
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

Learning-Based Procedural Content Generation
Jonathan Roberts and Ke Chen, Senior Member, IEEE

Abstract—Procedural content generation (PCG) has recently
become one of the hottest topics in computational intelligence
and AI game research. While some substantial progress has been
made in this area, there are still several challenges ranging from
content evaluation to personalized content generation. In this
paper, we present a novel PCG framework based on machine
learning, named learning-based procedure content generation
(LBPCG), to tackle a number of challenging problems. By
exploring and exploiting information gained in game development
and public player test, our framework can generate robust
content adaptable to end-user or target players on-line with
minimal interruption to their gameplay experience. As the data-
driven methodology is emphasized in our framework, we develop
learning-based enabling techniques to implement the various
models required in our framework. For a proof of concept, we
have developed a prototype based on the classic open source first-
person shooter game, Quake. Simulation results suggest that our
framework is promising in generating quality content.

Index Terms—Procedural content generation, machine learn-
ing, content categorization, public experience modeling, player
categorization, on-line adaptation, first person shooter: Quake

I. INTRODUCTION

The video games industry has been expanding rapidly
and even surpassed the movie industry in revenue [1]. The
expectations of consumers have gradually increased to the
point where players and critics demand cutting edge graphics,
immersive game play and strong replay value from new
releases. Generating game content is costly, as it requires
many different skill sets and long periods of development.
For example, generating the skeletal animation for a single
character can take several months. It is therefore of the upmost
importance to create content in timely and efficient manner.

Procedural Content Generation (PCG) is the process of
generating content for a video game automatically using
algorithms. A wide variety of content can be generated, e.g.,
art assets such as terrain and textures and even high-level game
play structures such as storyline and characters. PCG not only
has the potential to provide a basis built upon by developers
but also can provide an endless stream of content for a player
to extend the lifetime of the game. If used properly, it can
reduce the amount of resources required to build a game and
thus drive down costs. Although PCG often seems like a good
approach, it may be very tricky to get right and could actually
be more trouble than creating handcrafted content [2].

In recent years, a variety of approaches have been proposed
to improve PCG. Most of such approaches generally fall under
the umbrella of search-based procedural content generation
(SBPCG), a terminology coined by Togelius et al [3]. Given
a potential game content space, SBPCG employs evolutionary
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or other metaheuristic search algorithms to explore the space
effectively to find content appealing to players. This can result
in more robust and trustworthy PCG algorithms that require
far less manual configuration than traditional approaches. In
the past few years, researchers have used different SBPCG
techniques to adapt levels for games such as 2D platformers
[4], [5], [6], [7], first-person shooters [8], rogue-like games
[9], racing games [10] and real-time strategy games [11], [12].
Some of the latest work in PCG was collected in a special issue
of this journal [13]. Although substantial progress has been
made in PCG, existing PCG techniques still encounter a num-
ber of challenging problems such as content representation,
content space management, content quality evaluation, content
generation efficiency and so on, which have been thoroughly
summarized in [3].

It is well known that the same game content can elicit
various emotional and cognitive experience for players of
different types. As a result, experience-driven procedure con-
tent generation (EDPCG) [14] has become an active area in
PCG research. The ultimate goal in the EDPCG is enabling
game engines to generate personalized content that optimizes
players’ affective/cognitive experience. As pointed out by
Yannakakis and Togelius [14], two main technical challenges
in EDPCG are how to effectively model players’ emotional
and cognitive experience and how to efficiently find out quality
content that optimizes experience according to their experience
models. While different approaches to the EDPCG have been
studied [14], there are still several open problems pertaining
to two challenges in general, ranging from interruption of
gameplay experience in data collection to optimization of the
EDPCG algorithms in personalized content generation.

Machine learning is a data-driven methodology for knowl-
edge acquisition/modeling and has been successfully applied
in many different AI areas ranging from machine perception
to natural language understanding. As pointed out by Lucas
et al in the preface of their edited book [15], “It would
seem natural for an academic researcher to think that there
were ample applications for learning algorithms in computer
games. However, it is rather rare to see machine learning
used in any published games ...”. As reviewed in [16], the
predominant learning technique used in computer games is still
evolutionary learning while many versatile learning paradigms
and algorithms have yet to be explored so far. To the best
of our knowledge, there is little work that systematically
investigates the application of machine learning in PCG apart
from few successful studies, e.g., [5].

Motivated by the typical commercial video game develop-
ment cycles, we present a novel PCG framework by means
of machine learning, termed the learning-based procedural
content generation (LBPCG), in this paper. To address several
challenging issues in PCG, our LBPCG explores and exploits
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knowledge and information gained from game developers
and public testers via a data-driven methodology towards
minimizing interruption to the end-user gameplay experience.
Relying on generalization of component models trained with
inductive learning, our framework tends to direct a game con-
tent generator towards generating robust yet appealing content
to an arbitrary player. As a result, the LBPCG has several
salient characteristics including avoiding hard coded content
evaluation functions, effectively limiting a search space to the
relevant content likely to elicit players’ specific cognitive and
affective experience for adaptivity, and minimizing interfer-
ence to the end-user gameplay experience.

Our main contributions in this paper are summarized as
follows: a) we propose a learning-based PCG framework to
tackle a number of challenging problems in PCG, b) we
develop learning-based enabling techniques to support the
proposed framework, and c) we apply our proposed framework
to a classic first-person shooter game, Quake [17], for a proof
of concept, which may generate quality content appealing to
the end-user as demonstrated in our simulation.

The rest of paper is organized as follows. Sect. II reviews
the previous work that motivates our studies. Sect. III presents
our LBPCG framework, and Sect. IV describes the enabling
techniques to support the LBPCG. Sect. V reports simulation
results. The last section discusses relevant issues.

II. MOTIVATION

Commercial video game development is usually very well-
structured, incorporating many work-flows for design, testing
and deployment. Most companies have developers consisting
of programmers, designers, artists, production managers and
testers. Games will go through many iterations, where features
are added, tested by engineers, then released for the test teams.
After a game has reached a certain level of maturity, it is
sometimes released to public testers. Besides bug finding, the
other reason behind doing this is that in the games industry it is
common for developers to be happy with the game they have
created, but public opinion can be very different. Garnering
public opinion is useful and can avoid the disastrous event
of releasing a bad, expensively made, game to the public.
After all production tests pass, the game goes “gold” and
is released to the publishers for distribution to the end-user
(target players).

It is well known that the risk of catastrophic failure and a
lack of quality are among common concerns for existing PCG
techniques [3] given the fact that a content generator may
generate unplayable content or content that is not appropriate
for anyone’s tastes. Illegitimate content has some extremely
undesirable property such as being unbeatable, e.g., a map that
consists of rooms full of monsters that immediately kill the
player no matter their skill level. Some efforts have been made
to ward off this problem. For example, playability/accept-
ability issues have been formulated as a constrained content
optimization problem [6], [11] that can be solved by the
feasible-infeasible two-population genetic algorithm. While
such methods effectively generate quality content, the fitness
function on constraints has to be handcrafted and the content

generation process might be less efficient due to intensive
computing involved in the population-based evolutionary com-
putation in general. In addition, studies in [7], [9] describe
methods of combining off-line and online models, one for
optimizing playability/winnability and the other for optimizing
challenge/skill, with some success. The integrated model may
avoid catastrophic failure and then adapt the generated content
to suit a specific player online. Although some progress was
made in an experiment with Infinite Mario [7], it is still unclear
to what extent models of different functionality and purpose
can be combined to form robust composite models.

In general, personalization of content for a target player
is driven not only by factors such as playability and skill
but also a player’s affective and cognitive experience [14],
which poses another big challenge to PCG. To generate the
favored content for target players, players’ styles/types need to
be identified correctly and their cognitive/affective experience
must be measured accurately. Obviously, it is undesirable to
interfere with the gameplay experience of end users or target
players, so asking them any questions such as “how much
fun was that content?” should be avoided. To our knowledge,
however, most of existing methods need to identify the target
players’ styles/types and to measure their cognitive/affective
experience by learning from their feedback [19], [20] or behav-
ior [14], which leads to a burden to target players. Moreover,
existing methods often utilize pre-defined player types/styles,
e.g., traits or personalities in terms of psychology, to categorize
target players explicitly, which might not encapsulate all player
types and also lead to difficulty to infer such pre-defined yet
less operational players’ types/styles from a computational
perspective. Furthermore, players’ subjective feedback could
be quite noisy and inaccurate, which exacerbates difficulties.

To avoid modeling target players directly, it is possible to
learn a generic playing style/type model from public testers’
feedback and behavior [21], [22]. Nevertheless, data collection
in such methods often undergoes an expensive and laborious
process, as collecting data from members of the public often
intuitively seems like the best way to build up realistic models
of enjoyment in humans. Recently, a system was built up in
order to predict human behavior based on gameplay statistics
produced via a pool of 10,000 players [22]. Their study
concluded that one of challenges faced in such work was the
existence of many outliers, people who behave in an irregular
fashion [22]. When crowd-sourcing is applied to PCG, how
to deal with noisy feedback and outliers becomes an ongoing
critical issue.

During game playing, it is possible that a players’ notion
of fun (or whatever other attribute is being optimized) may
drift over time. This issue was touched upon in a recent
study aiming to create an adaptive Super Mario [5]. On the
one hand, their system was fairly successful in a test by
switching the agent that content is being optimized for half-
way through. With the same experimental protocol on human
players, however, it was reported that only 60% of players
preferred their dedicated system over a purely random system
[5]. Thus, it is yet another open problem in PCG to safeguard
online algorithms against players who may change their mind
over time.
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III. LBPCG FRAMEWORK

In this section, we first specify our problem statement
resulting from our analysis of the challenges in state-of-the-art
PCG and then propose a framework to address those issues.
To illustrate our proposed framework, we further exemplify
our general idea with a first-person shoot game, Quake.

A. Problem Statement

Motivated by commercial video game development cycles
and the previous work reviewed in Sect. II, we formulate a
number of challenging problems in PCG:

1) how to encode developers’ knowledge on the content
space represented via a game parameter vector to avoid
completely undesirable content,

2) how to enable developers to self-define content catego-
rization criteria to facilitate player categorization in an
implicit yet flexible way,

3) how to learn robust yet “true” generic players’ experi-
ence from noisy feedback and outlier detection,

4) how to exploit the information extracted from public
testers’ behavior and cognitive/affective experience and
content categorization self-defined by developers to pre-
dict target players’ preferred content while minimizing
interruption to them,

5) how to tackle the concept-drift problem for target play-
ers, due to the change of players’ experience, in the
online adaptation.

While the aforementioned problems may be studied sepa-
rately, we propose a learning-based procedural content gen-
eration (LBPCG) framework to tackle all the issues systemat-
ically.

B. Model Description

To tackle the issues specified in Sect. III-A, we believe that
a process that mimics commercial video game development
can provide an effective solution to PCG and therefore would
divide a video game life cycle into three stages: development
(involving developers), public test (involving public testers of
different types) and adaptive (concerning target players). By
taking this development process into account, we propose the
LBPCG framework, which encodes developers’ knowledge on
game content in the development stage, models public players’
experience in the public test stage and generates the content
appealing to target players in the adaptive stage.

In the development stage, we specify two models, the
Initial Content Quality (ICQ) and the Content Categorization
(CC) to encode developers’ knowledge, as depicted in Fig.
1. The ICQ model is designed to filter out illegitimate and
unacceptable content of poor quality, and then the CC model
is used to further partition the legitimate/acceptable content
space with pre-defined content features by developers into
meaningful subspaces that is likely to elicit various affec-
tive/cognitive experience for players of different types. We
argue that these two tasks should be done by developers. On
the one hand, playability/acceptablity assurance is essential in
game development before releasing the product to any users.

Fig. 1. Learning-based procedure content generation (LBPCG) framework.

On the other hand, we believe that it is useful to discover
salient content features somehow responsible for eliciting
distinct cognitive/affective experience for players of different
types/styles. By using such features, developers can flexibly
categorize content and then associate the content of a specific
category and typical playing behavior acting on the games
in this category with certain styles/experience of interest. By
doing so, the search space can be effectively limited for the
personalized content generation. This is a key idea underlying
the LBPCG framework, and the CC model provides the the
underpinning technique for other component models to carry
out this idea, as described below. In general, the problems in
the ICQ and CC models might be tackled in different ways,
e.g., developers explicitly encode their knowledge into rules
or constraints. However, developers may not fully understand
a whole complex content space as there are often many game
parameters and a formidable number of parameter combina-
tions. In the LBPCG, we advocate the learning-based method-
ology to encode developers’ knowledge implicitly instead of
requiring developers to explicitly construct rules. We anticipate
that the use of a data-driven methodology not only leads to
an alternative approach to content quality control and content
categorization but also could help developers better understand
a complex game content space.

Public user testing has turned out to be one of the most
important cycles in modern game development to enhance the
final game product [23], [24]. Motivated by this development
cycle, we propose two models, the Generic Player Experience
(GPE) and the Play-log Driven Categorization (PDC), in the
public test stage. As shown in Fig. 1, the GPE model is
used to capture public players’ behavior and feedback on their
experience by playing a number of representative games well
selected from different categories defined in the CC model.
As public opinions may be different from developers’ and
their feedback is often subjective and noisy, the GPE model
works on finding a “genuine” consensus on each selected game
and assessing the conformity, i.e., similarity of an individual’
experience to general public’s on the same games played, to
each public tester who provides feedback. By such a crowd-
sourcing learning, the GPE model is expected to find the
“popularity” of any acceptable game and to detect “outliers”
in the cohort of public testers. The PDC model is designed
to model cognitive/affective experience based on not only
public testers’ playing behavior but also the category of game
content that elicits the experience, which forms the key idea
in our LBPCG. If carefully selected public testers involved
in the GPE model well represent target players of different
styles/types, the PDC model can be used in the adaptive stage
to predict whether a target player prefers a specific category of
games played based on their behavior after they have played
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a game in the category. As the GPE and the PDC models
need to extract information and to model the experience from
data, respectively, the data-driven learning naturally provides
enabling techniques to solve those problems.

In the adaptive stage as shown in Fig. 1, we come up
with the Individual Preference (IP) model to control a content
generator with four models created in the development and
the public test stages. The IP model works towards producing
their preferred content online for a target player by minimizing
interruption to their gameplay experience. By means of all the
four underpinning models, the IP model deals with four non-
trivial issues during content generation as follows: a) automat-
ically detecting the categorical preference of a target player
with the PDC model and the games selected by developers
during the creation of the GPE model, b) assuring quality in
subsequent generated games within a specific content category
with the ICQ, the CC and the GPE models once the player
type is determined, c) automatically detecting when concept-
drift occurs with the PDC model and tackling it effectively, and
d) dealing with crisis situations autonomously with a system
failure avoidance mechanism. While existing techniques [3]
may be used to carry out the IP model as discussed later on,
we would develop more efficient techniques to enable the IP
model to generate content online.

In summary, the motivations and the functionalities of the
five component models in the LBPCG framework are listed
in Table I. In III-C, we exemplify how to develop a LBPCG
system to achieve the synergy among component models with
a first-person shooter game, Quake [17]. This will be also used
to facilitate presenting our learning-based enabling techniques
in the next section.

C. Exemplification

As illustrated in Fig. 2, the first-person shooter Quake [17] is
a highly acclaimed open source game, which can be flexibly
modified for different research purposes. OBLIGE [25] is a
map generator for various Id Software games including Quake,
which provides a command-line API that allows parameters
to be set to control high-level attributes such as monster
and weapon frequencies. For demonstration, we choose nine
essential OBLIGE parameters to form a content description
vector, including skill level, overall monster count, amount
of health packs, amount of ammo, weapon choice and four
parameters consolidating the control of different types of
monsters, while we fix other parameters to a sensible value,
e.g., the median value. Four parameters divide the various
monsters into four monster sets: set 1 consists of Soldier and
Dog, set 2 is composed of Knight, Scrag and Zombie, set 3
contains Fiend and Ogre, and set 4 has Shambler. The sets
generally increase in difficulty, e.g., Shambler in set 4 is very
hard to beat while Dog in set 1 is very easy to kill. With this
subset of chosen parameters and the random seed, the content
vector space consists of a total of 116,640 core games, with
infinitely many variations on aesthetics and layout. To capture
the gameplay behavior, we have made various changes to
Quake engine such as the ability to output play-logs consisting
of 122 features. These features include statistics such as the

TABLE I
SUMMARY OF THE LBPCG COMPONENT MODELS.

Model Motivation Function
Initial
Content
Quality
(ICQ)

Content quality assurance via an
evaluation function that filters
out non-playable/unacceptable
games of poor quality for any
players.

Input: Game parameter vec-
tor
Output: Yes/No decision
with the confidence infor-
mation

Content
Categori-
zation
(CC)

Categorizing content via an eval-
uation function that maps an
acceptable game to a specific
category defined by develop-
ers in order to facilitate the
PDC model in categorizing tar-
get players and the IP model in
limiting search space.

Input: Game parameter vec-
tor
Output: Categorical label
with the confidence infor-
mation

General
Player
Experi-
ence
(GPE)

Collecting behavior and feed-
back from public testers who
play the games in different cat-
egories selected by developers.

Estimating the feedback consen-
sus on games played by multi-
ple public testers and estimat-
ing the conformity of public
testers with their feedback.

Data collection and crowd-
sourcing learning

Input: Game parameter vec-
tor and feedback of public
testers
Output: Public feedback
consensus on the games
played and public testers’
conformity

Play-
log
Driven
Categori-
zation
(PDC)

Categorizing target players via
an evaluation function that pre-
dicts their experience based on
their behavior and categorical
information of games played
(the positive experience im-
plies that a target player favors
games in the category).

Input: Game category and
behavior (captured in play-
log)
Output: Positive/negative
decision with the confi-
dence information

Individual
Preference
(IP)

Applying other LBPCG compo-
nent models to control a con-
tent generator to produce on-
line content appealing to target
players based on their histori-
cal behavior on games played
before.

Tackling crisis situations in con-
tent generation whenever the
preferred content category fails
to be detected.

-Detecting the preferred
content category for a tar-
get player

-Generating quality yet per-
sonalized content once the
preferred content category
is found

-Detecting and tackling con-
cept drift during gameplay

-Avoiding a system failure

Fig. 2. The classic first-person shooter Quake.

average number of monsters was killed per game tick, how
much the mouse was moved in each direction and how many
monsters of each type were killed, and so on. Once a game is
played by a player, their gameplay behavior is automatically
recorded in a play-log.

The ICQ model is designed to filter out unacceptable content
of poor quality. OBLIGE may produce unacceptable content,
e.g., some games have too many monsters but too little ammo.
Therefore, the task of the ICQ model in Quake is to eliminate
games of low quality by carving out a manifold of acceptable
content in the original content space of nine parameters. To
encode developers’ knowledge in an implicit way, we adopt the
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learning-based methodology. That is, by playing a few well-
selected games, a developer labels them as either acceptable or
unacceptable based on their knowledge. For annotated games,
their parameter vectors and labels assigned by the developer
are used as examples to train a binary classifier. Then the
classifier would be able to evaluate any game parameter vector
to decide its acceptability. To establish such a classifier, we
develop a novel active learning method presented in the next
section.

The CC model is designed to categorize the acceptable
content in terms of content features self-defined by developers.
For demonstration, we choose a generic feature: “difficulty”
of five categories (Very Easy, Easy, Moderate, Hard, and Very
Hard) for content categorization in Quake as we believe that
this is likely to be something that most people will have a
preference for. Note that for learning in the ICQ and the CC
models, the only difference is that the ICQ model works on all
games while the CC model takes only surviving ones, those
passing the ICQ examination, into account. As presented in
Sect. IV.B, the same active learning method as used in the ICQ
learning may be applied to the CC learning while a multi-class
classifier is required to assign one of five difficulty categories
to any acceptable games.

In the GPE model, developers need to first select represen-
tative games of quality from each of five difficulty categories.
For demonstration, we choose 100 representative games by
fixing the random seed with the ICQ and the CC models;
there are 20 games in each of five difficulty categories. Then
100 games are released to public testers. Ideally, the public
testers should be a carefully selected cohort of players who
are representative of different target players and each test
player should play at least one game from each category.
The gameplay behavior is recorded in the play-log for each
game played. After playing each game, a public tester gives
their feedback by answering some questions regarding the
experience of interest, e.g., “Did you enjoy the game?”.
Once the data collection is completed, the GPE model uses
a crowd-sourcing learning algorithm, presented in the next
section, to create a game “popularity” evaluation function that
gives the “popularity” scores to 100 selected games and to
assign the conformity to each public player who provides
feedback. Consequently, each of 100 selected games receives
a score reflecting its “popularity” and each of participated
public testers is assigned a confidence level indicating their
conformity for outlier detection.

In the PDC model, the main task is to learn a mapping from
both the categorical label of a game played by a public tester
and their play-log to the experience of interest. In Quake, each
survey in the data collection contains the difficulty category
of a game played, the play-log of 122 attributes and a binary
feedback (fun/not fun) given by the public tester. Thus, the
information in each survey is used as an example to train
a binary classifier with the input of 122 play-log attributes
plus one categorical label to predict the positive/negative
experience. For robustness, the conformity information gained
in the GPE model is further exploited to deal with “noisy”
examples coming from “outliers”. In doing so, we develop an
ensemble learning algorithm to establish the PDC classifier by

taking the conformity information into account, as presented
in the next section.

In the adaptive stage, the IP model is required to generate
the content appealing to a target player online by applying all
four component models strategically. The IP model is devel-
oped based on the following scenario. After a target player
has played few of the same 100 games used in the public
survey, their content categorical preference is determined via
the PDC model that predicts the experience for each game
played. By means of the ICQ, the CC and GPE models,
quality games with variation in their preferred content category
are generated subsequently. The PDC model always monitors
any games played by a target player to test whether concept-
drift occurs. Once a change is detected, the initial detection
process is repeated for the target player to identify their new
preferred content category. In case the PDC model fails to
detect the preferred content category for a target player, the
content “popularity” evaluation function achieved in the GPE
model along with the ICQ model will be employed to deliver
a stream of quality games that are likely to be enjoyed by
most players.

IV. ENABLING TECHNIQUES

In this section, we present our learning-based enabling tech-
niques to support our LBPCG framework. For each model, we
formulate the problem, present our solution and demonstrate
how to be applied to Quake described in Sect. III-C.

While there are various content representations [3], our cur-
rent work is confined to a class of representations characterized
by a game parameter vector of D parameters denoted by
g = (g1, g2, · · · , gD), which defines a content space G where
g ∈ G. Furthermore, we assume that the gameplay behavior
can be recorded by a play-log l of L event attributes denoted
by l = (l1, l2, · · · , lL). Developers may choose F (F ≥ 1)
content features denoted by c = (c1, · · · , cF ) for content
categorization. For example, in Quake, a game is characterized
by D = 9 parameters in OBLIGE so that the content space
contain |G| = 116, 640 core games, a play-log consists of
D = 122 attributes and the developers choose F = 1 content
feature, c1 = “difficulty” of five categories, for content
categorization.

A. ICQ Learning

In general, the problem in the ICQ model is finding out a
mapping for any g ∈ G so that ΦICQ : g→{+1,−1} where
+1/−1 indicates the parameter vector, g, leads to acceptable
or unacceptable content, respectively.

As developers are a limited yet expensive resource and
a game content space is often too large to be exhaustively
classified, the ICQ learning has to address two critical issues:
how to select a “minimal” number of representative games
for annotation and how to establish a classifier of good
generalization. Active learning provides an effective way to
combine annotating data and training a learner without need of
many labeled data [26], while clustering analysis may discover
the structure of data space [27]. We propose an active learning
algorithm based on clustering analysis to address two critical
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Algorithm 1 ICQ Learning
Clustering: Apply a clustering analysis algorithm to par-
tition all games into a number of clusters and label a
representative game from each clusters to form a validation
set TICQ
Initialization: Label a few randomly selected games beyond
TICQ and then train a binary classifier with the labeled
examples
while test error on TICQ is unacceptable do

for all g ∈ G do
Test g with the classifier of the current parameters
Record its confidence on the label assigned to g

end for
Find the game of the least confidence, g∗

Annotate g∗ by developers if it was not annotated
Re-train the classifier with g∗ and its true label

end while

issues, as summarized in Algorithm 1. The motivation behind
our algorithm is as follows: By applying a clustering analysis
algorithm, the content space is partitioned into a number of
subspaces. Then, a representative game from each subspace
is played and labeled by developers with their gameplay
experience and knowledge. All representative games from
different subspaces form a validation set TICQ to evaluate the
generalization of an active learner effectively. By exploiting
the clustering analysis results and the information in TICQ,
we can quickly find a few games from two different classes to
label for training an active learner initially before applying a
standard active learning procedure to train the ICQ classifier.

In Quake, we use the K-medoids algorithm with Euclidean
distance [28], which is insensitive to initial conditions, for
clustering analysis. K is set to 200 since it is a reasonable
working load for a developer and sufficient to test the gen-
eralization. Thus, a developer plays and labels 200 medoids
to form the validation set TICQ. For efficiency, we reduce
the search space so that active learning can converge quicker.
Hence, we randomly choose 100 games from each cluster to
form a reduced content space of 20,000 core games. In the
active learning, a nonlinear support vector machine (SVM)
with the RBF kernel [29] was used in Algorithm 1 where it
is initialized by two randomly chosen games from different
classes. While there are different confidence measures [26],
we use the probabilistic output of SVM based on the LibSVM
implementation [30] to define our confidence measure for
active learning: |Pr(+1|g)−Pr(−1|g)| where Pr(±1|g) is the
probability that g is predicted to have the label ±1. The active
learning process is continued until the positive and negative
error rates on TICQ converged, indicating the model has similar
performance with respect to identifying both acceptable and
unacceptable games.

B. Learning for CC

In general, the problem in the CC model is finding out a
mapping for g ∈ Ga, a subspace containing all acceptable
games, so that ΦCC : g→ cf for f = 1, · · · , F . As each cf

Algorithm 2 Active Learning for CC
Initialization: (a) Based on the ICQ learning, label more
acceptable games to ensure the validation set TCC to have
sufficient games on each category of cf and (b) Label a
few randomly selected games beyond TCC and then train F
classifiers with the labeled examples, respectively
for all cf ∈ c do

while test error on TCC is unacceptable in terms of cf
do

for all g ∈ Ga do
Test g with the f th current learner
Record its confidence on the label assigned to g

end for
Find the game of the least confidence, g∗

Label g∗ by developers if it was not annotated
Update parameters of the f th learner with g∗ and its
ground-truth

end while
end for

takes categorical values, we can formulate this problem as
multi-class classification.

As the CC learning encounters the same two issues in
the ICQ learning, we adopt the same idea used in the ICQ
learning again with a resource-sharing idea by making the
maximal use of results achieved during the ICQ learning.
For resource sharing, developers can assign categorical labels
on content features simultaneously whenever they label a
game as acceptable for the ICQ learning. Due to the locality
property, the clustering results and acceptable games (also
having categorical labels for each content feature) in TICQ may
also help developers select representative acceptable games to
label. In this way, we can efficiently achieve a validation set
TCC used in the CC active learning. Based on the resource
sharing idea, we adapt the ICQ active learning algorithm for
the CC learning as summarized in Algorithm 2.

In Quake, the ICQ model is first applied to find an ac-
ceptable content subspace, Ga. By using the resource sharing
idea, we created a validation set TCC consisting of 110 labeled
games with at least 20 games from each difficulty category. For
five-category classification, we decompose it into five binary
classification sub-tasks. As the same as done in the ICQ active
learning, we train five probabilistic SVM classifiers separately
in the inner loop of Algorithm 2 for the CC active learning,
one for each difficulty category. Again, we can apply the same
initialization, confidence measure and stopping conditions to
the CC active learning as described in Sect. IV-A.

C. GPE Learning

For data collection, N quality games denoted by G =
{g1, g2, · · · , gN} are selected by developers, and P public
tester participants are required. In survey, feedback may be
often characterized by a nominal variable y. For a game gn

played by player p, we denote his/her feedback by y(p)n . As a
multi-valued nominal variable can be represented by multiple
binary variables, we only take the binary feedback into account
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Algorithm 3 Crowd-EM for Learning GPE
Initialization
For p=1, · · · , P , set α(p)(0) = β(p)(0) = 0.5.
For n=1, · · · , N , set γn(0) = 1

P

∑P
p=1 y

(p)
n .

Pre-train a chosen regressor, f(g,Θ), by finding optimal
parameters, Θ∗(0), with the training set of N examples,{(

gn, µn(0)
)}N

n=1
, and set t=1.

E-Step
For n=1, · · · , N , calculate

hn(t) = f(gn,Θ
∗(t−1)),

an(t) =

P∏
p=1

[
α(p)(t−1)

]y(p)
n
[
1− α(p)(t−1)

]1−y(p)
n ,

bn(t) =

P∏
p=1

[
β(p)(t−1)

]1−y(p)
n
[
1− β(p)(t−1)

]y(p)
n ,

γn(t) =
an(t)hn(t)

an(t)hn(t) + bn(t)[1− hn(t)]
.

M-Step
For p=1, · · · , P , update

α(p)(t) =

∑N
n=1 γn(t)y

(p)
n∑N

n=1 γn(t)
,

β(p)(t) =

∑N
n=1[1− γn(t)](1− y(p)n )∑N

n=1[1− γn(t)]
.

Re-train the chosen regressor, f(g,Θ), by finding optimal
parameters, Θ∗(t), with the training set of N examples,{(

gn, µn(t)
)}N

n=1
, and set t= t+1.

Repeat both E-Step and M-Step until convergence.

here; i.e., y(p)n ∈ {1, 0} where 1/0 indicates positive/negative
feedback, respectively. Thus, the crowd-sourcing learning in
the GPE model is formulated as follows: for any game gn ∈ G
played by public testers, finding the consensus experience
ŷn on this game with a confidence level γn and assigning
a conformity factor to each public tester p. The conformity
factor is defined by the sensitivity (i.e., similarity to the generic
public in the positive feedback), α(p), and the specificity (i.e.,
similarity to the generic public in the negative feedback), β(p)

for public tester p. Intuitively, a larger ŷn value assigned to
game n implies that game n is enjoyed by more public testers.
The higher α and β values assigned to public tester p, the
closer to the public consensus the feedback of test player p is.

While there are many potential solutions to the crowd-
sourcing learning, we adopt a generic algorithm [31] for our
enabling technique. The algorithm treats the “true” label of an
object to be annotated as missing data (i.e., “popularity” of
N selected games in our context) and infers it from “noisy”
labels given by multiple annotators (i.e., P public testers’
feedback to the games they played in our context) with a max-
imum likelihood estimator defined on the likelihood function:
Pr(G, {y(p)n }Pp=1|Θ) =

∏N
n=1

{
Pr({y(p)n }Pp=1|yn = 1|yn =

1, {α}Pp=1)Pr(yn = 1|gn,Θ) + Pr({y(p)n }Pp=1|yn = 1|yn =

Algorithm 4 Learning for PDC
Initialization: Divide the training data set, D, collected in
public test into M training subsets, D1, · · · ,DM by setting
a number of thresholds for α(p) and β(p), respectively.
Choose a classifier, f [(l, c),Θ].
for m = 1 to m = M do

Train f [(l, c,Θm)] on Dm via cross-validation by finding
optimal parameter, Θ∗m.
Record its accuracy, um, on cross-validation.

end for
Calculate weights:

wm =
exp(um)∑M
k=1 exp(uk)

for m=1, · · · ,M.

Construct the ensemble classifier:

F [(l, c),Θ∗] =

M∑
k=1

wkf [(l, c),Θ∗k].

0, {β}Pp=1)Pr(yn = 0|gn,Θ)
}
, where Pr(yn = 1|gn,Θ) +

Pr(yn =0|gn,Θ) = 1 and Pr(yn =1|gn,Θ) is the probability
of yn = 1 for gn estimated via a regressor f(gn,Θ) with
the parameters Θ. The Expectation-Maximization (EM) frame-
work is used to tackle missing data in this maximum likelihood
problem, which leads to the algorithm [31], hereinafter to
be referred to Crowd-EM summarized in Algorithm 3 in the
context of our problem formulation. After the GPE learning
is finished, the conformity factor (α(p), β(p)) is assigned to
each of P public testers and a “popularity” score γ of any
acceptable game g ∈ Ga can be predicted via the trained
regressor with γ = f(g,Θ∗).

In Quake, Algorithm 3 is directly applied to 100 games
selected by developers and the “fun/not fun” feedback col-
lected in the public survey where a nonlinear support vector
regressor (SVR) with the RBF kernel [29] is employed to
tackle the nonlinear regression problem. The algorithm will
be terminated when it reaches a local maximum of the
aforementioned likelihood function. During the public test (see
Sect. V.A for more details on data collection), a public tester
may not play all of 100 games used for the public survey.
In this case, we simply substitute P , the number of all public
testers, with Pn, the number of public testers who actually play
game gn, as well as N = 100, the number of all games in
G, with Np, the number of games that public tester p actually
plays, respectively, in Algorithm 3.

D. Learning for PDC

In general, the problem in the PDC model is finding out a
mapping ΦPDC : (l, c)→ y. As y often takes a binary value
indicating either positive or negative experience, we formulate
it as a binary classification in terms of learning.

During public test, we assume that NT surveys are accom-
plished so that NT play-logs along with their corresponding
feedback, li and yi (i = 1, · · · , NT ), are recorded by a
data collection system. By combining with content features
ci of each of the played games, we may construct a training
data set, D=

{
[(li, ci), yi]

}NT

i=1
. By taking the public testers’



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 8

conformity information, (α(p), β(p)), achieved in the GPE
model into account, we can select examples from D based
on their robustness. By setting thresholds for α(p) and β(p),
respectively, we can generate a training subset of examples
from only public testers whose α(p) and β(p) are above
thresholds. Threshold setting is a challenging problem since
there is no clear criterion; a low conformity score assigned to a
player does not have to mean that the player is a “liar” but may
suggest the player be an “outlier” who has distinct experience
from the majority of public testers. To tackle this problem,
we propose an ensemble learning algorithm, as summarized
in Algorithm 4, for the PDC learning. The basic idea is using
different thresholds to produce M (M > 1) training subsets
and then train M classifiers on those training data subsets via
cross-validation, respectively. Accuracy measured on cross-
validation would be used as weights to construct an ensemble
classifier.

In Quake, we employ the random forests (RF) [32] as
a binary classifier since it has inbuilt cross-validation (out-
of-bag error) and can identify useful features automatically
during its learning. A RF binary classifier is trained on
examples consisting of the difficulty category of a game and
122 attributes in the play-log resulting from playing the game
as the features and the “fun/not fun” feedback given by the
public testers as the label. To construct an ensemble learner,
we need to establish different training subsets for multiple RF
classifiers based on the public testers’ conformity information.
As a result, we choose four thresholds 0.0, 0.3, 0.6 and 0.9 on
α(p) and β(p) achieved in the GPE model, respectively, which
results in 16 different training data subsets via the combination
of different α(p) and β(p) thresholds. Accordingly, 16 RF
classifiers are first trained on 16 training subsets separately
and then combined to complete the ensemble learning with
Algorithm 4.

E. On-line Generation with the IP Model

Based on the requirements described in Sect. III, the IP
model is designed to tackle all problems in the adaptive
stage of PCG. Here, we carry out the IP model with a state
machine of three states, i.e., CATEGORIZE, PRODUCE and
GENERALIZE, to be used for preferred content category
detection, quality yet personalized game generation as well
as concept drift monitoring and system failure avoidance,
respectively.

As illustrated in Fig. 3, the CATEGORIZE state is designed
to detect a new target player’s content preference. To detect
his/her preferred content category reliably, the new target
player needs to play a few games used in the GPE learning.
Recall that after the GPE learning, N selected games grouped
with their content features may be ranked based on their γ
value. Once a target player has played a game, the PDC model
uses his/her play-log along with the content features to predict
his/her IP. If his/her behavior is consistent on games in a
content category characterized by features c∗, it suggests that
the target player enjoys games in this specific category. Then,
the IP model leaves from the current state for the PRODUCE
state.

Fig. 3. The CATEGORIZE state in the IP model.

Fig. 4. The PRODUCE state in the IP model.

The PRODUCE state is shown in Fig. 4. It directs the IP
model to use both the ICQ and the CC model to control the
content generator to produce that quality content of variation in
the specific game category determined in the CATEGORIZE
state. Furthermore, the PDC model is employed to monitor
whether a preference drift has taken place. Whenever such a
concept drift is detected, the IP model will get back into the
CATEGORIZE state.

To avoid a system failure, the GENERALIZE state shown
in Fig. 5 is dedicated to a crisis situation that a target
player’s IP cannot be determined after many attempts in the
CATEGORIZE state. Our solution is exploiting the ICQ, the
CC and the GPE models to generate quality games that are
likely to be appreciated by public. This helps towards mini-
mizing disappointment which may be experienced by playing
randomly generated games of low quality. By using evaluation
functions achieved in above three models, a target player
receives only those games, g ∈ Ga, of both a high confidence
in content categorization and a large γ value produced by
f(g,Θ∗) in the GPE model. The PDC model is also employed
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Fig. 5. The GENERALIZE state in the IP model.

to predict a target player’s IP once a game was played as the
same as done in the CATEGORIZE state.

In Quake, 100 selected games are grouped in five categories
in terms of the content feature, difficulty, where 20 games
in each category are ranked based on their γ values. The
CATEGORIZE state uses the 100 games to detect a new
target player’s IP. Whenever the PDC model produces the
positive prediction for two consecutive games of the same
category played by the target player, the category is viewed
as his preferred one and the IP model enters the PRODUCE
state. If this situation does not occur after playing 10 games,
the IP model will enter the GENERALIZE state. In the the
PRODUCE state, the player is always provided with the
quality games of the detected category using the ICQ and the
CC models, while the PDC model oversees any preference
change. In the GENERALIZE state, a target player always
receives the quality game safeguarded by the ICQ, the CC
and the GPE models and will be brought into the PRODUCE
state once the PDC model finds that the target player enjoys
three games of the same difficulty category.

V. SIMULATION

In this section, we report simulation results on the Quake,
a proof-of-concept prototype described in Sect. III-C, imple-
mented with the enabling techniques presented in Sect. IV.

A. Data Collection

Both the ICQ and the CC models were trained by a single
expert who played and labeled games during the active learn-
ing. For the GPE and PDC models, we put our prototype out to
the internet to simulate a scenario that gets as varied a cross-
section of public testers as possible. To facilitate the public
data collection, we developed a client/server architecture to
collect surveys from people remotely. To collect data for the
GPE learning, we choose 100 representative games for the

public test via active learning. There are 20 games in each
of five difficulty categories and the random seed was fixed so
that all public testers can play exactly the same 100 games.

The client was distributed via the web and advertised on
websites such as Reddit, Facebook and the OBLIGE forums.
In total 895 surveys were recorded from a total of 140 people.
Each game was played roughly nine times each and most of
players played three to five games. However, one enthusiastic
participant actually produced 154 surveys on their own while
several played only one game. Our questionnaire consisted
of two questions only: “Did you enjoy the level?” (yes/no)
and “How do you rate it?” (Very Bad/Bad/Average/Good/Very
Good). Play-logs received from the public testers are linked
to their answers to two questions mentioned above and the
binary answer to the first question is used to train the PDC
model.

Our analysis reveals that approximately two thirds of sur-
veys were positive feedback. Interestingly, the surveys showed
that as game difficulty increases, the number of “Very Good”
labels also increases, but the “Very Hard” category also has the
most labels of “Very Bad”. The middle difficulties “Easy” to
“Hard” have the least number of people labeling them as “Very
Bad”. Additionally, as difficulty increases, less surveys are
labeled as “Average”, indicating more polarized view points.
Further analysis showed that “Very Hard” and “Very Easy”
games cause the most disagreement amongst participants,
whereas the middle difficulties caused less disagreement. This
suggests that the games were well selected since they caused
controversy, potentially allowing us to distinguish between
different types of players based on content category. Never-
theless, such a survey using unknown participants can by no
means guarantee a representative of different target players.
Hence, it is unlikely that the survey was able to capture
entirely the relationship between behaviour, content category
and experience, since many participants did not encounter
games from all difficulty categories.

B. Results on Component Models

For Quake, we first report results on four underpinning
component models achieved from our simulation.

Fig. 6 illustrates test error rates on TICQ as the ICQ active
learning process progresses. “+Error” and “-Error” stand for
errors on positive and negative samples in TICQ, respectively.
Also we report the half total error rate (HTER) defined as the
average of “+Error” and “-Error” and denoted by “AvgError”.
It is observed from Fig. 6 that the overall error gradually
decreases as more and more informative examples are pre-
sented and both positive and negative errors converge to an
acceptable equal error rate (EER), approximately 19%, after
81 iterations. By applying the ICQ model to the content space,
37% core games are classified as unacceptable. Common
features of unacceptable levels were those with no monsters
and no ammo. In addition, games with an overwhelming
number of monsters, but not much in the way of resources
were also rejected. As we used the resource-sharing idea in
the ICQ and the CC learning, we found that around 84%
unacceptable games may be classified as “Very Hard”. A
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Fig. 6. Test errors in the ICQ active learning process.
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Fig. 7. Test error in the CC active learning process.

feature selection experiment by training a RF classifier based
on the active learning results revealed that the importance of
nine parameters in the ICQ learning is ranked in the descent
order as follows: ammo, monster set 4, monster set 1, health,
monster set 2, skill, monster set 3, weapon choice and overall
monster count.

As the CC model classifies the game content into five
categories, we only report overall errors on TCC during the CC
active learning in Fig. 7 for clear visualization. We observed
that the model reached its optimal accuracy at 41 iterations
and training beyond this leads to over-fitting to a specific
category. At an early stop at iteration 41, the overall error
rate on TCC was 22% and error rates for different difficulty
categories were as follows: 17% on “Very Easy”, 18% on
“Easy”, 35% on “Moderate”, 25% on “Hard” and 20% on
“Very Hard”. A closer look at the confusion matrix revealed
that almost all misclassification happened on two adjacent dif-
ficulty categories, e.g., “Hard” is misclassified as “Very Hard”.
Thus, such misclassification produces no catastrophic effect.
”Very Easy” levels tend to consist of easier monsters from sets
1 and 2, i.e., soldiers, dogs, flying demons and knights. The
“Very Easy” games generally have salient characteristics as
follows: (a) “scarce” number of monsters in almost all levels,
(b) none of the harder enemies (i.e. those contained in monster
set 3 or 4) in most cases, and (c) no grenade launchers in
weapon. In contrast, the “Very Hard” games are generally
characterized by (a) an overwhelming amount of monsters,
and (b) not much health or ammunition. Surprisingly, our
statistical analysis reveals that the skill parameter has a very
limited impact on the difficulty that the CC model learnt given
the fact that most of the “Very Easy” games have the harder
skill value! It seems that “skill” mainly affects the number of
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Fig. 8. Test errors of the PDC models. (a) Error rates vs. confidence
thresholds. (b) Error rates vs. rejection thresholds.

monsters that may not directly link to the difficulty, e.g., a
few difficult skilled monsters are much easier to defeat than
many easy skilled ones. Thus, this skill parameter seems to
do nothing in characterizing the content difficulty apart from
adding a few extract enemies sometimes.

For the crowding-sourcing learning in the GPE model,
we did not use the data collected from the participant who
made 154 surveys as it caused the learning to be strongly
biased to his/her opinions and his/her feedback and play-logs
are inconsistent for the same games that he/she played for
several times. As there is no ground-truth on the popularity
of the games and the conformity of public testers, we only
report some interesting results summarized from the statistics
produced by the games of high γ values and the public testers
of high α and β values. Among the top 20 “popular” games
of the highest γ values, there are five ”Very Easy”, six ”Easy”,
six ”Moderate”, two ”Hard” and one ”Very Hard” games. All
the top 20 games contain ammunition with the highest quantity
and more health. The rocket launcher and super shotgun are
the popular weapons. Monster sets 3 and 4 are not popular. In
fact, none of monsters in set 4 appears in the top 20 games
and monsters in set 3 only appear in 15% of the top 20 games.
Also the skill parameter has no bearing on game popularity.
For all the 100 games used in our public survey, the public
testers generally do not like the Shambler monster as 89%
games labeled with fun do not have monsters in set 4 who are
quite hard to kill but can kill a player easily. The public testers
also seemed to dislike monsters in set 3, i.e., Fiends and Ogres,
who can make some annoying attacks, e.g., jumping and firing
grenades, as 67% of the positive games contain none of them.
Overall, there is no clear weapon preference and the public
testers do not really like levels full of monsters that much as
there are only an amount at 13%. In contrast, the public testers
like lots of monsters in set 1 with 66% preferring the “more”
attribute value. Also the public testers like lots of ammo but
dislike maps with not much health.

To test the PDC model, we used 10-fold cross-validation
on all the play-logs used in the GPE learning. As the RF
provides a confidence value ranging from 0 to 1 on each
decision, we further exploited such information to improve
the PDC performance. By adjusting the decision boundaries
with different confidence thresholds, we achieved different test
results. It is immediately apparent from Fig. 8(a) that the
positive/negative error rates converge to the EER of 29% at
a confidence threshold of 0.61. During the test, we applied
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the confidence-based rejection to increase the accuracy. As
depicted in Fig. 8(b), using a rejection threshold of 0.25
an HTER of 24% was achieved, where approximately 25%
and 27% of samples from the positive and negative classes,
respectively, were rejected. Given the nature of noisy public
surveys and the fact that many public testers played very few
games (less than five), we believe that overall performance
is reasonable. As the RF also ranks the importance of 122
play-log attributes during the PDC learning, we observe that
the most important attribute is the level completion, i.e. the
further a player progresses into a game determines whether
they like it or not. This is probably because a player is more
likely to progress further in a game they enjoy. In addition,
how many times a player dies is also important, along with
how much they interact with the game. How many Grunts that
are killed also seems to be influential. This might be because
people like to kill lots of this easy monster. The number of
Fiends in monster set 3 also influences player enjoyment as
this is one of the hardest and the most annoying to kill. Apart
from the above attributes, the following attributes also have
the high importance in the PDC learning: total input events,
in health/ticks, monsters killed, dogs killed and total distance
travelled.

C. Results on the Quake Prototype

We have tested our Quake prototype1, i.e. the IP model,
in comparison to two baselines: (a) Random model, which
generates completely random games with OBLIGE and (b)
Skill model2, which presents “skill” balanced games by con-
trolling the skill parameter in OBLIGE while allowing other
parameters to be set randomly. As OBLIGE is a well designed
content generator towards generating quality games, these two
baseline models may be competitive to the IP model.

In the test, an extensive survey is done with the following
protocol. A target player who never participated in the GPE
survey was asked to play 30 games generated by invoking
three models randomly, with 10 generated by each model.
Before playing any game, a player was asked to answer two
multiple-choice questions (MCQs) on his/her historical game-
play experience as follows: (i) What kind of gamer would you
describe yourself as? (“I don’t play games much - if at all”,
“I play games sometimes”, “I play games regularly”, “I’m a
hardcore gamer”) and (ii) How would you rate your skill level
at action video games? (“Inexperienced”, “Average”, “Good”,
“Very Good”). After playing each game, the player was asked
five MCQs: (i) Did you find the level fun? (“No”,“Yes”), (ii)
How difficult was that? (“Too easy”, “Just right”, “Too hard”),
(iii) Do you want to see more levels like that? (“No”,“Yes”),
(iv) Do you think other people would enjoy it? (“No”,“Yes”)
and (v) How do you rate the level? (“Very Bad”, “Bad”,
“Average”, “Good”, “Very Good”).

To evaluate the performance of three different models,
we define three different evaluation metrics based on the
feedback of target players. As the first one of five MCQs

1Online available: http://staff.cs.manchester.ac.uk/∼kechen/lbpcg quake/
2This model was suggested by anonymous reviewers who hypothesized that

the “skill” parameter predominates other parameters for difficulty.

asked after each game played is the exactly same as being
asked in the public test, we use the feedback to this question
to form a simple metric, hereinafter named Metric 1, that
the positive/negative answer scores one/zero. Also we define
a metric with all the feedback to five MCQs, hereinafter
named Metric 2. Except the last MCQ where “Very Bad” and
“Bad” ratings score zero and other three ratings score one, the
positive/negative answer scores one/zero in each of other four
MCQs. As a result, a model receives five scores at maximum
for each game it generates with Metric 2. As one of the goals
in the IP model is automatically finding the preferred difficulty
category of a target player, we further define a scoring metric
based on the feedback to the first question (i.e., the binary
“fun” feedback), hereinafter dubbed Metric 3, by taking the
content category of each game played into account. For 30
games played by player p, let Np,c and NE

p,c denote the number
of the games of difficulty category c played and the number
of games of difficulty category c enjoyed by him/her (i.e.,
the number of positive feedback given by player p to games
of c), respectively. Hence, the preference rate of player p for
games of difficulty category c is ρp,c = NE

p,c/Np,c. For player
p, let Nm,p,c be the number of games of difficulty category c
generated by model m. For model m and player p, our scoring
metric Sm,p is defined as

Sm,p =
∑
c∈C

ρp,cNm,p,c,

where C is the set of five content categories in Quake.
Intuitively, a higher score awarded to a model indicates that the
model produces more games of the difficulty category enjoyed
by the player. Thus, we would use such a metric to measure
the success of a model in terms of personalization.

In our simulation, we managed to get 14 reliable people to
simulate target players for such a rather time-consuming test.
Regarding the historical gameplay experience, their feedback
indicates that there are three players who have little gameplay
experience (players 3, 10, 13), six players who played games
sometimes (players 1, 2, 6, 9, 11, 14), four regular game
players (players 5, 7, 8, 12) and one hardcore gamer (player 4).
In terms of the gameplay skill levels, their feedback reveals
that there are three inexperienced (players 3, 10, 13), four
averaged (players 2, 5, 6, 14), five good (players 1, 4, 7, 9,
11) and two very good (players 8, 12) players. According to
the information extracted from their self-reported gameplay
experience/skill levels, these participants should be able to
represent target players of different types adequately.

Fig. 9 illustrates the scores awarded to three models mea-
sured with different metrics based on the feedback of 14
players. From Fig. 9(a), it is observed that the IP model won
10 players who awarded the highest scores in terms of Metric
1 but two was tied with other models. In contrast, the Random
and the Skill models received only two and three highest scores
but each model had one highest score tied with the IP model.
According to the binary “fun” feedback, 64.3% (90 out of
140) games generated by the IP model were rated as “fun”
totally, while 43.6% (61 out of 140) games and 45.7% (64
out of 140) games generated by the Random and the Skill
models received the positive feedback, respectively. Similarly,
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Fig. 9. Scores awarded to three different models by 14 target players with
different score metrics. (a) Metric 1. (b) Metric 2. (c) Metric 3.

Fig. 9(b) shows that the IP model received the highest scores
from 11 players in terms of Metric 2 but three tied with other
models. In contrast, the Random and the Skill models were
awarded the highest scores in terms of Metric 2 by three and
two players, respectively, but there were two players in each
case who also rated other models as the tied winners. Fig. 9(c)
shows those scores awarded to three models in terms of Metric
3 where the IP, the Random and the Skill models won 10, 2
and 2 players, respectively. Overall, it is evident from Fig. 9
that the IP model outperforms other two models in terms of
all three evaluation criteria.

We have done thorough analysis on all data collected
during this simulation. Due to the limited space, we report
only those non-trivial yet informative results here. The IP
model deals with different situations with three states and
the transition between different states would be important in
understanding how our ideas work. Our data analysis shows
that the CATEGORIZE state detected the “preferred” content
categories for eight players (i.e., players 1, 2, 3, 4, 8, 10, 11,
12) but failed to do so for other six players after 10 games
were played. In other words, the eight players were brought
to the PRODUCE state after playing five games on average in
the CATEGORIZE state. Five players (players 1, 2, 4, 8, 10,
12) stayed in the PRODUCE state with games for the detected
preferred difficulty category but concept-drift was detected for
the other three players (players 3, 10, 11) who went back to the
CATEGORIZE state after playing six, seven and one games
produced in the PRODUCE state, respectively. As the PDC
model plays a critical role in the IP model, we also investigate

its performance by using the players’ binary “fun” feedback
as the ground-truth. As a result, a nearly identical HTER
was achieved regardless of whether the confidence threshold
was applied; the HTER is 33.4% (+Error: 38.9%, -Error:
28.0%) without using the threshold and the HTER is 33.6%
(+Error: 31.9%, -Error: 35.3%) by applying the threshold. In
terms of HTER, the performance is approximately 10% worse
than the PDC validation results reported in Sect. V.B., which
might suggest the weakness of the uncontrolled random survey
used in the GPE model. Although the similar performance
was achieved overall regardless of the confidence threshold,
applying the threshold to a specific player could reduce the
error rate significantly, e.g., for player 9, the HTER was
93.8% without the threshold but sharply decreased to 50.0%
with the threshold. This might suggest that the PDC Model
should be enhanced to work better with different player types;
outliers should be quickly detected and handled with additional
mechanisms.

In general, our IP model seems to work better for players
who had certain gameplay experience and good skill levels
than for those who have little experience and poor skills.
The highly successful examples include players 1 and 2 who
self-reported to play games sometimes and to have either
average or good skill level. The PDC model had error-free
performance for player 1 and a low error rate (10%) for
player 2. According to their feedback, the preferred category,
“Very Easy”, was identified when player 1 played four games
in the CATEGORIZE state, while the preferred category,
“Moderate”, was not detected until player 2 played nine games
in the CATEGORIZE state. Nothing particularly stood out with
respect to the attributes of the types of games they liked. In
general, the games played by player 1 have more ammo and
health than not, and all the monsters came from sets 1 and 2.
In the games played by player 2, 60% monsters came from sets
1 but there were monsters from other three sets. This player
mainly used the weapon, nailgun, along with all other available
weapons that were evenly used. Nevertheless, it is observed
that those players who have little gameplay experience and
poor skills did not seem to enjoy playing games regardless of
models. Players 3, 10 and 13 in this class awarded the lowest
overall scores to 30 games played by them as illustrated in Fig.
9. They seem quite sensitive to level variation within the same
difficulty category. In addition, they tended to play a game
in a shorter time and their behavior was extremely unstable,
which makes the performance of the PDC model degraded
considerably. For example, player 10 was given “Very Easy”
games to play in the PRODUCE state but the PDC model was
not confident to decide whether this player still enjoyed this
category after playing seven “Very Easy” games.

In summary, the Quake prototype carries out a proof of
concept for our LBPCG framework. Simulation results suggest
that the prototype is promising towards generating the content
appealing to target players.

VI. DISCUSSION

In this section, we discuss several issues arising from our
LBPCG framework and simulations.
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The ICQ model is key to any content generator for produc-
ing quality games while the CC model is useful in limiting
the search space during content generation. Traditionally,
such models were carried out with hand-crafted evaluation
functions with prior knowledge, e.g., [6], [11]. In this paper,
we explore a data-driven methodology by encoding develop-
ers’ knowledge implicitly. The development in both methods
inevitably involves developers’ efforts; developers have to
find constraints/rules on content space manually in traditional
methods while developers need to annotate games in data-
driven methods. In general, traditional methods may be more
efficient if developers can encode their prior knowledge on
content space explicitly with constraints/rules. However, such
handcrafted evaluation functions often filter out quality games
along with those of low quality. By taking the whole content
space into account, we believe that the learning-based method
might provide an alternative solution whenever it is hard for
developers to find constraints/rules.

Our LBPCG framework provides a novel solution to user
modeling for the EDPCG [14] via learning developers’, public
testers’ and target players’ preferences. In this context, the
earlier work [5] has successfully explored machine learning
for user modeling. Nevertheless, our work distinguishes from
the previous work in the following aspects: (a) applying active
learning in modelling developers’ knowledge implicitly, (b)
learning taking place in the different stages for developers and
different users, (c) learning the preferences of public testers
with quality games selected based on content categorization,
which facilitates capturing typical gameplay behavior and elic-
iting experience of interest, and (d) minimizing the interruption
of target players’ gameplay experience with inductive learning
models trained on public testers’ data.

To generate the content appealing to target players on-
line, the IP model strategically controls a content generator
by using four component models sequentially. While our
method working in the generate-and-test style is designed
for computational efficiency, more sophisticated search-based
techniques [3] might make use of four component models
to generate quality contents. For instance, an evolutionary
computation algorithm may combine all or some evaluation
functions created in four component models along with other
constraints, if there are, as a multi-objective fitness to evaluate
the candidate content during search.

While the LBPCG framework is proposed towards tackling
several challenging problems in PCG, there are still several
issues to be addressed in future researches. First of all, the key
idea underlying the LBPCG is allowing developers to define
content features flexibly for meaningful content categorization
in order to facilitate categorizing players and adapting the
content to their preference. However, it is non-trivial for
developers to choose the correct content features that can
elicit different affective/cognitive experience for players of
different types. Without prior knowledge, developers may need
to acquire such knowledge first, which may have to involve the
public testers prior to the content feature selection. In addition,
the learning-based enabling techniques for the ICQ and the
CC models require training examples, labeled representative
games by developers. While it is an implicit way to encode

developers’ knowledge, it may be tedious and expensive in
terms of labor cost. On the one hand, we would exploit
agents or simulation-based methods [10] to lower the cost in
annotation. On the other hand, the annotation process may
involves veteran public testers, e.g., beta testers in the real
industrial gaming “stress-test”, who have the same knowledge
as developers. Next, the enabling techniques presented in this
paper are by no means sophisticated. There is no proof that
the active learning algorithms used in the ICQ and the CC
models always converge to the satisfactory performance with
a few annotated examples. Recent studies [33] suggest that the
rating-based feedback to a single game played in the public
survey might cause less accurate and “biased” experience to be
reported while ranking-based feedback by comparing a pair of
games played can capture players’ accurate and less “biased”
experience. Unfortunately, our current enabling techniques in
the GPE, the PDC and the IP models do not enable the LBPCG
to use the ranking-based survey. In addition, more effective yet
robust enabling techniques for the IP model should be explored
in detecting a target player’s type/style. Finally, our proof of
concept is also subject to limitation as follows: (a) a single
developer was used in the ICQ and the CC models, (b) the
random survey did not necessarily contain participants who are
representative of target players and many of the participants
played no games in some difficulty categories in the GPE
model, and (c) the IP test was less thorough as there were
only 14 target players and each played 10 games.

In conclusion, we have presented the LBPCG framework
and the enabling techniques towards generating the content
appealing to target players. For a proof-of-concept, we have
developed a Quake prototype to demonstrate how our LBPCG
framework works. The preliminary results in our simulation
are promising. In our ongoing research, we will be investi-
gating the outstanding issues discussed above and exploring
state-of-the-art machine learning and other relevant techniques
to improve the enabling techniques.
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