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A meso-scale site-bond model is proposed to simulate the macroscopic elastic properties of

isotropic materials. The microstructure of solids is represented by an assembly of truncated

octahedral cells with sites at the cell centres and bonds linking the nearest neighbouring sites.

Based on the equivalence of strain energy stored in a unit cell to strain energy stored in a

continuum of identical volume, the normal and shear stiffness coefficients of bonds are derived

from the given macroscopic elastic constants: Young’s modulus and Poisson’s ratio. To validate

the obtained spring constants, benchmark tests including uniaxial tension and plane strain are

performed. The simulated macroscopic elastic constants are in excellent agreement with the

theoretical values. As a result, the proposed site-bond model can be used to simulate the

macroscopic elastic behaviour of solids with Poisson’s ratios in the range from 21 up to 1/2.
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Introduction
The classical homogeneous elasticity is widely used to
describe the macroscopic linear mechanical behaviour of
most materials, even though they are actually hetero-
geneous from a microscopic point of view. However, the
mechanical response of heterogeneous quasi-brittle
materials, such as concrete, rock, graphite or ceramics,
cannot be modelled realistically without explicit con-
siderations of their underlying microstructures. This
requires numerical approaches which are able to account
for not only the elastic stage, but also the initiation,
growth, interaction and coalescence of micro-cracks. The
discrete lattice approach, usually called the meso-scale
approach, shows potential to meet this requirement.1 In
lattice models,1–10 the microstructures of materials are
represented by an assemblage of unit cells or particles.
The lattice sites are placed at the centres of the cells. The
deformation of the represented continuum arises from the
interactions between the lattice sites. The neighbouring
cells are linked through interface bonds, which can be
represented by lattice beam elements or lattice springs.
Compared to the continuum finite element modelling,
lattice models have been shown to be more suitable for
fracture simulation because of their discrete nature.

The lattice models have been successfully applied to the
modelling of quasi-brittle materials. The macroscopic
stress–strain curve for concrete is obtained by using a
lattice beam model based on a two-dimensional regular
lattice with hexagonal unit cells.2,3 However, this lattice

cannot be used for isotropic elastic materials with
Poisson’s ratio larger than 1/3 in plane stress and 1/4 in
plane strain.4 Based on the simplest regular lattice with
cubic cells, a three-dimensional (3D) lattice beam model
has been proposed by Schlangen5 to simulate the crack
development in concrete. It has been shown that this
lattice is only suitable for materials with zero Poisson’s
ratio.6 With respect to lattice spring models, Wang and
Mora7 developed two 3D lattices using face-centred cubic
and hexagonal closely-packed arrangements. Each pair of
sites in the lattice network is connected by spring. It was
found that only isotropic elastic material with Poisson’s
ratio of zero can be represented by these lattices, which is
the same as cubic lattices. To overcome these limitations,
a site-bond based on a bi-regular lattice of truncated
octahedron cells has been recently proposed by Jivkov
and Yates1 for meso-scale modelling of solids. The bonds
of the site-bond assembly are modelled with structural
beam elements. It has been demonstrated that this site-
bond model is able to represent isotropic elastic materials
with Poisson’s ratios up to 1/2.

The main purpose of this work is to reformulate the
site-bond assembly presented in Ref. 1 by modelling the
bonds with two types of elastic springs instead of
structural beam elements to further study the capability
of this lattice arrangement for the macroscopic elastic
behaviour of practical interest. The stiffness coefficients
of springs are analytically determined by equating the
strain energy stored in the discrete and continuum cell.
The derived spring constants are validated through
numerical analyses.

Site-bond model
In the site-bond model, the microstructure of a real
material is represented by tessellating the space into
truncated octahedral cells, as shown in Fig. 1a. The
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truncated octahedron was found to be the best choice
for a regular representation of real materials compared
to the cube, the regular hexagonal prism or the rhombic
dodecahedron.1,6 Each cell has six equal square faces
and eight equal hexagonal faces. The cell centre is
considered as a site, which is connected with its
neighbouring sites by 14 bonds, six bonds B1 in principal
directions through square faces and eight bonds B2 in
octahedral directions through hexagonal faces, as
illustrated in Fig. 1b.

In this study, the bonds are modelled with elastic
springs. The sites have six independent degrees of
freedom: three translational and three rotational. In
principle, each bond should contain six springs: one
normal, two shear, one twisting, and two bending springs
in order to resist the relative displacement and relative
rotations between the two adjacent cells. However, it was
presented that the twisting stiffness kt and bending
stiffness kb are related to the shear stiffness ks and
normal stiffness kn, respectively, with the contribution of
kt and kb to the macroscopic elasticity effectively
negligible in comparison to ks and kn.7 Therefore, only
the normal and shear springs in principal and octahedral
directions are considered herein, as shown in Fig. 1c.

Derivation of spring constants for site-
bond model
In this section, the spring constants are derived from the
macroscopic elastic parameters by equating the strain
energy stored in a unit cell Ucell to the associated strain
energy in the equivalent continuum system Ucont

Ucell~Ucont (1)

The strain energy of the continuum system is given by
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where C represents the stiffness tensor of the material, e
is the strain field and V is the system volume. The strain
energy stored in a unit cell can be expressed as a sum of
the strain energies stored in each internal bond Ub
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in which u(b)
n and u(b)

s stand for the relative displacements

in the normal direction and transverse direction of the

bond, respectively. Let us assume that the bond b links
two sites A and B, then the relative normal and shear
displacements in the 3D global system X1X2X3 can be
written as
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where xiA and xiB are the positions of the sites, LAB is
the length of the bond. By substituting equations (4)–(7)
into equation (3) and performing tensor and vector
manipulations, equation (3) can be expressed as
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in which L(b) is the length of a bond b. Then by equating
the total strain energy stored per unit volume V, the
strain energy density rcont, to that in the unit cell
rcell~Ucell=V and by using Cauchy’s formula,8–10 the
stress tensor of the continuum system can be obtained as
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Finally, the elastic stiffness tensor can be given as

Cijkl~
Lsij
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where dik is the Kroecker’s delta.
Considering the site-bond assembly shown in Fig. 1

and assuming that the unit cell size in the principal
directions is L, the lengths of bonds B1 and B2 are L and
31/2L/2, respectively. The volume of the unit cell V is L3/
2. For each bond, k(b)

n and k(b)
s are the normal and shear

spring constants for bonds B1 and B2, which are denoted
as kp

n and kp
s , ko

n and ko
s , respectively in the following

1 Cellular lattice: a site-bond assembly; b unit cell with bonds; c normal and shear springs
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sections. The direction vectors of bonds B1 and B2 are
given in Table 1.

Hence, by using equation (10) and assuming the two
shearing spring stiffness coefficients are equal within each
bond type but different between the two bond types, B1

and B2, we get the components of the stiffness tensor
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It can be seen from equations (11)–(14) that there are only
three independent elastic constants. This indicates that the
site-bond assembly generates macroscopic cubic elasticity.
With the Voigt notation, which is the standard mapping for
tensor indices, the spring constants can be expressed as
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Meanwhile, from equations (11)–(14), we find that
only when 3kp

n{6kp
s {2ko

n{ko
s ~0, the site-bond assem-

bly is able to yield macroscopic isotropic elasticity. For
isotropic materials, Hooke’s law in terms of matrix form
can be written as
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where E and n are Young’s modulus and Poisson’s ratio,
respectively.

Combining equation (18) and equations (15)–(17), the
relationship between the linear stiffness coefficients of
the bonds and the macroscopic material constants can
be established. However, the four spring stiffness cannot
be uniquely determined because there are only three
equations of equilibrium. To solve this over-determined
problem, the shear stiffness kp

s of bond B1 in principal
directions is assumed to be zero, since the shear stiffness
ko

s has components in principal directions and the
contribution of kp

s to macroscopic elasticity can be
represented in terms of ko

s , as seen in equation (13).
Thus, the other spring constants kp

n, ko
n and ko

s can be
determined as follows
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It can be seen that the shear stiffness ko
s will become

negative when the Poisson’s ratio n exceeds 1/4. This
indicates that the physical Poisson’s ratio range resulting
from the site-bond model is{1vnƒ1=4, since the
negative spring constant seems non-physical. However,
it is proved by molecular dynamics simulations that the
negative stiffness still has a physical explanation at the
molecular level.10 Therefore, the shear spring with
negative stiffness can be added in order to model a
material with a Poisson’s ratio higher than 1/4 but lower
than 1/2.

Benchmark tests
Numerical benchmark tests are carried to validate the
derived spring stiffness coefficients. The macroscopic
Young’s modulus and Poisson’s ratio are selected as
E511 000 MPa and n50?2. The stiffness coefficients of
springs are calculated from equation (19). A cubic site-
bond arrangement with size of 10L by 10L by 10L is
used for simulations. This means that there are 10 unit
cells in each principal direction; illustration given in
Fig. 2. The assembly is subjected to various loading
conditions, i.e. uniaxial tension and plane strain, to
estimate the macroscopic Young’s modulus, Poisson’s
ratio and modulus of rigidity independently.

For uniaxial tension, the sites X150, X250 and X350
are fixed in the X1, X2 and X3 direction, respectively. A
displacement of L in the X3 direction is applied at sites
X3510L and other sites are free, which induces a
macroscopic tensile strain et~e3~L=10L~0:1. The
macroscopic Poisson’s ratio n for tension and compres-
sion is calculated according to n~{e1=e3 or n~{e2=e3,
in which e1~u1=10L and e2~u2=10L are identical. Here,

Table 1 Direction vectors of bonds B1 and B2 in the site-
bond assembly

Bond type Bond no. b j(b)
i

B1 1 (1, 0, 0)
2 (0, 1, 0)
3 (0, 0, 1)
4 (21, 0, 0)
5 (0, 21, 0)
6 (0, 0, 21)

B2 7 (1/31/2, 21/31/2, 21/31/2)
8 (1/31/2, 1/31/2, 21/31/2)
9 (1/31/2, 21/31/2, 1/31/2)
10 (1/31/2, 1/31/2, 1/31/2)
11 (21/31/2, 1/31/2, 1/31/2)
12 (21/31/2, 21/31/2, 1/31/2)
13 (21/31/2, 1/31/2, 21/31/2)
14 (21/31/2, 21/31/2, 21/31/2)

(18)
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u1 and u2 stand for the average displacements in the X1

and X2 directions of sites on plane X1510L and
X2510L, respectively. The macroscopic modulus of
elasticity is estimated using E~st=et, where the macro-
scopic stress in the X3-direction st is computed by
st~f3=(10L:10L) and f3 is the reaction force at sites on
plane X350. Figure 3 demonstrates the contour plot of
the simulated von Mises stress by site-bond model under
uniaxial tensile loading. The calculated macroscopic
elastic modulus E is 11 225 and Poisson’s ratio n is
0?1973, which have a relative error of about 2?05 and
1?35%, respectively, compared to the imposed values.
This shows that the proposed site-bond model is capable
of simulating the elasticity of solids under uniaxial
tension with a very good accuracy.

With respect to plane strain tension test, the sites on
both X150 and X1510L are fixed in the X1 direction.

The sites on X250 are fixed in the X2 direction. The sites
on X350 are fixed in the X3 direction. The displacements
of L in the X2 and X3 directions are imposed at sites
X2510L and X3510L, respectively. The other sites
are free. Thus, two macroscopic tensile strains
e2~L=10L~0:1 and e3~L=10L~0:1 are imposed on
the lattice and the strain in the X1 direction is zero. The
macroscopic modulus of rigidity can be computed
according to G~ s3{l(e1ze2ze3)½ �=2e3, in which the
macroscopic stress in the X3 direction s3 is calculated
using s3~f3=(10L:10L) and f3 is the measured reaction
force at sites on plane X350. The Lamé’s first parameter
is calculated by l~En= (1zn)(1{2n)½ �. The Poisson’s
ratio and Young’s modulus are obtained as
n~s1=(s2zs3) and E~ s3{n(s1zs2)ð Þ=e3. It is found
that the Young’s modulus and Poisson’s ratio obtained
from plane strain tension test are the same as those
derived from uniaxial tension test. The calculated shear
modulus according to the method as introduced before-
hand is 4691, which has a 2?35% difference relative to
the theoretical value of G~11000= 2(1z0:2)½ �~4583:33
MPa. This means that the site-bond model with the
derived normal and shear spring constants is able to
simulate the elastic behaviour of an isotropic material
under shear loading.

To investigate the influence of the number of unit cells
on the estimated macroscopic elastic constants, a set of
cubic cellular lattices with various sizes from L3 to
10 648L3 is generated. Simulations are performed with

3 Simulated von Mises stress under uniaxial tension

4 Predicted Young’s modulus against number of cells in

principal direction

5 Predicted Poisson’s ratio against number of cells in

principal direction

2 Generated lattice 10L610L610L
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the plane strain boundary conditions. The predicted
macroscopic Young’s modulus, Poisson’s ratio and
shear modulus against the number of unit cells in each
principal direction of a cubic region are plotted in
Figs. 4–6.

It can be seen that the simulated macroscopic Young’s
modulus and shear modulus decrease with the increase
in the number of cells in principal direction. On the
contrary, the estimated Poisson’s ratio increases with
the increasing size of cellular lattice. Eventually, the
simulated elastic constants tend to their corresponding
theoretical values with the increase in the size of cellular
lattice. This is attributed to the smaller boundary effect
when the size of region is larger. When the number of
cells in principal direction is higher than 20, the
estimated results are close enough to the theoretical
values.

The generated site-bond model can be considered as a
valid representation of isotropic elastic material. Based
on the definition of criterion for bond failure and
relevant implementation as presented in a previous study
by Jivkov et al.,6 the fracture process and damage
evolution in quasi-brittle materials can be simulated by
using the proposed site-bond model. This is a subject of
ongoing work. In addition, the effects of microstructure
parameters, such as porosity, pore size distribution and
connectivity of solid phase, on the macroscopic beha-
viour, stress–strain response of quasi-brittle materials
will be investigated. The results of these aspects will be
reported in future publications.

Conclusion
This work presents a meso-scale model for macroscopic
elasticity of solids. The model is based on a cellular
lattice of truncated octahedrons, filling the space
compactly. The cellular architecture is transformed into
discrete site-bond lattice with bonds containing normal
and shear springs. The spring stiffness coefficients are
obtained as functions of macroscopic elastic constants.

From the findings of the present study, the following
conclusions can be drawn.

1. The site-bond assembly represents generally a
macroscopic cubic elasticity and is able to deliver any
macroscopic isotropic elasticity.

2. The physical Poisson’s ratio range results from the
site-bond model is {1vnv1=2.

3. For uniaxial tension test, the estimated macro-
scopic Young’s modulus and Poisson’s ratio show a very
good agreement with the theoretical ones.

4. For plane strain test, the measured macroscopic
modulus of rigidity fit very well with the theoretical
value.

5. The size of cellular lattice plays an important role
in the accuracy of simulation due to boundary effect.
When the number of cells in principal direction is higher
than 20, the obtained simulation results are close enough
to the theoretical data.

6. The proposed site-bond model is regarded as a very
good representation of isotropic elastic materials, and
will be applied to simulate the fracture process and
damage evolution in quasi-brittle materials.
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