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SHAPE OPTIMISATION OF TWO-DIMENSIONAL ANISOTROPIC 

STRUCTURES USING THE BOUNDARY ELEMENT METHOD 

 

Azam Tafreshi Aerospace Engineering, School of Engineering 

   University of Manchester, Oxford Road, Manchester M13 9PL, UK 

   atafreshi@manchester.ac.uk 

ABSTRACT  

A shape optimisation procedure is developed, using the boundary element method, for two-

dimensional anisotropic structures to minimise weight while satisfying certain constraints upon 

stresses and geometry.  A directly differentiated form of boundary integral equation with respect to 

geometric design variables is used to calculate shape design sensitivities of anisotropic materials.  

The boundary element method is very suitable for shape optimisation and in comparison with the 

finite element method needs fewer data, related only to the boundary of the structure being 

considered.  Because a directly differentiated form of the boundary integral equation can be used to 

determine the derivatives of the objective and constraint functions, the accuracy of computation is 

very high. Because of the non-linear nature of weight and stresses, the numerical optimisation 

method used in the program is the feasible direction approach, together with the Golden Section 

method for the one-dimensional search.  Three example problems with anisotropic material 

properties are presented to demonstrate the applications of this general purpose program. 

Keywords: Shape optimisation, boundary element method, design sensitivity analysis, 

anisotropic materials 

 

NOTATION 

A  matrix containing the integrals of the traction kernels 

Ajk  complex constants 

B  matrix containing the integrals of the displacement kernels 

Cjk(P)  limiting value of the surface integral of Tjk (p,Q)   

Ds  operator (s=1,4) 

Ek  Young’s modulus in the xk direction  

F  Objective function 

G12  shear modulus      

J()  Jacobian of transformation from global Cartesian coordinates 

  to intrinsic coordinates of the element   
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m1k, m2k unit vectors tangent and normal to the surface   

n1, n2 direction cosines of the unit outward normal vector to the surface of the  

 elastic body    

N
c
() Quadratic shape function corresponding to the cth node of the 

 element    

P load point at the surface of the elastic domain 

Q field point at the surface of the elastic domain  

(Ri,i) polar coordinates 

rij complex constants 

S area of a component in 2D 

Smn elastic compliance matrix 

S jk  transformed lamina compliance matrix   

tj  traction vector        

Tjk(P,Q)  jth component of the traction vector at point Q due 

  to a unit point load in the kth direction at P    

uj  displacement vector         

Ujk  jth component of the displacement vector at point Q due 

  to a unit point load in the kth direction at P 

V1,V2,V3,V4 Invariants 

W  weight 

W0  initial weight  

xi  rectangular Cartesian coordinates 

zj  Complex coordinates 

j, j  real constants 

  lamina orientation angle with respect to the x and y axes   

jk  Kronecker delta       

jk  strain tensor  

  intrinsic coordinates of isoparametric quadratic element  

i  coordinates of load point 

  real functions of the Cartesian and intrinsic coordinates respectively at each 

integration point 

s  roots of the characteristic equation  

jk  Poisson’s ratio 
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max  maximum equivalent stress     

jk  stress tensor   

  Airy stress function 

1,2  real functions of the Cartesian and intrinsic coordinates at each integration 

  point  

 

1. INTRODUCTION 

Shape optimisation is an important area of current development in mechanical and structural 

design.  Computerised procedures using optimisation algorithms can iteratively determine the 

optimum shape of a component while satisfying some objectives, without at the same time violating 

the design constraints.  However, in this field of research the analysis has been mostly concentrated 

on isotropic materials. 

 

The utilisation of composites in aerospace applications is well established today due to the known 

benefits such as high specific stiffness or strength and the materials tailoring facilities for creating 

high performance structures.  It would be beneficial to apply the numerical shape optimisation 

algorithms for the design of anisotropic structures. 

 

The boundary element method is an attractive alternative to the finite element technique for a wide 

range of applications in stress analysis, is particularly well established for linear elastic problems, 

and has a number of advantages over the finite element technique.  It greatly simplifies mesh data 

preparation, because only the surface of the component or structure to be analysed needs to be 

discretised.  It needs less computing time and storage for the same level of accuracy because within 

the solution domain the governing differential equations are satisfied exactly, rather than 

approximately as in the case of the finite element method.  In using the boundary element method, 

less unwanted information about internal points is obtained.  Since it is a surface-oriented 

technique, it is particularly well suited for shape optimisation problems. 

 

This work presents the weight minimisation of two-dimensional anisotropic structures using the 

boundary element method. The steps that are required are as follows: shape representation, 

boundary element analysis to calculate stresses and displacements, design sensitivity analysis for 

calculating derivatives, numerical optimisation to find the optimum solution iteratively, and 

boundary element mesh re-generation as the optimisation proceeds. It should be noted that to the 
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author’s knowledge no other publications are available on the shape optimisation of anisotropic 

structures.  

 

In a recent study by the author [1], a directly differentiated form of boundary integral equation with 

respect to geometric design variables was used to calculate stress and displacement derivatives for 

2D anisotropic structures.  The accuracy was compared against the results of the finite difference 

applied to the boundary element analysis.  Not suprisingly, results obtained by analytical 

differentiation are much more accurate.  For the finite difference method to give the same level of 

accuracy, double precision arithmetic is necessary and the computational costs are substantially 

higher.   

 

Also an optimum shape design algorithm [1] in two dimensions was developed by the coupling of 

an optimising technique and a boundary element stress analyser for stress minimisation of 

anisotropic structures.  The numerical optimisation method used in the program is the extended 

penalty function approach, using the BFGS variable metric for unconstrained minimisation, 

together with the Golden Section method for the one-dimensional search.  Hermitian cubic spline 

functions were used to represent boundary shapes.  Hermitian cubic splines are well suited for the 

boundary shape representation, and complex geometries can be described in a very compact way by 

a small number of design variables.Applications of this general purpose computer program to the 

optimum shape design of bars and holes in plates with anisotropic materials were presented[1].  It 

has to be mentioned that in an earlier study by the author [2-5] shape design optimisation of 

isotropic structures using the boundary element method was carried out and applications of the 

developed programmes to the optimum design of a series of loaded structures were presented. 

 

This paper describes the implementation of numerical techniques in a general-purpose computer 

program to perform shape optimisation to minimise weight of two-dimensional anisotropic 

structures while satisfying certain constraints upon stresses and geometry.  To solve the overall 

optimisation problem, the feasible direction method together with the Golden Section method [6] 

for the one-dimensional search are employed.  Since both weight and stresses are nonlinear 

functions of design variables, then the feasible direction method is more reliable because it deals 

directly with the nonlinearity of the problem. Assuming a uniform mass density and structural 

thickness, minimising the structural weight is equivalent to minimising the area and therefore the 

objective function is simply the area of the structure.  Since during the optimisation procedure the 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. In: Journal of Strain Analysis for Engineering Design, Vol. 38, No. 3, 05.2003, p. 219-232, 14p. 

5 

 

shape of the boundary is continuously changing and is not regular, area is calculated by the 

boundary element method.  

 

In order to show the applications of this general-purpose program, three examples; a cantilever 

beam under lateral load, a circular plate with a cavity subject to internal pressure and a link plate 

under tensile and bending moment loads with anisotropic material properties are selected for the 

analysis. 

 

2. CONSTITUTIVE EQUATIONS FOR PLANE ANISOTROPIC 

  ELASTICITY 

The stress-strain relations for a two-dimensional homogeneous, anisotropic elastic body in plane 

stress is 
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where jk and jk(j,k=1,2), are the stresses and strains, respectively, and the coefficients Smn are  the 

elastic compliances of the material. These compliances can be written in terms of engineering 

constants as 

S
E

S
E E

S
E G

S
E

S
E G

S
G

11

1

12
12

1

21

2

16

12 1

1

1 12

12

22

2

26

12 2

2

2 12

12

66

12

1

1 1

      

   

   

 

, ,

, ,

    (2) 

where Ek is the Young’s modulus in the xk direction, G12 is the shear modulus in the x1-x2 plane and 

jk is the Poisson’s ratio. For specially orthotropic materials,  S16=S26=0. [7]. 

The compatibility equation of strains is  

 



 



 

 

2

11

2

2

2

22

1

2

2

12

1 2

2
x x x x

          (3) 

and equilibrium is satisfied by taking stresses in terms of derivatives of the Airy stress function 

(x1,x2) as 
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Combining equations 1,3 and 4, the governing equation for the two dimensional problem of 

anisotropic elasticity can be obtained 
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By introducing the operator Ds(s=1,4) as 

D
x x
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
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         (6) 

Equation (5) becomes 

 D D D D1 2 3 4 0           (7) 

and s are the four roots of the characteristic equation 
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In order to have a solution for the stress function, the term in square brackets must be zero.  

Leknitskii [7] has shown that, for an anisotropic material, these roots are distinct and must be either 

purely imaginary or complex and they may be denoted by 

         1 1 1 2 2 2 3 1 4 2     i i, , ,    (9) 

where j and j, (j=1,2), are real constants, i  1  and the overbar represents the complex 

conjugate. The characteristic directions may thus be denoted by 

z x x jj j  1 2 1 2 ,         (10) 

and their complex conjugates. 

 

For a generally orthotropic lamina, the strains can be expressed in terms of the stresses in 

nonprincipal coordinates of the laminae as[8] 
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where the S jk  are the components of the transformed lamina compliance matrix which are defined 

as follows: 
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where the invariants(V1, V2, V3, V4) are 
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The subscripts 1 and 2 are the principal coordinates of the lamina and  is the lamina orientation 

angle with respect to the x and y axes.  

 

3. REVIEW OF THE BOUNDARY ELEMENT METHOD FOR ANISOTROPIC 

 MATERIALS 

The boundary integral equation in the direct formulation of the BEM for anisotropic materials is an 

integral constraint equation relating boundary tractions(tj) and boundary displacements(uj) and it 

may be written as 
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P(1,2) and Q(x1,x2) are the load and field points, respectively. The constant Cjk depends on the 

local geometry of the boundary at P, whether it lies on a smooth surface or a sharp corner.  In terms 

of generalised complex variables 
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the fundamental solution for displacements and tractions, respectively,  are as follows: 
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nj are the unit outward normal components at Q with respect to the x1-x2 coordinate system. 

The constants rkj are 
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and Ajk are complex constants which may be obtained from the following set of equations  
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jk is the Kronecker delta.  For the details of these, the reader is referred to references [9-11]. 
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The boundary element implementation of equation 14 entails boundary discritization.  Quadratic 

isoparametric elements are chosen for the analyses.  Substitution of these isoparametric 

representations into equation 14 will result in a set of linear algebraic equations for the unknown 

displacements and tractions at the nodes on the boundary of the solution domain as follows 

 AU=B          (19)  

A and B are the matrices which contain the integrals of the traction and displacement kernels, 

respectively.  These linear algebraic equations may then be solved by standard matrix solution 

techniques. 

 

To calculate surface stresses from the already calculated surface tractions and displacements, it is 

necessary to consider a local system of coordinates(1,2).  Let m1k be the unit vector in direction 

tangential to the surface, and m2k the one in the direction normal to the surface.  Let uj, tj, jk, and jk 

be the displacements, tractions, strains, and stresses, respectively, in the local coordinates.  The 

displacement in the tangential direction is 
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Then, using the constitutive equation (Eq. 1), the components of the stress tensor in the local 

coordinate system can be calculated, and by a simple transformation the stress components in the 

global system can be obtained. 

 

4. SHAPE DESIGN SENSITIVITY ANALYSIS OF 2D ANISOTROPIC 

 MATERIALS 

Implicit differentiation of the BIE equation with respect to a design variable, xl(l=1,2)(which is 

most likely to be the coordinate of a node on the movable part of the boundary) results in the 

following equation 
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The derivatives of the terms which only depend on the geometry will be carried out similar to 

the isotropic materials [2-5].  The derivatives of the remaining terms such as Ujk and Tjk for 

anisotropic materials will be as follows: 
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(23) 

where the coefficients j and Ajk depend on the material properties and are independent of the 

design variables.  To calculate the above derivatives the complex values,  ln z j and 
1

z j

, can be 

written as 

   ln ln argz z i z

z

z

z

j j j

j

j

j

 


1

2

                (24) 

Defining the real functions j and j  as 
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The complex coordinates and their conjugates can be written as 

z ij j j    , z ij j j          (26) 

By substituting equations 24-26 into equations 23 the derivatives of the kernel products with 

respect to the design variable xl can be obtained. 
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Therefore, the design sensitivity analysis is carried out by implicit differentiation of the 

structural response (equation 19) with respect to design variables xl, which are the coordinates of 

some nodes of the movable part of the boundary, 


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
    (30) 

This is a set of linear algebraic equations for the unknown gradients, 




U

xl

, and equivalent to 

solving the same equation as 19.  Thus, if the quantity in brackets in equation 30 is separately 

assembled, then the displacement derivative vector   




U

xl

 can be computed in one pass by re-

entering the equation solver. 

 

The gradients of stresses usually require the intermediate calculation of the gradients of 

displacements with respect to the design variables. For the derivatives of the stresses, both sides 

of equation (21) are differentiated and the gradients of strain in the tangential direction is 

obtained from 
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           (31) 

which is a function of gradients of displacements previously calculated.  The gradients of the 

stresses can then be determined by differentiating the constitutive equations (11) for the 

anisotropic materials. 

 

In reference [1], the derivatives of displacements and stresses with respect to design variables 

for anisotropic materials are calculated both by this direct analytical differentiation method and 

also by the finite difference method.  The former is shown to be both more accurate and less 

time consuming. 

 

5. ANALYTIC CALCULATION OF WEIGHT AND ITS DERIVATIVES BY  THE 

BOUNDARY ELEMENT METHOD 

For a component in a two-dimensional case with a uniform mass density and thickness, 

minimising the structural weight is equivalent to minimising the area.  Here, uniform mass 

density and thickness for anisotropic materials have been assumed.  
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Let R be a closed bounded region in the x1-x2 plane whose boundary c consists of a finite 

number of smooth curves.  Let f(x1,x2) and g(x1,x2) be functions which are continuous and have 

continuous partial derivatives within the domain R.  According to Green’s theorem [12] 

 








g

x

f

x
dx dx fdx gdx

cR 1 2

1 2 1 2








         (32) 

Therefore, the area of the domain R ( 
R

dxdxS 21 ), using Green’s theorem, can be written as a 

line integral over the boundary 

  
c

dxxdxxS 1221
2

1
        (33) 

Now assume the boundary of the domain is dicretized to M quadratic isoparametric elements, 

and the coordinates at nodal points are expressed as 

   x N xj

c

j

c           (34) 

where N
c
() is the quadratic shape function for local node number c, and  is the intrinsic 

coordinate local to each element.  Therefore, the area of the domain can be obtained. 
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J() is the Jacobian of transformation and n1 and n2 are direction cosines of the unit outward 

normal vector to the surface of the elastic body. 
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By substituting equations 36 in equation 35 the area of the domain can be obtained, 
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By differentiating equation(37) with respect to the design variable xl, the weight derivatives can 

be calculated considering that if xl is the x1 coordinate of movable node then 
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If xl is the x2 coordinate of movable node then 
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6. NUMERICAL OPTIMISATION METHOD 

Minimum weight design of structures or mechanical components, as long as the stresses and 

displacements are within some allowable range, always has been a major desire for engineers. 

Structures must be strong enough while a minimum quantity of materials for their manufacture 

is used.  The minimisation of weight to meet imposed constraints such as maximum allowable 

stresses, displacements, frequencies, etc. is a mathematical programming exercise.   

 

The general problem to be dealt with here is the minimisation of structural weight while 

satisfying certain constraints upon stresses and geometry.  Since both weight and stress 

constraints are nonlinear functions of the design variables, then the feasible direction method has 

been selected as the numerical optimisation technique.  This method determines a usable-

feasible direction in which the design point may be moved in the design space.  This direction is 

‘feasible’ because it does not violate, at least over an infinitely small step, any of the constraints; 

and ‘usable’ because it results in a reduction of the objective function.  Using gradient 

information, the direction is found and along this direction, a one-dimensional search is next 

performed.  This technique is very suitable for highly non-linear shape optimisation problems 

because the design point is always feasible [13]. For more details, the reader is referred to 

references [2-6]. 
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7. NUMERICAL RESULTS 

In order to apply the boundary element method for the weight minimisation of two-dimensional 

anisotropic linear elastic problems, a general purpose computer program has been developed.  

This program uses an iterative technique and involves three major steps within each iteration: 

a) an analysis of the stresses for a given design 

b) Sensitivity analysis corresponding to possible changes in design 

c) Improvements to the design, the regeneration of the boundary element mesh. 

 

The flowchart of the programme is shown in Fig.1. 

 

Three examples are selected to illustrate the use of the program.  Three different materials are 

used [14-16] to investigate the effect of engineering constants on the optimum shape design of 

the components. It should be noted that no specific material is being studied.  Every component 

is being treated as a lamina that has four engineering constants (E1, E2, G12 and 12) with a 

lamina orientation angle of zero. Material No. 1 is isotropic, therefore, [E1=E2, 

G12=E1/2(1+12)]. The properties of materials Nos. 2 and 3  are [E1/E2=1.0, G12/E2=2.94, 

12=0.845] and [E1/E2=13.36, G12/E2=0.58, 12=0.295], respectively. See Table 1. 

 

7.1 Cantilever beam under lateral load 

Firstly, an isotropic cantilever beam subjected to a uniformly distributed load is analysed 

(material No. 1).  See Fig. 2.  This example is being used to solve isotropic behaviour as a 

special case of anisotropy.  The objective is to find the optimum shape of edge AB, with CD 

unchanged.  The coordinates of seven points P1-P7, which are equally spaced along AB, are 

selected as design variables.  The model contains 54 quadratic elements, 24 elements on each 

side AB and CD together with 3 elements on each edge AD and BC.  The initial shape chosen is 

a rectangle, which is shown together with the optimum shape in Fig. 3.  Fig. 4 shows the 

variation of weight as a proportion of the initial weight during the optimisation procedure.  The 

analysis is completed in ten iterations with a total weight reduction of 44 percent.  The 

maximum equivalent stress initially is 9.07 and for the optimum shape is 9.1.  The results are 

identical with those of references [2,4]. 
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7.2 Circular plate with a cavity under internal pressure 

Fig. 5a shows a circular plate with a central cavity subject to internal pressure.  The objective is 

to minimise the weight of the plate.  Materials Nos 2 and 3 (Table 1) are chosen for the analysis.  

In each case the optimisation procedure is carried out with the maximum allowable limit on the 

equivalent stress not to exceed 1.3 times the maximum equivalent stress of the original 

geometry.  The geometry is symmetric about both coordinate axes, so only the quadrant region 

ABCD needs to be modelled.  See Fig. 5b.  The boundary conditions are v=0 along AB and u=0 

along CD, where u and v are the horizontal and vertical displacements, respectively.  The model 

contains 36 quadratic boundary elements.  12 elements are located on the edge AD and ten 

elements on each side AB and CD. 

The radii of points P1 to P5 located on the inner boundary at the fixed angles, shown in Fig. Q5c, 

are selected as the design variables.  Fig. 6 shows the initial geometry and optimum shapes of 

the cavity in the plate with the selected materials. Fig. 7 shows the variation of weight as a 

proportion of the initial weight during convergence to the optimum.  The analyses for the 

materials Nos 2 and 3 are completed in 17 and 13 iterations with the weight reductions of 13 and 

16 percent, respectively. For material No. 2 the maximum stress for the optimum shape is almost 

the same as the maximum stress of the initial geometry.  For the material No. 3, the maximum 

stress of the optimum geometry is 26% higher than the maximum stress of the original 

geometry. 

 

7.3 Link plate 

This example concerns a link plate loaded through pin joints at its two ends.  Therefore, the plate 

experiences both direct tensile and bending moment loads.  See Fig. 8a.  Taking advantage of 

the symmetry, only the right half of the plate is considered.  The loading applied is a uniform 

internal pressure of 1 unit over the semi-circular region of each hole assumed to be in contact 

with the pin.  The model contains 59 quadratic elements.  The coordinates of thirteen points, P1-

P13, are selected as design variables.  The objective is to find the optimum shape of the outer 

boundary of the link plate.  Materials Nos 2 and 3 (Table 1) are chosen for the analysis. For each 

selected material the optimisation procedure is carried out with the maximum allowable limit on 

the equivalent stress not to exceed 1.3 times the maximum equivalent stress of the original 

geometry. 

Fig. 9 shows the original geometry together with the optimum shapes of the two selected 

materials.  The analysis of the material No. 2 is completed in 10 iterations with 47 per cent 

reduction of weight.  For material No. 3 the analysis is completed in 7 iterations with 24 per cent 
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weight reduction. For both cases the maximum stresses for optimum shapes are 25-28% higher 

than the maximum stresses of the original geometries. 

 

8. SUMMARY 

 

Following a brief review of the mathematical basis of the boundary integral equation method 

(for two-dimensional stress analysis of anisotropic structures), analytical differentiation of the 

boundary integral equation was carried out to compute the derivatives of displacements and 

stresses with respect to changes of the shape design variables.  The design sensitivity analysis 

using the boundary element method was combined with the feasible direction method to form an 

optimum shape design program in two-dimensions for anisotropic structures.  The objective has 

been to minimise weight subject to stress and geometrical constraints.  Three examples have 

been analysed and the results are presented. 
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Table 1 Elastic properties of the selected materials 

 

  

 

 

 Elastic properties 

 

Material No. 

E11 

(GPa) 

E22 

(GPa) 

12 G12 

(GPa) 

Complex parameters 

1                       2 

1) 210.9 210.9 0.29 81.8 i i 

2) 18.9 18.9 0.845 55.6 -0.915+0.403i 0.915+0.403i 

3) 148.07 11.08 0.295 6.40 4.683i 0.780i 
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Inputs material properties, mesh data, boundary conditions 

Inputs design variables, maximum No. of iterations, maximum 

allowable stress, convergence tolerances 

Solves the BIE model and calculates stresses and stores 

 coefficient matrix and second member 

Calculates the objective function(weight) 

Determines the set of active constraints 

Calculates the gradients of constraints 

Calculates the gradients of objective function(Weight) 

No. of Active  

constraints>0 

Begin 

Steepest-descent 

direction[6] 

Usable-feasible  

direction[6] 

NO 

YES 

Steplength procedure for constrained one-dimensional 

minimisation for the best change in the design variables 

Boundary element mesh re-generation 

Convergence? Optimum 

 solution 
End 

Fig. 1  Flow diagram for the weight minimisation algorithm 
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NO 
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Fig. 2    a)  Cantilever beam under lateral load 

  b)  Position of the design variable points on the edge AB 
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Fig. 5 a) Circular plate with a cavity subject to internal pressure 

 b) Boundary conditions    

c) Position of the design variable points around the edge AD 
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Fig. 8 a) A link plate loaded through pin joints at its two ends 

 b) Boundary conditions    

c) Position of the design variable points around the boundary 
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