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Abstract—In this paper, we present our ongoing work on
glaucoma classification using fundus images. The approach makes
use of texture analysis based on Binary Robust Independent Ele-
mentary Features (BRIEF). This texture measurement is chosen
because it can address the illumination issues of the retinal images
and has a lower degree of computational complexity than most of
the existing texture measurement methods currently used in the
literature. Contrary to other approaches, the texture measures
are extracted from the whole retina image without targeting any
specific region. The method was tested on a set of 196 images
composed of 110 healthy retina images and 86 glaucomatous
images and achieved an area under curve (AUC) of 84%. A
comparison performance with other texture measurements is also
included, which shows our method to be superior.
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I. INTRODUCTION

Glaucoma is the second leading cause of blindness world-
wide. A large majority of those affected from glaucoma are
from developing countries such as Asia and sub-Saharan
Africa. Glaucoma damage is irreversible, so early detection
can prevent severe vision loss. Unfortunately it has been shown
that only half of the prevalent cases are identified. This may
be due the fact that first, glaucoma is an asymptomatic disease
that patients do not notice until they experienced vision loss
and secondly, there is no single test to identify people with
glaucoma [1]. These have severely hampered the establishment
of screening based programs to detect the disease.

The screening program is where a grader will examine a
retinal image and decide whether referral for further clinical
examination by an ophthalmologist is necessary. With this
screening program it is hoped that more people with glaucoma
can be detected at an earlier stage so that timely treatment
can be provided to maintain the patient’s quality of life and
to reduce the cost involved in surgical treatments such as
laser treatment and drainage implant. With current techniques,
screening for glaucoma is not cost effective. Improved methods
of glaucoma classification could reduce the costs of screening
programs and make them cost effective.

There are essentially three tests used in the diagnosis
of glaucoma; tonometry, optic disc/nerve layer examination
and visual field testing. Tonometry is a process of measuring
intraocular pressure (IOP). IOP alone has limited effectiveness
as a population based screening tool. Many studies have shown
that there is no cut off IOP value that discriminates between
normal eyes and those with glaucoma [1].

Visual field testing has been shown to have relatively high
sensitivity and specificity when used as a screening test [2].
However, the test is time consuming and requires sophisticated
equipment and trained, well-motivated operators to help and

guide the subject. As it is a subjective examination, it assumes
that patients understand the testing instructions, cooperate and
complete the test. Many people have found a visual field testing
a difficult task to perform. It was reported that more than 90%
of over 40-year-olds were able to complete the screening test,
but for older patients (over 70 years of age) and those with
visual impairment the proportion drops to 71% [1].

Optic disc assessment can be the method of choice for
glaucoma screening. It involves examination of the optic
disc for signs of glaucoma either directly or through several
imaging instrument such as fundus imaging and 3D imaging
instruments. The 3D imaging instruments have the advantages
over fundus imaging with regards to glaucoma assessment as
they allow the acquisition and analysis of 3D measures of the
optic disc.

With a 3D image, the optic cup depth, one of the main
indicators for glaucoma can be measured and thus provide a
more accurate assessment of the disease. However they are
expensive instruments and thus not available in many primary
care centres. For large scale screening a cheaper option such
as the colour fundus image is preferred. In addition trained
personnel are normally required to operate the equipment to
ensure that the images captured are at the standard required for
the glaucoma classification to work correctly. Using a fundus
camera on the other hand, does not require a skilled operator
and the time taken to acquire the images is also reasonably
short.

In this paper, we present the latest results of our ongoing
work on glaucoma classification using fundus images. The
approach makes use of texture analysis based on Binary Robust
Independent Elementary Features (BRIEF) [3]. The texture
measures are extracted from whole retina image without tar-
geting on any specific region.

The remaining part of the paper is as follows. The literature
review is presented in Section II. Section III and Section IV,
described the proposed approach and the result of the study
respectively. Finally in Section V, we present our conclusion.

II. LITERATURE REVIEW

Previously published work on glaucoma detection follows
two distinct paths; based on segmentation of retinal objects and
based on classification using image features. The first approach
requires segmentation of the main retinal structures and based
on the segmented structures, some parameters are calculated
and used to label the image as normal or glaucomatous.

Examples of retina images (normal and glaucomatous) are
shown in Figure 1. The image in Figure 1(a), shows an example
of normal retina images. The main features of the retina image
are the optic disc, the optic cup and the retinal blood vessels.



(a) Normal image (b) Glaucomatous signs

(c) CDR=0.4 (d) CDR=0.7

Fig. 1. First ine: Anatomy of a retina image: (a) normal retinal image
showing all the major features and (b) glaucomatous sign often found
in the eye effected by glaucoma. Second line: CDR value for normal
(c) and glaucomatous (d) image.

Contrast this with an appearance often found in glacomatous
retina image as shown in Figure 1(b). The signs of glaucoma
appeared here are enlargement of the optic cup (cupping),
the presence of peripapillary atrophy, retinal and optic disc
haemorrhages and the presence of Retinal Nerve Fiber Layer
(RNFL) defects.

Measurements based on cup to disc ratio (CDR), blood
vessel area and retinal nerve fibre layer (RNFL) defect de-
tection [4][5] have been proposed for glaucoma detection.
Out of those, CDR is the most common; it is defined as the
ratio between the vertical diameter of the cup to the vertical
diameter of the disc (Refer to Figure 1(b) and Figure 1(d).
To measure it, segmentation of optic disc and optic cup are
needed.

One of the advantages of using CDR for glaucoma as-
sessment is that it is quite sensitive to glaucomatous changes
in the optic disc since it encodes local cup deformation [6].
Enlargement of the cup size as often found in the glaucomatous
retina will result in a bigger vertical cup diameter and hence
a higher value of CDR. However some studies found out that
CDR alone is inconsistent in explaining optic disc damage
caused by glaucoma [7]. CDR, like IOP, is also distributed
as a continuous variable with no sharp cut off value [1]. In
addition, there are cases where the CDR measured is small but
the patient has a significant visual field loss and vice versa.
This is because the cup size is determined in part by disc
diameter so that a large disc normally will have large cup and
small disc will normally have a small cup.

Methods based on CDR also require an accurate segmenta-
tion of both the optic disc and optic cup. Any errors in segmen-
tation may lead to significant change in the CDR measurements
and thus the misdiagnosis of the disease. The reported accuracy
of object segmentation for glaucoma assessment using fundus
images is yet to achieve the required specificity and sensitivity
required for large scale screening of glaucoma. One of the
reasons is because a correct segmentation of the optic disc and
optic cup itself is difficult to achieve. Variation in shape and

size of the optic disc are known to hamper the performance of
many automatic optic disc and cup segmentation system. Low
contrast near the optic cup/disc boundary and the interleaving
retinal blood vessels add to the difficulty in performing the
segmentation.

To avoid the difficulties associated with optic disc and optic
cup segmentation and relying solely on CDR measurement, an
alternative approach is to extract image features from the retina
image and use them for glaucoma classification. These features
can be extracted over the entire image or on a specific region
of interest namely the optic disc region. Several features have
been used, for example work in [8] uses image intensities,
Discrete Fourier Transform (DFT) coefficients and B-splines
coefficients, work in [9][10][11][12] use textural features and
a combination of textural and structural features is used in [6].

The advantage of this approach is it does not require seg-
mentation as it performs a statistical data mining technique on
image patterns themselves. With careful design, this approach
is capable of achieving robustness against inter and intra image
variations [6].

III. METHOD

This section presents the description of the retina image
classification approach to identify normal and glaucomatous
retinal image. Our approach uses the second technique de-
scribed earlier that is based on classification using image
features. It follows the standard machine learning pipeline, and
basically it consists of two procedures, feature extraction and
classification. This is illustrated in Figure 2.

A. Features extraction

To capture the image information for glaucoma classi-
fication, we use BRIEF features. The BRIEF features are
extracted from the green channel of the retinal image and then
represented as a histogram and used as image representation
in a similar manner as local binary patterns (LBP). We choose
the green channel because it provides better contrast compared
to the blue and red channels.

Formerly BRIEF was used as a feature for image matching
and recently it has been used as a texture measurement
for optic disc segmentation [13]. This texture measurement
is chosen because it can address the illumination issues of
the retinal images and has a lower degree of computational
complexity than most of the existing texture measurement
methods currently used in the literature.

BRIEF texture measurement uses a binary string to encode
the appearance of image patches. It form a descriptor by taking
image patches and computing the result of a predefined binary
test of n pixel pairs. The intensities of pairs of pixels are
compared. If one pixel is greater than the other by a certain
Threshold then the binary test is set to ’1’ otherwise it is set
to ’0’. The final output of the BRIEF operation is defined as
binary string of length n.

The formal definition of BRIEF as a texture measure used
in this paper is as follows:

A test τ defined on patch p of size SxS as:

τ(p; x
¯
, y

¯
) =

{
1 if ( p(x

¯
) - p(y

¯
) ) >Threshold

0 otherwise (1)



Fig. 2. Processing pipeline for the glaucoma classification.

where p(x
¯
) and p(y

¯
) are the pixel intensities at location x

¯
and

y
¯
. The BRIEF descriptor is then defined as the n bit vector:

fn =
∑

1≤i≤n

2i−1τ(p; x
¯i
, y

¯i
) (2)

In the current implementation, the descriptor is calculated
using 27x27 image patches and is 16 bits long, similar to
value used in [13]. As for the threshold value, it is based
on the estimated noise level of the image, which is provided
by the noise standard deviation (σ). In the literature, various
methods for the evaluation of σ, have been proposed. The two
common approaches are either block based or filtering. We
used a method which is based on filtering.

Briefly, it involved the following steps: first we blurred the
image using a Gaussian filter to suppress image structure. Then
the difference image is computed by subtracting the filtered
image from the original. The noise level (i.e. noise standard
deviation or σ ) is estimated using the difference image which
is assumed to contain the noise signal only.

We assumed that the noise affecting the image is Gaussian.
For a Gaussian distribution of noise, around 68% of the sample
distribution will have a value within 1σ from the mean, around
95% will have a value within 2σ from the mean and around
99% of have a value within 3σ from the mean. In other words,
around 1% of the peaks which are more than 3σ brighter will
be due to noise and the other 99 % are real values. Thus, in
our work, we set the threshold value to 3σ, this will ensure
that around 99% of the difference is real.

In handling retina images, pre-processing is normally per-
formed before other processing can take place. During this
stage, methods to correct uneven illumination, a problem in
retinal images, and remove other image structures that may
interfere with the classification (e.g. blood vessels) are em-
ployed. With respect to glaucomatous classification, in many
automated glaucoma detection system, the blood vessels are
often removed as their presence may lead to emphasizing
the blood vessels and not the signs related to glaucoma [8].
In addition, each retina image is normally normalized to a
standard size, to ensure robustness to optic disc size variations
[6].

We, on the other hand, did not pre-process the image for
illumination correction or for the blood vessel removal. This
is because the BRIEF features are already invariant to image
illumination, thus correcting the illumination is not needed. As
for retaining the blood vessels, the reason is because a vascular
change is also one of glaucoma’s indicators. In glaucoma,
the optic cup is enlarged, and the blood vessels within the
optic disc are often displaced with changes to their tortuosity.
This difference may be captured in the feature extraction

step (i.e. BRIEF features calculation step), and may help in
distinguishing between normal and glaucomatous cases.

Normalization with respect to optic disc was also not
conducted. This is because our dataset contains optic discs
of variable sizes. Although it is believed that normalization of
optic disc size can lead to robustness against optic disc size
variations, the process may, as an unwanted side effect, disturb
the natural textures of the retina images, which can lead to bias
during classification. Thus, in this investigation, normalization
was not used.

B. Classification

In this step, a classification and the associated class label
(glaucoma or normal) is computed based on the given features.
A Support Vector Machine (SVM) is used as the classifier.
SVM is a linear classifier and determines a maximum-margin
and soft hyper plane that best separates the considered classes.
We use SVM with the LIBSVM package [14].

C. Comparison performance

Other than evaluating the BRIEF’s performance in clas-
sifying glaucomatous and normal retina images, we also
perform comparison performance between BRIEF and other
well-known texture measurements: Gray Level Co-Occurrence
Matrix (GLCM) [15], Grey Level Difference (GLD) [16],
Local Binary Pattern (LBP) [17], Rank transform [18] and
Completed Modelling of LBP (CLBP) [11]. These particu-
lar texture measurements were chosen because, like BRIEF,
they also characterise an image through the probability of
occurrence of a pattern associated to a neighbourhood of a
given size and in the case of CLBP, it was used for glaucoma
classification in [12].

GLCM measures the joint probability of grey-levels of
two pixels standing in a predefined relative position. In our
implementation these parameters were used: window size is
3x3, displacement is 1 pixel and the directions were 0, 45,
90 and 135 degrees. A GLCM matrix is normally converted
into Haralick features before being used for classification;
however for this experiment we used the GLCM features
directly, similar to the implementation used in [19]. GLD is
quite similar to GLCM, but rather than measuring the joint
probability of the two pixels, it measures their differences. In
the implementation of GLD, similar parameters were used as
for GLCM.

LBP forms a descriptor by thresholding the values in the
periphery of the neighbourhood of the centre value. The output
is the binary string which is then mapped to its decimal
representation and collected into a histogram which is used
as image description. In this experiment we used the original
LBP which is calculated in 3x3 image patches. Rank transform
measures the number of pixels in the periphery of 3x3 regions
whose intensity is less than the intensity of the central pixel.
The result will be a value ranging from 0 to 8, i.e. a rank
transform will give 9 sets of possible patterns.

CLBP is an extension of LBP. In CLBP, a local region
is represented by its centre pixels and a local difference.
The centre pixels represent the image gray level and are
converted into binary code by global thresholding (CLBP C).



The local difference is then decomposed into sign (CLBP S)
and magnitude (CLBP M) components. The sign component
is equivalent to normal LBP. The CLBP feature is the com-
bination of the CLBM C, CLBP M and CLBP S. In the
implementation of CLBP, similar parameters were used as for
LBP.

IV. RESULT AND DISCUSSION

We tested the approach using 196 retina images, 86 are
glaucomatous and 110 are normal images. The images were
provided by the Manchester Royal Eye Hospital UK. During
the classification experiment, we employed 10 fold cross
validation, where one tenth of the images are used for testing
and the remaining for training in each fold. This is to ensure
that the result of the glaucoma assessment is not biased due
to the training set used.

A. Classification result

The receiver operating characteristic (ROC) curve and bal-
ance accuracy (Bac) were used as the performance measures.
The ROC shows classifier performance for different decision
thresholds. It can provide information on how to tune the de-
cision threshold in order to achieve the best trade-off between
sensitivity and specificity. As for balance accuracy, we used it
because our dataset has imbalanced normal and glaucomatous
classes. Balance accuracy is defined as the arithmetic mean of
sensitivity and specificity, or the average accuracy obtained on
either class. In the case of balance classes, this performance
parameter corresponds to the classification accuracy. The result
is shown in Table I. Based on the table, we obtained a balance
accuracy of 78% and an Area under curve (AUC) of 84%.

Samples of images which have been classified correctly
and incorrectly are shown in Figure 3. Figures 3(a)-3(e)
show correctly classified normal images (true negatives). The
correctly classified images mostly consist of images with good
contrast and are healthy looking. This corresponds with typical
appearances usually found in normal images. In contrast,
Figures 3(f)-3(j) show images which are correctly classified as
glaucoma (true positives). The images shown are characterised
by bigger cups and in some cases the presence of atrophy (the
pale regions outside the disk) and these characteristics again
correspond to common glaucoma patterns.

The difficulties in performing automatic glaucoma clas-
sification can be appreciated by looking at the misclassified
images, shown in Figure 3(k)-3(t). The images shown in Figure
3(k)-3(o) are misclassified normal images (false negatives). It
can be seen that the false negatives are images which show
similar characteristics to the glaucomatous retina such as a
bigger cup area. One example is the normal image in Figure
3(k) which visually quite similar to the glaucomatous image in
Figure 3(s). Similar observation can be made for misclassified
glaucoma images (false positives), most of the false positives
are images which have characteristics that resemble normal
images.

B. Comparison performance result

An ROC of BRIEF features in comparison with GLCM,
GLD, LBP, CLBP and Rank transform is shown in Figure 4. As
shown in the figure, BRIEF features achieved the highest AUC

TABLE I.
CLASSIFICATION

RESULTS.BAC = BALANCE
ACCURACY, AUC = AREA

UNDER CURVE

Bac(%) AUC (%)

78 84

with 84%, compared to the other textural features evaluated.
LBP achieved the second highest AUC with 77% and CLBP
in the third place with 76%.

Although the combination of CLBP is found to be effective
in classifying glaucoma in [12], the same performance is not
replicated with our dataset. Two reasons may contribute to
its lower performance. First, in the original paper the dataset
used to test the approach consisted of 41 retina images, 13 are
glaucomatous images and 28 are non glaucomatous images.
Given the small size of the dataset, it is understandable if the
result is better than the result achieved here. The second reason
is in their work, the image resolution is reduced to 225 x 225,
however no justification is given for why this is necessary. It
can be argued that the scaling process can provide bias to the
final classification.

Two of the published works in glaucoma classification
utilising image features and tested with a larger dataset are [8],
[6]. Work in [8] proposed a two stage glaucoma classification
system using features based on intensities, DFT coefficients
and B-spline coefficients. The features were further processed
using PCA to reduce the feature dimensions. Pre-processing
included non-uniform illumination correction, vessel removal,
optic disc region extraction and optic disc region normaliza-
tion. It was tested with 239 glaucomatous and 336 normal
images and achieved an AUC of 88%.

The other work [6] used a hybrid approach to glaucoma
classification. The approach combined image features derived
from the optic disc region, based on: CDR, cup to disc area
ratio (CDA), RNFL defect detection probabilities and atrophy
defect detection probabilities. The approach was evaluated
using 1962 images, 808 images were used for training and
1154 for testing and used five fold cross validation. The
AUC obtained were 78%, 64% using only CDR, 61% using
only CDA, 68% using only features derived from optic disc
regions and 73% using a combination of CDR, CDA and defect
detection probabilities from RFNL and atrophy.

For the purpose of this comparison, we will only consider
the result obtained using only image features. Altogether, [6]
extracted 84 image features (both structural and statistical)
from the optic disc for the classification. Pre-processing in-
cluded feature normalization with respect to optic disc size
and optic disc region extraction. The AUC achieved using only
image features was 68%.

Based on the obtained AUC, the results in [8] are better
than ours. However, their approach involved down sampling of
larger optic disc sizes during the normalization step. As stated
by the author himself, this step can bias the pure glaucomatous
variation and may affect the classification. To account for
this effect, they only evaluated their approach using a dataset
with limited optic disc size variation. This restriction was not
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Fig. 3. Samples of retina images who has been correctly and incorrectly classified using kNN classifier. First row: True negatives, Second
row: True positives, Third row: False Negatives and Fourth row: False positives

Fig. 4. The Receiver operating characteristic (ROC) curve of BRIEF in
comparison with GLCM, GLD, LBP, CLBP, combination of LBP and CLBP
and Rank Transform.

applied in our dataset and in [6]. For the record our dataset
has an average vertical optic disc diameter of 444± 53 pixels.
Further evaluation by [6] revealed that performance by [8]
drops to AUC of 61% when tested using a wider variation
of optic disc sizes.

V. CONCLUSION AND FUTURE WORK

In this paper, we described an approach for a glaucoma
classification system using textural feature description based
on BRIEF. Test evaluation performed using the approach
showed that the method was able to achieve an AUC of
85% for glaucoma classification. Comparison of performance
between BRIEF and other texture measurements (GLCM, CLD
LBP, CLBP and Rank Transform) was also conducted and
based on the result, we showed that the BRIEF features
performed better.

The key differences of our approach compared to others
are: firstly, the use of a textural feature for the classification. In
most of the methods more types of features are normally used,
which means some sort of feature selection needs to be applied
to find the most relevant features to drive the classification.
Second, in our approach the image features are derived from
whole image rather than concentrated on the optic disc region.
This way, we take account of both deformation found within
the optic disc and from regions in the retina background. The
method is also reasonably fast and simple to implement, which
makes it appropriate for glaucoma screening.

In the present work we do not pre-process the image for
blood vessel removal and we do not consider the effect of
disc size on the classification result. Therefore for future work



we intend to investigate the effect of including them into
consideration. An evaluation using a larger dataset will also
be conducted to fully evaluate the feasibility of the approach
for the screening program.
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