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EXPLORING MANY-BODY THEORIES IN LIGHT NUCLEI

R.F. Bishop and M.F. Flynn
Department of Mathematics, UMIST
P.O.Box 88,Manchester M60 lQD England
and
M.C. Bosca, E. Buendia and R. Guardiola
Departamento de Ffsica Moderna, Universidad de Granada
18071 Granada, Spain

Abstract

A brief review of several many-body theories is presented with applications to the 4He
nu.cleus in a simplified model which only considers Wigner type nucleon-nucleon Interactions.
Exact results are obtained with the Diffusion Monte Carlo method, and the results from
the Jastrow variational method as well as linearized version of coupled cluster theory are
compared with them.

1. Introduction

The Quantum Many-Body Problem presents us with a simply-stated but otherwise
quite formidable task, namely the determination of the ground state (and eventually also the
excitations) of a system of many mutually interacting particles, in the limit as this number
of particles grows to infinity at a constant density. The actual solution of the many-body
Schrddinger equation is moreover complicated by the strong coupling character of the usual
two-body interactions, which thereby prevents the use of naive perturbative methods. The
time-honored Brueckner-Bethe-Goldstone (BBG) theory was invented as a special pertur-
bation expansion technique to solve this problem. In addition, the formalism has a deep
physical content.

The optimistic belief at the beginning of the seventies [1] was that BBG theory gave
the appropriate tools to solve the many-body problemyat least in nuclear matter, but soon
some variational calculations of Jastrow type showed the deficiencies of lowest-order BBG
theory. This was called the crisis in nuclear matter theory (see [2] for a concise but precise
historical review) and during the last decade several new many-body theories were developed
and brought into use. Here we will refer to three of them, namely the Green Function Monte
Carlo method [3], the hypernetted chain HNC/FHNC massive summation scheme for the
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Jastrow variational description [4] and the exp(S) method or Coupled Cluster theory [5].
A resolution of the crisis was illustrated during the first conference on Recent Progress in
Many-Body Theories held in Trieste in 1978 [6].

Unfortunately, the plettora of technicalities required for the application of these many-
body theories to infinite systems, obscure their underlying simplicity. Here we will attempt a
brief description of these theories through a simpler yet still very challenging problem, with
a basic didactical objective. We thus concentrate on the study of the 4He nucleus, and all
complicated questions regarding discrete degrees of freedom (spin and isospin) will be absent
by limiting ourselves to Wigner-type nucleon-nucleon interactions. Because of the absence
of spin/isospin degrees of freedom in the hamiltonian the four nucleons may be considered
as distinguishable, or, in other words, we will deal effectively with a system of four bosons.
Thus another of the technical complications will be absent, namely antisymmetrization.

Given that our objective is to show the usefulness of many body theories in a wide
range of physical situations, we will nevertheless consider four kinds of nuclear interactions,
ranging from mild two-body potentials to realistic interactions with a strongly repulsive core
at short distances. We describe them below in order of increasing complexity.

The simplest interaction considered was introduced by Kales [7] in a pioneering work
on Green Function Monte Carlo method. The aim of that work was the determination of the
coupling constant of a fixed-shape two-body potential which would produce the experimental
binding energy of 28.3 MeV of 4H e, i.e. an inverse many-body problem. The interaction is
purely attractive and has gaussian shape. Next we consider the well known Brink Boeker
BB1 potential [8], which is an effective interaction with parameters adjusted so as to obtain
the proper saturation conditions in 4He, 160 and nuclear matter when using uncorrelated
wave functions. This interaction has been widely used in spectroscopic calculations, and it
will certainly overbind 4 He when used as a bare microscopic interaction, as considered here.
Finally we have considered two realistic interactions known as S3 [9] and MTV [10]. These
two interactions are only defined in the l = 0 channel, so that the word realistic should be
considered somewhat sceptically in so far as the interactions do not contain spin-orbit nor
tensor components. We will use these interactions as local potentials acting in all partial
waves. The S3 and MTV interactions are of particular interest because of the large amount
of work devoted to them in the study of three- and four-nucleon systems.

As said above, we have only considered the Wigner part of the above interactions, so
that we will actually obtain upper bounds to the ground state (g.s.) energy corresponding
to the full interactions. The interactions will be referred to respectively by the letters K,
B, S and M, or sometimes, in the case of the latter three, by the more usual acronyms
BBl, S3 and MTV. Potentials K, B and S are a combination of gaussians, and this fact is
particularly useful because all of the required matrix elements can be computed by means of
semi-numerical algorithms, which both considerably reduce the calculational time and avoid
unpleasant cumulative numerical errors. This will permit us to carry out calculations in a
very large configuration space. The MTV potential, on the other hand, is a combination of
yukawians.

The shape of these four interactions is shown in Figure 1, which also illustrates their
various degrees of difficulty to handle. This is basically related to the importance of the short
range repulsion.
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2. The diffusion Monte Carlo method

Stochastic methods can be used to integra.te the many body Schrddinger equa.tion
exactly in the simplified case of boson systems. These methods are known as Green Function
Monte Carlo [3] and Diffusion Monte Carlo [11,12,13]. We will consider only the latter and
will refer to it by the acronym DFMC.

Three a.rethree basic ingredients for DFMC theory. First is the consideration of the
time-dependent SchrOdingerequation in terms of imaginary time. Sta.rting from an initial
state ili(O) its imaginary-time evolution is governed by a linear combina.tion of exponentially
increasing or decreasing functions, instead of the normal oscillatory evolution of amplitudes
in real time. Moreover, ifthe hamiltonian is shifted by an amount C equal to the g.s, energy
Eg., all the amplitudes will drop to 0 at t -+ 00 with the exception of the g.s. component,
provided that ili(O) has a nonzero projection on the exact ground state. In other words, the
norm of ili(t) will stabilize when C = Eg$ at t -+ 00. This is a way of determining Eg8 known
as the grow estimator.

The imaginary-time equation is solved with the help of the time-dependent Green
function, in such a form that the equation

ili('R., to + t) = J d'R.'G('R.,'R.',t)ili('R.', to) (1)

gives the wave function alter a time step t. In this and subsequent equations 'R.will represent
the set of all coordinates of the many body system. The time-dependent and energy-shifted
Green function is given by the matrix element

G('R., 'R.', t) = (1l1 exp[-(H - C)t]11l'). (2)

Certainly, the determination of the Green function is a very formidable problem, which is
actually more difficult than determining only the ground state. It is for this reason that one
introduces the second basic ingredient of DFMC theory. One may approximate G('R., 'R.',t)
for a. sufficiently small value of t = r by the form (see [14]for a detailed derivation)

G(1l,1l',r) = exp{(~~;r;r/;4Dr} exp[(E - (V(1l) + V(1l'))/2)r] (3)

In this equation D = 1"I,2/2m is called the diffusion constant, A is the number of particles and
V('R.) = E'<j V(rij) is the full interaction potential.

Given that we want the t -+ 00 limit, eq. (1) is applied repeatedly to an initial t = 0
state using the approximate form eq. (3) up to a sufficiently large time. In parallel, £ is
adjusted to stabilize the norm, so that we obtain in this manner the ground-state energy.

We arrive now to the third basic ingredient of DFMC theory, which is the way in
which the wave function is represented. This hinges on the special property of the positivity
of both the (bosonic) ground-state wa.vefunction and the small time Green function. Because
of this one can interpret ili(t) as a probability distribution function and, in turn, represent
ili(t) by a set of 3A dimensional random vectors. In normal Monte Ca.rlopra.ctice one knows
the functional form of the distribution function and the task is to get random numbers
corresponding to this distribution. Here one works in the inverse way: the distribution
function is not known but it is represented by a set of random points.
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With this representation of W(t) in mind, the action of eq. (1) is to obtain a new set
of random vectors corresponding to t + T from the previous set at time t, and the rules of
this evolution are contained in eq. (3). The first term of eq. (3) is a normalized gaussian and
corresponds to an isotropic diffusion centered at 'R'. The second term is an unnormalized
exponential and corresponds to a source or sink of points. By adjusting £ to the g.s. energy,
the average population remains stable, in correspondence with the stability of the norm of
the wave function.

There are still three technical points to be mentioned. First, the results must be
extrapolated to T -e+ 0, and several runs corresponding to different values of T must be carried
out. Second, one has to distinguish the first set of time steps, which serves to stabilize £
from another subsequent set of steps to control the statistical error of the result. Finally
we should mention a very important improvement of the previous description known as
importance sampling, which incorporates in the algorithm all information corresponding to
an assumed good trial function, and has the effect of accelerating the convergence and lowering
the statistical uncertainty of the result [12,13].

Our results are presented in Figure 2 for the four interactions and several values of
the time step T. In all cases we have found a linear dependence with the time step, and the
intercept of these straight lines with the vertical axis gives the exact (within statistical errors)
value of the ground state energy of 4H e for the mentioned interactions. We have used the
Jastrow function to be described in the next section-as the importance sampling function,
and a total of 900.000 points was used to sample each point of Figure 2.

The numerical values of the energy are shown in the last row of Table 1. Our result
for the MTV potential is compatible with the value of -31.3 ± 0.2 MeV obtained by Kalos
and Zabolitzky [15]. Our result for the Kalos potential is 1MeV lower than the value of
-28.3MeV obtained in the old paper of Kalos [3]. On the other hand the statistical error
in Ref. [3] is surely quite high, and our value is certainly in full agreement with the best
variational estimates.

3. Jastrow variational method

The so-called Jastrow trial function was introduced as early as 1940 by Bijl [16] and
afterwards by Dingle [17]and Jastrow [18]. One may view this theory as a kit to taylor the
variational wave function in such a way that physical requirements related to the nature of
the system or to the properties of the two body interaction are manually incorporated into
the trial function.

Consider our simple problem. Since we deal with a system of finite size, we may take
a so a shell model-like wave function which localizes all particles around the center of mass.
Second, we have in some cases interactions which are strongly repulsive at short distances so
that the wave function should be very small or even null when rij -+ 0 for any pair (ij) of
particles. Moreover one would not like to spoil the independent particle motion when one of
the particles moves far away from the rest. To fulfill these last two characteristics we may
put for each pair of particles a Jastrow correlation factor !(rij) which is small when rij -+ 0
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Table 1. The ground-state energy of 4 He computed with various many body techniques

METHOD KALOS BBI 83 MTV
HOWF -23.15 -28.16 -5.89 -6.40

HOWF+J -29.11 -36.44 -24.29 -29.48

EXP+J -27.3±0.2 -37.6±0.2 -26.0±0.2 -30.2± 0.3
CC2-L -28.74 -37.80 -25.31 -24.17
DFMC -29.25±0.05 -38.5±0.1 -26.9±0.2 -31.5±0.2

and goes to a constant, e.g. 1, when rij ....•00. Thus, the Jastrow variational function for our
problem is

~J = Ilf(r;j) II4>(r;).
i<j i

(4)

In more complex systems one may also introduce such other properties as statistics,
angular momentum or isospin coupling, spin- and isospin-dependent correlations, triplet cor-
relations and so on. All of these properties are incorporated into the trial wave function in
the same way as above.

In eq. (4) there appear single-particle wave functions referred to the origin of coordi-
nates, so that ~ J is not translationally invariant. The obvious way of restoring translational
invariance is to consider that all r; appearing in eq. (4) are actually distances from the center
of mass of the system. However, this willcreate serious technical problems when computing
the expectation value of the hamiltonian .. Another way of dealing with this question is to
consider single particle wave functions which are eigenstates of the harmonic oscillator poten-
tial (HOWF). Then WJ factorizes into two terms, one of which depends only on the center of
mass coordinate and the other being translationally invariant. Then, the true energy of the
system will be the difference of the energy computed with the function W J and the kinetic
energy of the center of mass. This is the procedure that we will follow. Note that the fac-
torization property comes from the shell model part of the wave function, and this property
will be preserved in so far as such additional factors, as the Jastrow factor f(rij), depend
only on relative distances.

The most straightforward calculation with W J consists in assuming functional forms
for f and 4> which depend on several parameters and then searching for the values of these
parameters which give a minimum for the expectation value of the hamiltonian. We have
assumed the very simple forms

4>(r)= exp(_!a2r2)

fer) = 1+ aexp[-(r/b)2]
(5)

which have three free parameters: a, which controls the size of the nucleus, and a and b which
correspond to the depth and range of the correlation. The value of the depth a is mainly
determined by the nature of the interaction alone. However, a and b are strongly correlated so
that one cannot search for the position of the minimum by considering independent variations
of these parameters.
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The energies obtained by means of this simple variational function are shown again
in Ta.ble 1. The row labelled HOWF corresponds to the expecta.tion value in the a.bsence of
correlations, and the row labelled HOWF+J incorpora.tes the two body correlations in the
wa.yabove described. Note that the values of the harmonic oscillator parameter a for these
two rows are not the same. It is very sa.tisfyingto realize tha.t even with so simple an ansatz
for the wave function one obtains almost the entire binding energy of the system, being only
2 MeV a.bovethe exact DFMC result except for the Kalos potential, in which case our results
are almost exact. Part of this energy difference is certainly related to the very sharp shape of
the nuclear surface produced by the harmonic oscillator central field. If in eq. (5) we replace
tj>(r)....•1 and a.t the same time multiply /(r) by exp(-r/c) we gain 1 or 1.5MeV, with the
exception of K interaction which prefers a well defined surface. The values corresponding to
this calculation are shown in the row labelled EXP+J in Table 1. Note tha.t all integrals have
been computed with the Monte Carlo method, and the errors appearing in Table 1 are the
statistical errors of the computation.

The gain in energy due to Jastrow correlations is impressive, ranging from 6 MeV for
the Kales potential up to more than 20 MeV for the S3 and MTV potentials. The flexibility
of this simple form of the correlation is also noticeable, being able to adapt itself to this wide
range of interactions. Figure 3 shows the shape of the correlation of Eq. (5) for the four
potentials considered, showing a clear rela.tionship between the interaction and f .

We have thus seen how simple it is to obtain up to 90% or even 95% of the binding
energy. A natural question arises: How far may we go with a Jastrow ansatz using only
two-body correlations? To answer this question one has to compute the energy with a.wa.ve
function like eq. (4) but allowing the maximum freedom in the variational determination
of f . In other words, one has to carry out an Euler-Lagrange calcula.tion with respect to
[, Calculations of this kind for the MTV potential have been carried out at Urbana [19]
by solving an Euler-La.grange equation for en energy functional obtained at second order
of the cluster expansion with the result of -31.19 ± 0.05MeV, and a.t Pisa [20] using the
exact functional, to obtain -31.35MeV. This small gain of 1MeV is very costly to obtain.
Compa.ring these numbers with the DFMC results one ma.y conclude that the Jastrow form
describes almost completely the physical system.

4. Coupled cluster theory

Exp (S) or Coupled Cluster (CC) theory was first proposed by Coester and Kiimmel
[21]. Its most important fea.ture is the incorporation from the very outset of Goldstone's
linked cluster theorem. A full review of the theory ma.y be found in [5]. The exact wave
function is written in the followingform. Assume a filled Fermi sea, and a.series of.one-body
S17 two-body S2, three-body S3, •.. operators which correspond to coherent Ip-Ih, 2p-2h,
3p-3h ... excitations, respectively. Then the ansatz for the ground sta.te wa.vefunction is

(6)

with Wo corresponding to the Fermi sea.. Expanding in powers the a.boveexponential. one ma.y
understand the physical content of the theory. For example, to produce 3p-3h excita.tions
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one has three possibilities, represented by the operators s~,S1S2 and S3. We then realize
that S3 will only contain true linked 3p-3h excitations, the unlinked ones being contained in
the other two operator products .

.In the form given by eq. (6) the theory is not translationally invariant (in finite sys-
tems), because the exponential factor spoils the basic factorizability property of the harmonic
oscillator 'l'o wave function. For a system of bosons we have found [22] a simple modification
of eq. (6) which preserves the translational invariance. Up to two body clusters it reads

(7)

where N represents the normal ordering, and 82 is an admixture of the previous SI and S2
given by

(8)

with

n~= L (nO,OO,Olniii,njii,O)[a~iti x a~A]oaoao
n,t,nj

(9)

where the coefficients S~ are numerical amplitudes to be determined, a~m creates a single-
particle harmonic oscillator state with quantum numbers (nlm), the subscript 0 == (000),
and the sum over ni, ii and nj has no other restrictions than those implied by the Brody-
Moshinsky bracket. In particular, (n;l;) may be equal to (00) and eq. (8) contains both
1p-1h and 2p-2h excitations. The particular combination shown will guarantee translation
invariance. Note that n~corresponds globally to a excitation energy of 2n1iw.

Perhaps it is more interesting to look at the coordinate representation of the action
of 82 on the vacuum state. Using standard Fock algebra one may obtain the correspondence,

n2'l'0 = Const X LL~1/2)(a2rlj/2)'l'0
i<j

(10)

where L~1/2) is the associated Laguerre polynomial corresponding to an (n,i = 0) relative
motion of a pair of nucleons. Quadratic terms like n~n2correspond to one pair (ij) in
relative state (nO) and another pair (kl) in relative state (mO) with both particles k and I
different from i and j.

Restricting ourselves to linear terms only from the exponential in eq. (7) , we may
rewrite the simplified CC translationally invariant wave function in the general coordinate
form

'l'CC2-L = [1 + Lg(rij)]'l'o
i<i

(11)

. to bring out the similarity with the Jastrow ansatz. One can then work with eq. (8) using
standard shell model and Fock algebra machinery, or with equation (11) in the same manner
as in the case of Jastrow form. We have preferred the first form, to maintain ourselves as
close to the original ansatz as possible, but for the case of gaussian shaped interactions a
special algorithm based on the properties ?f the generating function of Laguerre polynomials
was used, allowing us to extend the calculation up to incredibly high values of n ~ 30, or
equivalently up to 601iw excitation quanta. Solving the linear CC equations in the usual
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form [5] is equivalent to diagonalize a finite matrix, so that the linear CC method gives
actua.lly a variational upper bound to the binding energy. The variation of the results with
the number of excitations n is shown in Figure 4, and the convergence is strongly tied to
the complexity of the interaction, being very rapid for the Kalos potential and quite slow for
the S3 interaction. The results for the MTV potential were obtained by using the standard
shell-model machinery and we could not go further than n = 19. The energy at this value is
not yet stabilized. This simply means that we have used a poor basis in which to solve CC
equations, which would perhaps have been better solved in coordinate representation [23].

The numerical results of the binding energy are shown again in Table 1, in the row
labelled CC2-1 (1 for linear). Note that the value for MTV is still far from convergence. It
was a nice surprise to find that the CC2-1 results, corresponding to an ansatz which is much
simpler than the Jastrow variational method, produced results of comparable quality. Unfor-
tunately, the only case with which we may compare corresponds to the MTV potential, where
we have not attained convergence. For this interaction Zabolitzky [24] obtained the value of
-31.24 MeV, very close to the exact DFMC result, by using the full CC theory. There is also
a configuration interaction calculation [25] for MTV potential, which considers a.ll possible
p-h excitations up to 10Tiw (a total of 2765 basis states) with the result of -18.31 MeV,

which is very far from both our n=19 result (20 basis states) and, obviously, from the fully
converged value. We could say that CC theory also gives a rather clever selection of the
important basis states.

5. Summary

This work was planned with a basic didactical purpose. The hope is that after reading
it, the reader will be convinced of the basic simplicity of the theories discussed here, as well
as of their high quality, even with the drastic simplifications and simple forms used for the
calculations. Nevertheless, we should not conceal the fact that even with a.ll these simplifica-
tions the calculations still involve a large amount of algebraic as well as computational effort.
Certainly, the many-body problem is not a simple question.
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