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Abstract

This paper deals with adaptive consensus output regulation of a class of network-connected nonlinear systems with completely
unknown parameters, including the high frequency gains of the subsystems. The subsystems may have different dynamics, as
long as the relative degrees are the same. A new type of Nussbaum gain is proposed to deal with adaptive consensus control
of network-connected systems without any knowledge of the high frequency gains. Adaptive laws and internal models are
designed for the subsystems to deal with unknown parameters for tracking trajectories and unknown system parameters. In
the control design, only the relative information of subsystem outputs are used, provided that regulation error of one of the
subsystems is available. The proposed control inputs and the adaptive laws are decentralized. If the relative degree is one,
only the relative subsystem outputs are exchanged. For the case of higher relative degrees, the nonlinear model structure of
the subsystems is exploited for backstepping control design, and some variables generated by the subsystem controllers are
exchanged among the subsystems in the neighbourhood defined by the connection graph.
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1 Introduction

Many dynamic systems are connected by networks to
perform certain common or similar tasks that include
formation control and cooperative control etc. Consen-
sus control often refers to the situation where network-
connected subsystems are controlled to achieve the same
or very similar control objectives. A significant differ-
ence of consensus control to other control design is the
use of the information collected from the subsystems
in the neighbourhood, and the success of any proposed
consensus control design depends on the structure of
network connections which are described as connection
graphs. A useful description of a connection graph is
the Laplacian matrix that plays an important role in all
the design methods on consensus control (Fax and Mur-
ray, 2004; R.Olfati-Saber and Murray, 2004; Qu, 2009).
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In particular, some important properties of Laplacian
matrices in relation to consensus control are well de-
scribed in (Qu, 2009).

Consensus control started from the single-integrator
dynamics of subsystems as shown in the review paper
(Olfati-Saber, Fax and Murray, 2007) and then to sub-
systems with full linear system dynamics (Fax and Mur-
ray, 2004; R.Olfati-Saber and Murray, 2004; Xiang, Wei
and Li, 2009; Seo, Shim and Back, 2009; Li, Duan, Chen
and Huang, 2010; Yang, Roy, Wan and Saberi, 2009; Su
and Huang, 2012; Grip, Yang, Saberi and Stoorvo-
gel, 2012). Results on consensus control of systems with
nonlinear subsystem dynamics have appeared in var-
ious publications (Hong, Hu and Gao, 2006; Chopra
and Spong, 2008; Zhao, Hill and Liu, 2011; Münz, Pa-
pachristodoulou and Allgöwer, 2011; Li, Liu, Fu and
Xie, 2012; Li, Ren, Liu and Fu, 2013; Ding, 2013a; Su
and Huang, 2013). Most of the results on nonlinear dy-
namics are obtained for subsystems with relative degree
one or the systems with Lipschitz nonlinearities. When
there are uncertainties in the system, adaptive control
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strategies are naturally considered. One challenge is
the implementation of adaptive laws in a decentralized
manner (Yu and Xia, 2012). In the robust adaptive con-
sensus control shown in (Das and Lewis, 2010; Zhang
and Lewis, 2012), the adaptive laws are decentralized,
with the influence of the uncertainties of the adjacent
subsystems being treated as bounded disturbances, and
the resultant consensus control errors are kept bounded
instead of the convergence to zero due to the robust
adaptive control treatment. Decentralized adaptive laws
have been proposed for first-order nonlinear systems in
(Yu and Xia, 2012).

We consider consensus output regulation of a class
of network-connected nonlinear dynamic systems
whose subsystems have all the system parameters
completely unknown, including the high frequency
gains. It is well known that Nussbaum gains can be
used to tackle adaptive control with unknown high-
frequency gains for single-input single-output sys-
tems including the case of nonlinear output regulation
(Nussbaum, 1983; Ding, 2001). However, for a network
connected system with multiple subsystems, the ex-
isting Nussbaum gain designed for individual systems
would not be able to establish the boundedness of all
the variables in the adaptive consensus control system,
as Nussbaum gain parameters for different subsystems
could move in different directions, and a usual con-
tradiction could not be obtained. A very recent result
(Chen, Li, Ren and Wen, 2014) proposes a Nussbaum
gain for multi-agent systems with unknown control di-
rections when the lower and upper bounds of the control
coefficients are known. In this paper, we propose a new
Nussbaum gain with a potentially faster rate such that
the boundedness of the system parameters can be es-
tablished by an argument of contradiction even if the
Nussbaum gain parameter for only one of the subsys-
tems goes unbounded. This new Nussbaum gain can be
applied to the systems considered in (Chen et al., 2014)
to remove the assumption of known lower and upper
bounds of the control coefficients.

Tracking and disturbance rejection can be unified as an
output regulation problem (Isidori, 1995). A recent re-
sult for consensus output regulation of linear systems
is shown in (Grip et al., 2012) and for nonlinear sys-
tems in (Ding, 2013a; Su and Huang, 2013). The re-
sults shown in the later two are for the nonlinear sub-
systems with relative degree one. In particular, the re-
sult in (Su and Huang, 2013) extends the result for
nonlinear output regulation with unknown exosystems
(Ding, 2003) to consensus output regulation. The key
step in designing an adaptive scheme for systems with
consensus control is to ensure that only the informa-
tion available in the local neighbourhood can be used
for the adaptive control design. This is relatively eas-
ier when the subsystems are of relative degree one, for
which no exchange of adaptive parameters are needed
in the consensus control. With higher relative degrees,

filtered-transformation and backstepping, the tools to
tackle high relative degrees, tend to propagate uncer-
tainties in the network. In such a case, adaptive laws
need to be designed with collaboration of the subsys-
tems in the neighbourhood. We propose adaptive laws
and control inputs with the information available from
the subsystems in the neighbourhood, and therefore the
adaptive laws and inputs are still viewed as decentral-
ized, as no information from the subsystems outside the
neighbourhood are needed. It is also noted that as for
the subsystem outputs, the proposed design only use the
relative information between the subsystems. Lyapunov
function based analysis is used to establish the stability
of the adaptive output regulation design for consensus
control using the proposed adaptive laws and the new
Nussbaum gain design. The proposed control can deal
with the subsystems with different dynamics as long as
the subsystems with the same relative degree. An ex-
ample is included to demonstrate the proposed control
design with the simulation results shown.

2 Problem Formulation

In this paper, we consider a set of N nonlinear subsys-
tems, of which the subsystems are described by

ẋi =Acixi + φi(yi, w, µi) + biui,

yi =Cixi, (1)

with bi, C
T
i ∈ Rni and

Aci =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0


, bi =



0
...

0

bi,ρ
...

bi,n


, CTi =


1

0
...

0



for i = 1, . . . N , where xi ∈ Rni is the state vector, with
ni known positive constant integers denoting the order
of the subsystems, yi, ui ∈ R are the output and input
respectively of the ith subsystem, µi ∈ Rqi and bi ∈
Rni are vectors of unknown parameters, with bi being a
Hurwitz vector with bi,ρ 6= 0, which implies the relative
degree of the system is ρ, φi : R × Rm → Rni contains
nonlinear functions with each element as polynomials
of its variables and satisfies φi(0, w, µi) = 0, and w ∈
Rm are disturbances, and they are generated from an
unknown exosystem

ẇ = S(σ)w (2)

with unknown σ ∈ Rs, of which, S ∈ Rm×m is a constant
matrix with distinct eigenvalues of zero real parts.
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The connections between the subsystems are specified
by an undirected graph G that consists of a set of ver-
tices denoted by V and a set of edges denoted by E . A
vertex represents a subsystem, and each edge represents
a connection. Associated with the graph, its adjacency
matrixA with elements aij denotes the connections such
that aij = 1 if there is a path from subsystem j to sub-
system i, and aij = 0 otherwise. Since the connection
is undirected, we have A = AT . We define the Lapla-

cian matrix L is a normal way as lii =
∑N
j=1 aij and

lij = −aij when i 6= j.

We define the output regulation errors as

ei = yi − g(w) (3)

with g : Rm → R being polynomials of its variables, for
i = 1, . . . , N . In our set up, not every subsystem has
access to g(w), and the consensus output regulation will
be achieved through the network connections among the
subsystems.

The adaptive consensus output regulation problem con-
sidered in this paper is to design an adaptive control
strategy using the relative output information yi − yj ,
i 6= j, provided by the network connection to each sub-
system to ensure the convergence to zero of output reg-
ulation errors ei for i = 1, . . . , N under any initial con-
dition of the system in the state space, i.e., the conver-
gence of the subsystem outputs yi to the common func-
tion g(w).

Not all the subsystems have the access to the function
value of g(w). We use a diagonal matrix ∆ to denote
the access to g(w) in the way that if δii = 1, the ith
subsystem has access to the value of g(w) for the control
design, and δii = 0 otherwise. At least one subsystem
has the access. The subsystems which do not have access
to the tracking signal rely on the network connections
to achieve the consensus tracking.

We make several assumptions about the dynamics of the
subsystems, the exosystem and the connections between
the subsystems.

Assumption 1. The invariant zeros of {Aci, bi, Ci} are
stable, for i = 1, . . . , N , and all the subsystems have the
same sign of the high-frequency gains.

Assumption 2. The eigenvalues of S are distinct and
on the imaginary axis.

Assumption 3. The adjacency matrix A is irreducible.

Remark 1. When the disturbance term w disappears,
each subsystem is in the standard output feedback form
to which the geometric conditions for a nonlinear sys-
tem to be transformed are specified in (Krstic, Kanel-
lakopoulos and Kokotovic, 1995).Aci and Ci are parts of

the standard form, and therefore as long as the systems
are in the output feedback form even with different dy-
namics, we can always write the corresponding system
matrices in these formats. /

Remark 2. In the formulation of an output regulation
problem, the tracking trajectories and the disturbances
are commonly assumed to be functions of the state that
is generated by an exosystem. In such a formulation, dis-
turbance rejection and output tracking can be treated
in a unified way (Isidori, 1995; Ding, 2003). Assump-
tion 2 on the eigenvalues of the exosystem dynamics is
common in the formulation of output regulation, as the
stable modes in the exosystem do not have an impact
asymptotically. From a practical point of view, any pe-
riodic signals designed for the tracking trajectory can
be approximated by sinusoidal functions with different
frequencies, and those sinusoidal functions can be for-
mulated as the state variables of the exosystem under
Assumption 2. /

Remark 3. The adjacency matrix is irreducible if there
exists a path between any two subsystems. /

3 Preliminaries

Several preliminary results on output regulation and
consensus control are needed for proposing the adaptive
control strategies later. We introduce a number of re-
sults for individual subsystems.

We introduce filtered transformation with the filter for
the subsystem i, for i = 1, . . . , N ,

ξ̇i,1 = −λ1ξi,1 + ξi,2
. . .

ξ̇i,ρ−1 = −λρ−1ξi,ρ−1 + ui, (4)

where λj > 0 for j = 1, . . . , ρ− 1 are the design param-
eters, and the filtered transformation

z̄i = xi − [d̄i,1 . . . d̄i,ρ−1]ξi, (5)

where ξi = [ξi,1 . . . ξi,ρ−1]T , d̄i,j ∈ Rni for j = 1, . . . , ρ−1
and they are generated recursively by d̄i,ρ−1 = bi and
d̄i,j = (Aci + λj+1I)d̄i,j+1 for j = ρ − 2, . . . , 1. The
system (1) is then transformed to

˙̄zi =Aciz̄i + φi(yi, w, µi) + diξi,1
yi =Cz̄i, (6)

where di = (Aci + λ1I)d̄i,1. It can be shown that di,1 =
bi,ρ and

ni∑
j=1

di,js
ni−j =

ρ−1∏
j=1

(s+ λj)

ni∑
j=ρ

bi,js
ni−j . (7)
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With ξi,1 as the input, the system (6) is with relative
degree one and minimum phase. We introduce another
state transformation to extract the internal dynamics of
(6) with zi ∈ Rni−1 given by

zi = z̄i,2:ni
− di,2:ni

di,1
yi, (8)

where (·)2:ni
refers to the vector or matrix formed by the

2nd row to the nith row. With the coordinates (zi, yi),
(6) is rewritten as

żi =Dizi + ψi(yi, w, θi)

ẏi = zi,1 + ψi,y(yi, w, θi) + bi,ρξi,1, (9)

where the unknown parameter vector θi = [µTi , b
T
i ]T ,

and Di is the left companion matrix of di given by

Di =



−di,2/di,1 1 . . . 0

−di,3/di,1 0
. . . 0

...
...

...
...

−di,ni−1/di,1 0 . . . 1

−di,ni/di,1 0 . . . 0


, (10)

and

ψi(yi, w, θi) =Di
di,2:ni

di1
yi + φi,2:ni

(yi, w, µi)

−di,2:ni

di,1
φi,1(yi, w, µi),

ψi,y(yi, w, θi) =
di,2
di,1

yi +
di,2:ni

di,1
φi,1(yi, w, µi).

Notice that Di is Hurwitz, from (7), and that the de-
pendence of di on bi is reflected in the parameter θi in
ψi(yi, w, θi) and ψi,y(yi, w, θi), and it is easy to check
that ψi(0, w, θi) = 0 and ψi,y(0, w, θi) = 0.

The solution of the output regulation problem depends
on the existence of certain invariant manifold and feed-
forward input. From the structure of the exosystem, the
disturbances are sinusoidal functions. Polynomials of si-
nusoidal functions are still sinusoidal functions, but with
some high frequency terms. Since all the nonlinear func-
tions involved in the system (1) are polynomials of their
variables, the following results about the feedforward in-
puts and their immersions can be obtained.

Lemma 3.1 For a subsystem i of (1), for i = 1, . . . .N ,
there exist an invariant manifold πi(w) ∈ Rni−1 satisfies

∂πi(w)

∂w
S(σ)w = Diπi(w) + ψi(g(w), w, θi). (11)

Then there exists an immersion for the feedforward con-
trol input

∂τi(w, θi, σ)

∂w
S(σ)w= Φi(σ)τi(w, θi, σ)

αi(w, θi, σ) = Γiτi(w, θi, σ),

where

αi(w, θi, σ) = b−1i,ρ (
∂g(w)

∂w
S(σ)w − πi,1(w)

− ψi,y(g(w), w, θi)).

Furthermore, this immersion can be re-parameterised as

η̇i = (Fi +Gib
−1
i,ρ l

T
i )ηi

αi = b−1i,ρ l
T ηi, (12)

where (Fi, Gi) is a controllable pair with compatible di-
mensions, ηi = Miτi and li = ΓiM

−1
i with Mi satisfying

Mi(σ)Φi(σ)− FiMi(σ) = GiΓi. (13)

/

We now introduce a state transformation based on the
invariant manifold with

z̃i = zi − πi (14)

Finally we have the model for the control design

˙̃zi = Diz̃i + ψ̃i

ėi = z̃i,1 + ψ̃i,y + bi,ρξi,1 − lTi ηi
ξ̇i,1 = −λ1ξi,1 + ξi,2

. . .

ξ̇i,ρ−1 = −λρ−1ξi,ρ−1 + ui, (15)

where

ψ̃i = ψi(yi, w, θi)− ψi(q(w), w, θi),

ψ̃i,y = ψi,y(yi, w, θi)− ψi,y(q(w), w, θi).

Sine the nonlinear functions involved in ψ̃ and ψ̃y are

polynomials with ψ̃(0, w, θ, σ) = 0 and ψ̃y(0, w, θ, σ) =
0, w is bounded, and the unknown parameters are con-
stants, it can be shown that

‖ψ̃i‖2 < r̄z(e
2
i + e2pi ), (16)

|ψ̃i,y|2 < r̄y(e2i + e2pi ), (17)

where p is a known positive integer, depending on the
polynomials in ψ̃i and ψ̃iy, and r̄z and r̄y are unknown
positive real constants.
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Since the state in the internal model ηi is unknown, we
design the internal model

˙̂ηi = Fiη̂i +Giξi,1. (18)

If we define the auxiliary error

η̃i = ηi − η̂i + b−1i,ρGiei, (19)

it can be shown that

˙̃ηi = Fiη̃i − b−1i,ρFiGiei + b−1i,ρGiz̃i,1 + b−1i,ρGiψ̃i,y. (20)

If the system (1) is of relative degree one, then ξi,1 in (15)
is the control input for the subsystem. For the systems
with higher relative degrees, adaptive backstepping will
be used to find the final control input ui from the desir-
able value of ξi,1.

Before we introduce the control design, we need a result
on the Laplacian matrix.

Lemma 3.2 If the adjacency matrix A is irreducible,
and the non-negative diagonal matrix ∆ has at least one
positive diagonal element, the matrix (L+∆) is positive
definite. /

The proof of this lemma can be found in (Qu, 2009).

Let us denote

e = [e1, e2, . . . , eN ]T (21)

and the consensus regulation error

ζ = Qe (22)

where Q = L+ ∆. Since Q is invertible, the control ob-
jective is equivalent to limt→∞ ζ = 0. It is worth noting
that (22) implies that

ζi =

N∑
j=1

aij(yi − yj) + δii(yi − g(w)) (23)

for i = 1, . . . , N . Clearly, ζi is available to the control
design for the ith subsystem.

We have another result relating ζ and e that is needed
later for the stability analysis.

Lemma3.3With ζ = Qe, the following inequality holds
for any positive integer p,

N∑
i=1

e2pi ≤ N
p−1λ2pmax(Q)

N∑
i=1

ζ2pi (24)

where λmax(Q) denotes the singular value of Q.

Proof. A direct evaluation gives

N∑
i=1

ζ2pi =N([
1

N

N∑
i=1

(ζ2i )p]1/p)p

≥N([
1

N

N∑
i=1

(ζ2i )])p

=N1−p(‖ζ‖2)p

=N1−p‖Qe‖2p

≥N1−pλ−2pmax(Q)‖e‖2p

≥N1−pλ−2pmax(Q)(

N∑
i=1

e2i )
p

≥N1−pλ−2pmax(Q)
N∑
i=1

e2pi

from which (24) is obtained. /

4 Nussbaum Gain for Consensus Control

When high-frequency gains are completely unknown,
Nussbaum gains are used in adaptive control. The basic
idea of Nussbaum gain design is to construct a function
N (k) where k is a variable, and the control input takes
the form u = N (k)ū. Then the control design is contin-
ued with ū such that a condition in the following form
is obtained, for a single-input system,

V (t) ≤ V (0) +

k∫
0

(bρN (s)− 1)ds+ r(t) (25)

where V is a positive definite function, k(t) is a continu-
ous function with k(0) = 0, and r(t) is a bounded func-
tion and bρ is the unknown high-frequency gain. The
boundedness of k and subsequently the boundedness of
V can be established by seeking a contradiction using
(25) if the Nussbaum function satisfies the two-sided
Nussbaum properties

lim
k→±∞

sup
1

k

k∫
0

N (s)ds = +∞, (26)

lim
k→±∞

inf
1

k

k∫
0

N (s)ds = −∞, (27)

Typical choices of Nussbaum functions N (k) are
k2 cos(k) and k2 sin(k) etc.
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For consensus control, there are N unknown high-
frequency gains, and we can aim at a condition

V (t) ≤ V (0) +

N∑
i=1

ki∫
0

(bi,ρN (si)− 1)dsi + r(t) (28)

similar to (25), but with multiple continuous functions
ki’s. The problem is that the Nussbaum function that
satisfies the conditions (26) and (27) is no longer able to
establish the boundedness of ki’s in (28) as ki’s are inde-
pendent. Intuitively, we expect a function which grows
faster such that one of the ki’s is dominant for the posi-
tive definite condition for consensus control in (28).

We consider

N (k) = ek
2/2(k2 + 2) sin(k) (29)

and indeed, it can be used as a Nussbaum gain for con-
sensus control.

Lemma 4.1 With the Nussbaum gain shown in (29),
The boundedness of ki’s and V can be established from
(28).

Proof. Let

f(k) =

k∫
0

N (s)ds

It can be obtained that

f(k) = ek
2/2(k sin(k)− cos(k)) + 1

Furthermore, it can be shown that f(k) takes local mini-
mums at k = 2jπ and local maximums at k = (2j+1)π,
with j ∈ N0, a natural number. Hence for 2jπ < k ≤
2(j + 1)π, we have

−e(2(j+1)π)2/2 + 1 ≤ f(k) ≤ e((2j+1)π)2/2 + 1

Now let us establish the boundedness of ki in (28) by
seeking a contradiction. Consider the case bi,ρ > 0 first.
Assume that at least one of ki(t)s becomes unbounded
at t∗. Since ki’s are continuous, we can define a sequence
of time in the interval [0, t∗) as

tj = arg min
t
{ N
max
i=1
{ki(t)} = 2(j + 1)π} (30)

for j ∈ N0. Based on (30), we have limj→∞ tj = t∗. Let

U(t) = V (0) +

N∑
i=1

ki∫
0

(bi,ρN (si)− 1)dsi + r(t) (31)

Evaluating U at tj gives

U(tj) = V (0) +

N∑
i=1

(bi,ρf(ki(tj))−
N∑
i=1

ki,ρ + r(tj)

≤ V (0) + b(−e(2(j+1)π)2/2 + 1)

+(N − 1)b̄(e((2j+1)π)2/2 + 1) + r(tj) (32)

where b = minNi=1{bi,ρ} and b̄ = maxNi=1{bi,ρ}. With

−be(2(j+1)π)2/2 + (N − 1)b̄e(2j+1)π)2/2

=−be(2j+1)π)2/2(e(4j+3)π2/2 − (N − 1)b̄

b
) (33)

we have

U(tj)≤−be(2j+1)π)2/2(e(4j+3)π2/2 − (N − 1)b̄

b
)

+r̄(t) (34)

where r̄(tj) is bounded. As e(4j+3)π2/2 will dominate any
bounded functions with sufficient large j, we can con-
clude from (34), U(tj) < 0 for sufficient large j′s. This
is a contradiction, as V (t) is a positive definite function.
Hence, none of the ki’s becomes unbounded, and there-
fore boundedness of ki’s and V are established.

For the case bi,ρ < 0, we define

tj = arg min
t
{ N
max
i=1
{ki(t)} = (2j + 1)π} (35)

The rest of the proof can be carried out in the same way
as for the case bi,ρ > 0. /

5 Adaptive Consensus Regulation, ρ = 1

For the subsystems with relative degree ρ = 1, the fil-
tered transformation is not needed and we have ξi = ui
in (15). The dynamics of the subsystems are now ex-
pressed as

˙̃zi = Diz̃i + ψ̃i

ėi = z̃i,1 + ψ̃i,y + bi,ρui − lTi ηi (36)

Note that ei is not available for control design. The con-
trol design is based on ζ = Qe. Since the high-frequency
gain bi,ρ is completely unknown, we use the Nussbaum
gain proposed in the previous section for adaptive con-
trol

ui = γN (ki)ūi (37)

k̇i = ζiūi, ki(0) = 0 (38)

6



where the Nussbaum gain N is defined in (29), and γ is
a positive real design parameter.

From (36) and the definition of the Nussbaum gain in
(38), we have

ėi = z̃i,1 + (γbi,ρN (ki)− 1)ūi + ūi − lTi η + ψ̃i,y.

We now design ūi as,

ūi = −c1ζi − κ̂0(ζi + ζ2p−1i ) + l̂Ti η̂i.

where c1 ≥ 2 is a constant design parameter, l̂i is an
estimate of li, κ̂0 is an estimate of an unknown positive
constant κ0 and η̂i is generated from (18) with ξi,1 = ui,
because of the relative degree ρ = 1.

Using (19), we have the resultant error dynamics

ėi =−c1ζi − κ̂0(ζi + ζ2p−1i ) + z̃1 + (γbi,ρN (ki)− 1)ūi

−lTi η̃i − l̃Ti η̂i + b−1i,ρ l
T
i Ge+ ψ̃i,y. (39)

where l̃i = li − l̂i. The adaptive laws are given by

˙̂κ0 = ζ2i + ζ2pi , (40)
˙̂
li =−η̂iζi, (41)

Note that the control design and adaptive laws for sub-
system i only use ζi that is available via network connec-
tion to the subsystem, and therefore the control design
and adaptive laws are decentralized.

Theorem 5.1 The decentralized control inputs (38) and
adaptive laws (40) and (41) solve the adaptive consensus
regulation problem when the relative degree ρ = 1 in
the sense that the regulation error e converges to zero
asymptotically.

Proof. Let

Ve = eTQe+
1

2

N∑
i=1

(l̃Ti l̃i + κ̃2i ) (42)

where κ̃i = κi − κ̂i. It can be obtained that

V̇e =

N∑
i=1

(ζiėi − l̃Ti
˙̂
li − κ̃i ˙̂κi) (43)

From (39), (40) and (41), we have

V̇e =

N∑
i=1

(−c1ζ2i − κ0(ζ2i + ζ2pi ) + (γbi,ρN (ki)− 1)ζiūi

+ζiz̃i,1 − ζilTi η̃i + ζib
−1
i,ρ l

T
i Giei + ζiψ̃i,y)

≤
N∑
i=1

(−κ0(ζ2i + ζ2pi ) + (γbi,ρN (ki)− 1)ζiūi +
1

2
‖z̃i‖2

1

2
‖li‖2‖η̃i‖2 +

1

2
|b−1i,ρ l

T
i Gi|2|ei|2 +

1

2
‖ψ̃i,y‖2) (44)

To analyse the dynamics of z̃i, let

Vz =

N∑
i=1

z̃Ti Pi,z z̃ (45)

where Pi,z is a positive definite matrix that satisfies

DT
i Pi,z + Pi,zDi = −3I.

From (36), we obtain that

V̇z =

N∑
i=1

(−3‖z̃i‖2 + 2z̃iPi,zψ̃i)

≤
N∑
i=1

(−2‖z̃i‖2 + ‖Pi,z‖2‖ψ̃i‖2) (46)

Next, we consider the stability of η̃i. Let

Vη =

N∑
i=1

η̃Ti Pi,η η̃i (47)

where Pi,η is a positive definite matrix that satisfies

FTi Pi,η + Pi,ηFi = −5I.

From (20), it can be obtained that

V̇η =

N∑
i=1

(−2‖η̃i‖2 + ‖b−1i,ρPi,ηFiGi‖
2|ei|2

+‖b−1i,ρPi,ηGi‖
2‖z̃i‖2 + ‖b−1i,ρPi,ηGi‖

2|ψ̃i,y|2) (48)

Finally, Let

V = Ve + β1Vz + β2Vη (49)

where β1 and β2 are positive constants satisfying

β2 ≥
1

2
‖li‖2

β1 ≥
1

2
+ β2‖b−1i,ρPi,ηGi‖

2.
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From (44), (46) and (48), we have

V̇ ≤
N∑
i=1

[−κ0(ζ2i + ζ2pi ) + (γbi,ρN (ki)− 1)ζiūi

+(
1

2
|b−1i,ρ l

T
i Gi|2 + β2‖b−1i,ρPi,ηFiGi‖

2)|ei|2

+(
1

2
+ β2‖b−1i,ρPi,ηGi‖

2)|ψ̃i,y|2

+β1‖Pi,z‖2‖ψ̃i‖2] (50)

From (16) and (17), there exist positive constant r0 such
that

V̇ ≤
N∑
i=1

[−κ0(ζ2i + ζ2pi ) + (γbi,ρN (ki)− 1)ζiūi

+r0(e2i + e2pi )]. (51)

From Lemma 3.3, we can set

κ0 ≥ r0 max{λ2max(Q), Np−1λ2pmax(Q)} (52)

which results in

V̇ ≤
N∑
i=1

(γbi,ρN (ki)− 1)k̇i. (53)

Integrating both sides of (53) gives

V (t)≤ V (0) +

N∑
i=1

ki∫
0

(γbi,ρN (si)− 1)dsi. (54)

The boundedness of V and ki’s can be concluded from
Lemma 4.1. Therefore, we can further conclude the
boundedness of all variables in the adaptive control
system and limt→∞ e(t) = 0, by following the stan-
dard procedures of stability analysis of adaptive control
systems (Ding, 2013b). /

Remark 4. Note that the control design is based on ei
and ζi, and does not use w. For the subsystems with
δii = 1, ei denotes the regulation error, or the tracking
error, of the subsystem, and the solution of an output
regulation problem does require the measurement of the
tracking error for the control design as in the standard
formulation (Isidori, 1995). /

6 Adaptive Consensus Regulation, ρ > 1

When the relative degree ρ > 1, we use adaptive back-
stepping for the control design. The first step is almost
the same as the control design for ρ = 1. In this case,
we cannot directly assign values to ξi,1. Instead, we can

start the control design from the desired values for ξi,1
denoted by ξ̂i,1 as

ξ̂i,1 = γN (ki)ξ̄i,1 (55)

k̇i = ζiξ̄i,1, ki(0) = 0 (56)

where the Nussbaum gain N is defined in (29). From
(15) and the definition of the Nussbaum gain in (55), we
have

ėi = z̃i,1 + (γbi,ρN (ki)− 1)ξ̄i,1 + ξ̄i,1 + b̃i,ρξ̃i,1

+b̂i,ρξ̃i,1 − lTi ηi + ψ̃i,y

where b̂i,ρ is an estimate of bi,ρ, b̃i,ρ = bi,ρ − b̂i,ρ and

ξ̃i,1 = ξi,1 − ξ̂i,1.

We design

ξ̄i,1 = −c1ζi − κ̂i(ζi + ζ2p−1i ) + l̂Ti η̂i.

where κ̂i is an estimate of an unknown constant κ0.

The resultant dynamics of ei are obtained as

ėi =−c1ζi − κ̂i(ζi + ζ2p−1i ) + z̃1 + (γbi,ρN (ki)− 1)ξ̄i,1

+b̃i,ρξ̃i,1 + b̂i,ρξ̃i,1 − lTi η̃i − l̃Ti η̂i
+b−1i,ρ l

T
i Ge+ ψ̃i,y. (57)

From ξi, we will design the final control design ui in ρ−1
steps using adaptive backstepping.

In the second step, we have

˙̃
ξi,1 = λ1ξi,1 + ξi,2 − ˙̂

ξi,1 (58)

Note that ξ̂i,1 is a function of ζi, ki, b̂i,ρ, κ̂i and η̂i. Hence,
we have

˙̃
ξi,1 =−λ1ξi,1 + ξi,2

−∂ξ̂i,1
∂ki

k̇i −
∂ξ̂i,1

∂b̂i,ρ

˙̂
bi,ρ −

∂ξ̂i,1
∂κ̂i

˙̂κi −
∂ξ̂i,1
∂η̂i

˙̂ηi

−∂ξ̂i,1
∂ζi

ni∑
j=1

qij(z̃j,1 + ψ̃j,y + bj,ρξj,1 − lTj ηj) (59)

Based on (57) and (59), we design ξ̂i,2 as

ξ̂i,2 = λ1ξi,1 − b̂i,ρζ̃i − c2,1ξ̃i,1 − c2,2(
∂ξ̂i,1
∂ζi

)2ξ̃i,1

+
∂ξ̂i,1
∂ki

k̇i +
∂ξ̂i,1

∂b̂i,ρ

˙̂
bi,ρ +

∂ξ̂i,1
∂κ̂i

˙̂κi +
∂ξ̂i,1
∂η̂i

˙̂ηi
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+
∂ξ̂i,1
∂ζi

N∑
j=1

qij(b̂j,ρξj,1 − l̂Tj η̂j) (60)

where c2,1 and c2,2 ≥ 3
2 are positive constant design

parameters. The resultant dynamics of ξ̃i,2 are obtained
as

˙̃
ξi,1 =−b̂i,ρζ̃i − c2,1ξ̃i,1 − c2,2(

∂ξ̂i,1
∂ζi

)2ξ̃i,1

−∂ξ̂i,1
∂ζi

N∑
j=1

qij(z̃j,1 + ψ̃j,y − lTj η̃j

−l̃Tj η̂j + b−1j,ρ l
T
j Gjej) (61)

If the relative degree ρ = 2, we have ξ̃i,2 = 0 and we can
set

ui = ξ̂i,2. (62)

In such a case, we design the adaptive laws as

˙̂
bi,ρ = ζiξ̃i,1 − (

N∑
j=1

qji
∂ξ̂j,1
∂ζj

ξ̃j,1)ξi,1, (63)

˙̂
li =−ζiη̂i + (

N∑
j=1

qji
∂ξ̂j,1
∂ζj

ξ̃j,1)η̂i (64)

Note that the control inputs shown in (60) and adap-
tive laws in (63) and (64) are still decentralized, because
the summation of the variables of other subsystems are
through qji. This means the control and adaptive laws of
subsystem i use the information of the subsystems that
are connected the subsystem i. Of course, for high rela-
tive degrees, we need more information from other sub-
systems. For the case of relative degree ρ = 2, we need

the information of b̂j,ρ, η̂j , ξj,1, and ξ̃j,1 etc. It should
also be noted that those variables are generated by the
local controllers, and there is no need to pass the infor-
mation of the system output, except the relative system
outputs.

Clearly, control design can be carried out for ρ > 2 by
following the same design procedures as shown for ρ = 2,
but more tedious. We will not show the details of the
design here, for the sake of the page limits. Instead, we
show the result of the stability analysis for the case of
ρ = 2.

Theorem 6.1 The decentralized control inputs (62) and
adaptive laws (56), (63) (64) solve the adaptive consen-
sus regulation problem when the relative degree ρ = 2
in the sense that the regulation error e converges to zero
asymptotically.

Proof. Let

Ve = eTQe+
1

2

N∑
i=1

(b̃2i,ρ + κ̃2i + l̃Ti l̃i + ξ̃2i,1) (65)

From (57), (61), (56), (63) and (64), we have

V̇e =

N∑
i=1

(−c1ζ2i − κ0(ζ2i + ζ2pi ) + (γbi,ρN (ki)− 1)ζiξ̄i,1

+ζiz̃i,1 − ζilTi η̃i + ζil
T
i Giei + ζiψ̃i,y

−c2,1ξ̃2i,1 − c2,2(
∂ξ̂i,1
∂ζi

)2ξ̃2i,1

−∂ξ̂i,1
∂ζi

ξ̃i,1

N∑
j=1

qij(z̃j,1 + ψ̃j,y + b−1j,ρ l
T
j Gjej))

≤
N∑
i=1

(−κ0(ζ2i + ζ2pi ) + (γbi,ρN (ki)− 1)ζiξ̄i,1

+
1

2
(‖z̃i‖2 + ‖li‖2‖η̃i‖2 + |b−1i,ρ l

T
i Gi|2|ei|2 + ‖ψ̃i,y‖2)

−c2,1ξ̃2i,1 − (c2,2 −
3

2
)(
∂ξ̂i,1
∂ζi

)2ξ̃2i,1

+
1

2

N∑
j=1

q2ij(‖z̃j‖2 + ‖lj‖2‖η̃i‖2 + |b−1j,ρ l
T
j Gj |2|ej |2

+‖ψ̃j,y‖2))

≤
N∑
i=1

(−κ0(ζ2i + ζ2pi ) + (γbi,ρN (ki)− 1)ζiξ̄i,1

−c2,1ξ̃2i,1 +
1

2
(1 + ‖Q‖2)(‖z̃i‖2 + ‖li‖2‖η̃i‖2

+|b−1i,ρ l
T
i Gi|2|ei|2 + ‖ψ̃i,y‖2)) (66)

The dynamics of z̃i and η̃i can be analysed in the same
way as in the proof of Theorem 5.1 by using the same
Vz and Vη. The rest of the proof follows similarly to the
proof of Theorem 5.1. /

7 Example

The proposed design works for the subsystems of differ-
ent orders as long as the relative degrees are the same.
We use an example to demonstrate the application of the
proposed control design to a network connected systems
with 5 subsystems of different orders. For i = 1, 3, 5,
each subsystem is described by a third-order nonlinear
model

ẋi,1 = xi,2

ẋi,2 = xi,3 + µi,1y
2
iw1 + bi,2ui

ẋi,3 = µi,2y
3
i + bi,3ui

yi = xi,1
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and for i = 2, 4, each subsystem is described by a second-
order nonlinear model

ẋi,1 = xi,2 + µi,1y
2
iw1

ẋi,2 = µi,1x
3
i,2 + µi,3w2 + bi,2ui

yi = xi,1

with the exosystem

ẇ =

[
0 σ

−σ 0

]
w, g(w) = [1 0]w.

Note that the exosystem generates sinusoidal functions
with frequency σ. The desired trajectory q(w) = w1

which is only available to the second subsystem. The
adjacency matrix and the result Q are given by

A =



0 1 1 0 1

1 0 1 1 0

1 1 0 1 0

0 1 1 0 1

1 0 0 1 0


, Q =



3 −1 −1 0 −1

−1 4 −1 −1 0

−1 −1 3 −1 0

0 −1 −1 3 −1

−1 0 0 −1 2


.

The system considered here is in the format of (1), and
it can be checked that the system satisfies Assumptions
2 and 3. We can choose the unknown parameters in the
simulation so that Assumption 1 is also satisfied. The
desired feedforward controls αi can be shown to contain
the sinusoidal functions of frequencies σ and 3σ. The
frequency components of 3σ are due to the nonlinear
functions in the system. For the internal model design,
we need to choose Fi ∈ R4×4. It can also be shown that
p = 3 is enough. The design of control inputs then follows
the exact steps shown in section 6.

Simulation study has been carried out with the unknown
system parameters set as µi,j = 0.1, and other unknown
parameters as 1, including bi,2 and σ. In the simulation
study, we used

Fi =


0 1 0 0

0 0 1 0

0 0 0 1

−16 −32 −24 −8

 , Gi =


0

0

0

10

 ,

for the internal models, and the control parameters were
set as 1 except γ = 0.001, and c2,2 = 2. Simulation
results for the output of the subsystems are shown in
Figure 1, which shows that the outputs for subsystems
1, 3, 5, and subsystems 2, 4 converge to the same value.
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Fig. 1. The subsystem outputs.

8 Conclusions

In this paper, we have proposed a new type of Nussbaum
gains that can be used for adaptive consensus of network
connected systems. This newly proposed Nussbaum gain
has been used together with carefully designed adaptive
laws and internal models for adaptive consensus output
regulation of a class of network-connected systems with
possibly different nonlinear dynamics. The success of the
proposed Nussbaum gain design depends on a new fast-
growing Nussbaum function. The adaptive laws depend
on the information available from the subsystems in the
neighbourhood. The proposed adaptive consensus con-
trol method can deal with tracking and disturbance re-
jection under the formation of adaptive output regula-
tion. The example demonstrates that proposed design
does ensure the convergence of the subsystem outputs
to a common trajectory.
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