), the spin orientations
of which are shown in Figs. l(b,c,d) respectively. There is clearly a symmetry under
the interchange of rows and columns, h ~ J{, which implies that we need only
consider the range of parameters with J{ < J1. The ground state energies of the
various classical states are given by

Eel
~ = (-J1- J{ +2J2)lsI2,

N
Eel

e0"Nmn.r = (-J1 + J{ - 2h) Is12,
Eel;':7 = (J1-J{ -2h)lsI2. (2)

We take J1 = 1 and J{ < 1. Clearly, from Eq. (2), the classical GS is then either
the Neel state (if Ji > 2h) or the stripe state (if J{ < 2h). Hence, the (first-order)
classical phase transition between the Neel and stripe (columnar) states occurs at
J/j = !Ji, Vh > J{.

3. The Coupled Cluster Method Formalism

The CCM formalism is now briefly described (and see Refs. [19-26J for further
details). The starting point for any CCM calculation is to select a normalized model
or reference state 1<I?).It is often convenient to take a classical GS as a model state for
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CCM calculations of quantum spin systems. Accordingly our model states here are
the Neel state and the stripe state. It is very convenient to treat each site on an equal
footing, and in order to do so we perform a mathematical rotation of the local axes
on each lattice site such that all spins in every reference state align along the negative
z-axis. The Schrodinger ground state ket and bra equations are HI1IF) = ~1'It) and
(~IH = E(~I respectively. The CCM parametrizes these exact quantum GS wave
functions in the forms 1'It) = eSI<p) and (~I = (~ISe-s. The correlation operators S

- + - - - +-and S are expressed as S = LI#O SICI and S = 1 + LI#O SICI , where Co = 1,
the unit operator, and o; == (Ci)t is one of a complete set of multispin creation
operators with respect to the model state (with Ci I<p)= 0 = (<pICt), generically
written as ct == st s~ ... 81;., in terms of the spin-raising operators st == sf + 8f
on lattice sites i.

The ket- and bra-state correlation coefficients (SI, SI) are calculated by requiring
the expectation value fI == (~IHI'It) to be a minimum with respect to each of
them. This immediately yields the coupled set of equations (<pICie-sHesl<p) = 0
and (<pIS(e-S Hes - E)ctl<p) = 0; 'VI =1=0, which we solve for the correlation
coefficients (SI, SI)' We may then calculate the GS energy from the relation E =
(<ple-sHesl<p), and the GS staggered magnetization M from the relation M ==
-*(~I L~l 8il'It) which holds in the rotated spin coordinates. We note that we
work from the outset in the N --> 00 limit.

4. Approximation Schemes

The CCM formalism is exact if a complete set of multispin configurations {I} with
respect to the model state is included in the calculation. However, it is necessary in
practice to use approximation schemes to truncate the expansions in configurations
{I} of the correlation operators Sand S. For the case of 8 = 1/2· we employ here,
as in our previous work,7,20-25 the localized LSUBn scheme in which all possible
multi-spin-flip correlations over different locales on the lattice defined by n or fewer
contiguous lattice sites are retained. The numbers of such fundamental configura-
tions (viz., those that are distinct under the symmetries of the Hamiltonian and of
the model state I<p)) that are retained for the Neel and stripe states of the current
model in various LSUBn approximations are shown in Table l.

We note next that the number of fundamental LSUBn configurations for 8 = 1
becomes appreciably higher than for 8 = 1/2, since each spin on each site i can now
be flipped twice by the spin-raising operator si. Thus, for the 8 = 1model it is more
practical to use the alternative SUBn-m scheme, where m is the size of the locale
on the lattice and n is the maximum number of spin-flips. Hence all correlations
involving up to n spin flips spanning a range of no more than m adjacent lattice sites
are retained.21,26 In our case we set m = n, and hence employ the SUBn-n scheme.
More generally, the LSUBm scheme is thus equivalent to the SUBn-m scheme for
n = 28m. Hence, LSUBm == SUB28m-m. For s = 1/2, LSUBn == SUBn-n; whereas
for 8 = 1, LSUBn == SUB2n-n. The numbers of fundamental configurations retained
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Table l. Numbers of fundamental configurations (U f.c.)
for s = 1/2 and 8 = 1 in various CCM approximations.

8 = 1/2 8=1

Scheme U f.c. Scheme U f.c.

Neel stripe Neel stripe

LSUB2 2 1 SUB2-2 2 1
LSUB4 13 9 SUB4--4 28 21
LSUB6 146 106 SUB6-6 744 585
LSUB8 2555 1922 SUB8-8 35629 29411
LSUBlO 59124 45825

at various SUBn-n levels for the s = 1 model are shown in Table l.
In order to solve the corresponding coupled sets of CCM bra- and ket-state

equations we use parallel computing.27,28

5. Extrapolation Schemes

In practice one needs to extrapolate the raw LSUBn or SUBn-n data to the n --+ 00

limit. Based on our previous experience7,23,25 we use the followingempirical three-
parameter scaling laws for the extrapolations of the GS energy,

(3)

and of the GS staggered magnetization for frustrated models,

M=bo+b1n-v, (4)

where the exponent 1/ is also a fitting parameter.
We list belowthree fundamental rules, also based on our experience, as guidelines

for the selection and extrapolation of the CCM raw data, using any approximation
scheme.

• Rule 1: As a fundamental rule of numerical fitting or numerical analysis, one
should always have at least (n + 1) data points in order to have a robust and
stable fit to any formula that contains n unknown parameters. This rule takes
precedence over all other rules.

• Rule 2: Whenever possible one should avoid using the lowest (e.g., LSUB2,
SUB2-2) data points since such points are rather far from the large-n limit,
unless it is necessary to do so to avoid breaking Rule l.

• Rule 3: If Rule 2 has been broken then some other careful consistency checks
should' also be performed.

In our results below the LSUBn results for n = {4,6,8, 10} are extrapolated for
s = 1/2, in order to preserve the above three rules, whereas the SUBn-n results for
n = {2,4, 6, 8} are extrapolated for s = 1, in each case using the schemes indicated
above. For both the s = 1/2 and the s = 1 models we perform two separate sets
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Fig. 2. Ground state energy per spin, EIN (with h = 1): (a) for s = 1/2; and (b) for s = 1.

of CCM calculations for given parameters (Jl == 1, Jf, lz) based respectively on the
Neel state and the stripe state as the model state I<p).

6. Results and Discussion

Figure 2 shows the as energy per spin as a function of lz for various values of
J{ (all with J1 == 1), extrapolated from both the s = 1/2 and s = 1 models from
the raw CCM data as discussed above. Both the raw LSUBn data for the s = 1/2
model and the raw SUBn-n data for the s = 1 model terminate at some particular
values. This occurs for the CCM curves based on both the Neel state and the
stripe state as the model state I<p). In all cases such a termination point arises due
to the solutions of the CCM equations becoming complex at this point, beyond
which there exist two branches of complex-conjugate solutions. In the region where
the solution reflecting the true physical situation is real, there actually also exists
another real solution. However, only the (shown) upper branch of these two solutions
reflects the true physical situation, whereas the lower branch does not. The branch
reflecting the true physical situation of the solutions is the one which becomes exact
in some appropriate (e.g., perturbative) limit. This physical branch then meets the
corresponding unphysical branch at some termination point beyond which no real
solutions exist. The termination points shown in Fig. 2 are the extrapolated n -> 00

termination points and are evaluated using data only up to the highest level of the
CCM approximation schemes used here, namely LSUB10 for the s = 1/2 model and
SUB8-8 for the s = 1 model. The SUBn-n and LSUBn termination points are also
reflections of phase transitions in the real system, as we discuss more fully below.

We observe from Fig. 2 that for the case of the s = 1/2 model the two curves,
based on the Neel and stripe model states, for a given value of Jf, cross (or, in the
limit, meet) very smoothly near their maxima for all values of J{ ~ 0.6, at a value
of J2 slightly larger than the classical transition point of 0.5J{. This behaviour is
indicative of a second-order quantum phase transition between these two phases, by
contrast with the first-order classical transition from Eq. (2). Conversely, for values
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J{ ;:::0.6 the curves no longer cross at a physical value (viz., where the calculated
staggered magnetization is positive), indicating the opening up of an intermediate
quantum phase between the Neel and stripe phases. For the case of s = 1, the ex-
trapolated GS energy curves of the Neel and stripe states again meet smoothly with
the same slope for J{ ;S 0.66± 0.03. This behaviour is again indicative of a second-
order phase transition. By contrast, for J{ ;::: 0.66± 0.03 the behaviour is typical
of a first-order phase transition where the curves now cross with a discontinuity in
the slope. Figure 2 clearly shows the distinct differences in the GS energy curves
for the two models with s = 1/2 and s = 1. This different behaviour observed in
the GS energy for the two models is reinforced by the GS staggered magnetization
results discussed below.

For the GS staggered magnetization for the s = 1/2 model we find that the
extrapolation of Eq. (4) produces smooth and physically reasonable results, except
for a very narrow anomalous "shoulder" region near the points where M vanishes
for 0.6 ;S J{ ;S 0.75 for the Neel state. This critical regime is undoubtedly difficult to
fit with the simple two-term scheme of Eq. (4). Our method for curing this problem
and for stabilizing the curves is to make efficient use of the information we obtain
in Eq. (4) to extract the exponent v, and then to use that value to infer the next
term in the series. We find, very gratifyingly, that the value for v fitted to Eq. (4)
turns out to be very close to 0.5 for all values of J{ and J2 except very close to the
critical point. Therefore, we use the form of Eq. (5),

(5)

The use of Eq. (5) removes the anomalous shoulder. Henceforth, in all of the results
we discuss, we use Eq. (5) for the staggered magnetization.

We have also checked that for the s = 1/2 model the extrapolated results using
the data sets with Tt= {2,4, 6, 8, la} and n = {4,6, 8, la} are very similar, thereby
adding credence to the validity and stability of our results. Conversely, the results
using the data set with n = {6,8, la} again display a minor spurious "shoulder"
which is almost certainly due to violating our Rule 1.

For the s = 1 model, no narrow anomalous "shoulder" region is observed in the
raw SUBn-n results. We have also performed some vigorous tests in the extrapola-
tion schemes for the staggered magnetization in this case. Our main finding is that
Eq. (5) using the data set with n = {2,4, 6, 8} is the most consistent in terms of
both the GS energy meeting point and the staggered magnetization critical point,
as discussed below.

Figure 3 shows our extrapolated results for the GS staggered magnetization M
for both models. The quantum phase transition or critical point marking the end
of either the quantum Neel state or the quantum stripe state is determined by
calculating the order parameter M for various values of J{ to obtain those values
of J2 where M vanishes. However, as seen in Fig. 3, there also occur cases where
the order parameters of the two states meet before the order parameter vanishing
point. In these caseswe take the meeting point to define the phase boundary between
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Fig. 3. Ground state staggered magnetization, M (with J1 = 1): (a) for s = 1/2; and (b) for
s = 1.

the quantum Neel and quantum stripe states, Thus, our definition of the quantum
critical point is the point where there is an occurrence of a phase transition between
the two states considered or where the order parameter vanishes, whichever occurs
first.

For the s = 1/2 model we note that M vanishes for both the quantum Neel and
stripe phases at almost exactly the same critical value of Jz, for a given J{, so long
as J{ ;S 0.6. Conversely, for J{ ;:::0.6 there exists an intermediate region between
the critical points at which M ---+ 0 for these two phases. The order parameters M
of both the Neel and the stripe phases vanish continuously both below and above
the point J{ ~ 0.60, as is again typical of second-order transitions,

By contrast, we note the surprising result for the s = 1 model that the order
parameter M goes to zero smoothly at the same point for both the quantum Neel
and stripe phases with the same value of J{, for all values of J{ ;S 0.66 ± 0.03,
whereas the corresponding curves for the two phases meet at a nonzero value for
higher values of J{. Thus, in this regime we have behaviour typical of a second-
order phase transition between the quantum Neel and stripe phases. Furthermore,
the transition occurs at a value of h very close to the classical transition point at
J2 = 0.5J{. Conversely, for values of J{ ;:::0.66 ± 0.03, the order parameters M of
the two states meet at a finite value, as is typical of a first-order transition.

We show in Fig. 4 the zero-temperature phase diagrams of both the spin-1/2 and
spin-I J1-J{-h models on the square lattice, as obtained from our extrapolated
results for both the GS energy and the GS order parameter M. In the case of the
spin-l/2 model our results provide clear and consistent evidence for a quantum triple
point (QTP) at (J{ ~ 0.60 ± 0.03, h~0.33 ± 0.02) for J1 = L For J{ ;S 0.60 there
exist only the Neel and stripe phases, with a second-order transition between them,
whereas for J{ ;:::0.60 there also exists an intermediate (disordered, paramagnetic)
quantum phase, which requires further investigation. Although the nature of the
intermediate phase is still under discussion, a valence-bond crystal phase seems
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Fig. 4. Ground state phase diagrams (with Ji == 1): (a) for s == 1/2, showing a quantum triple
point (QTP); and (b) for s = 1, showing a quantum tricritical point (QTCP).

to be the most favoured from other investigations.U? On the other hand, another
possibility for this intermediate phase is the resonating valence bond (RVE) phase. 12

Other calculations on this spin-1/2 model12•13 differ predominantly by giving a QTP
at (Jf = 0, J2 = 0) for J1 = 1. We believe that the difference arises essentially from
the nature of the alternative methods used. For example, due to the small size of
the lattices used, the ED calculations of Sindzingre'? might easily miss the longer-
range correlations that become increasingly important the nearer one approaches
the QTP.

Unlike the s = 1/2 case there is no sign at all of any intermediate disordered
phase for any value of the parameters J{ or Jz (for J1 = 1) for the case of s = 1.
Hence, in this respect the quantum spin-1 model is much closer to the classical case,
viz., the s -:-+ 00 limit. However, unlike the classical case, there now appears to be a
quantum tricritical point (QTCP) at (Jf ~ 0.66±0.03, h~O.35±0.02) for J1 = 1,
where a tricritical point is defined here to be a point at which a line of second-order
phase transitions meets a line of first-order phase transitions. We note that the
behaviour of both the order parameter (which goes to zero smoothly at the same
point for both Neel and stripe phases below the QTCP, but which goes to a non zero
value above it) and the GS energy curves for the two phases (which meet smoothly
with the same slope below the QTCP, but which cross with a discontinuity in slope
above it) tell exactly the same story.

In conclusion we note that two of the unique strengths of the CCM are its
ability to'cleal with highly frustrated systems as easily as unfrustrated ones, and
its use from the outset of infinite lattices. These, in turn, lead to its ability to
yield accurate phase boundaries even near quantum triple and tricritical points.
Our own results for the ground state energy and staggered magnetization provide a
set of independent checks that lead us to believe that we have a self-consistent and
coherent description of these extremely challenging spin-1/2 and spin-l systems.
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