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We consider the two-variable fragment of first-order logic with counting, subject to the stipulation that a sin-
gle distinguished binary predicate be interpreted as an equivalence. We show that the satisfiability and finite
satisfiability problems for this logic are both NEXPTIME-complete. We further show that the corresponding
problems for two-variable first-order logic with counting and two equivalences are both undecidable.
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1 Introduction

The two-variable fragment of first-order logic, here denoted L2, is the set of function-free, first-order formulas
(with equality) featuring at most two variables. The two-variable fragment with counting, here denoted C2, is
the set of function-free, first-order formulas featuring at most two variables, but with the counting quantifiers
∃[≤M ], ∃[≥M ] and ∃[=M ], (for every M ≥ 0) allowed. It is impossible, in either logic, to express the fact that a
given binary relation is an equivalence (i.e. is reflexive, symmetric and transitive). This suggests the possibility of
enriching these logics by adding such a facility. We denote by L2kE the extension of L2 in which k distinguished
binary predicates are required to be interpreted as equivalences, for any k ≥ 1; and we denote by C2kE the
analogous extension of C2.

The following facts are known. The logic L2 has the finite model property [1], and its satisfiability (= finite
satisfiability) problem is NEXPTIME-complete [2]. The logic C2 is expressive enough for the finite model prop-
erty to fail; nevertheless, its satisfiability and finite satisfiability problems remain NEXPTIME-complete [3–5].
The logic L21E retains the finite model property, and its satisfiability problem remains NEXPTIME-complete [6].
The logic L22E lacks the finite model property, and its satisfiability and finite satisfiability problems are both
2-NEXPTIME-complete [7]. The satisfiability and finite satisfiability problems for L2kE are both undecidable
when k ≥ 3 [8]. In this paper, we investigate C2kE—the two variable fragment with counting and k equivalences.
We show that the satisfiability and finite satisfiability problems for C21E are both NEXPTIME-complete. We also
show that the satisfiability and finite satisfiability problems for C22E are both undecidable. Note that the undecid-
ability of the corresponding problems for C2kE where k ≥ 3 follows anyway from the above-mentioned results
on L2kE. Almost all of the paper is devoted to showing that the satisfiability and finite satisfiability problems
for C21E are in NEXPTIME. The technique involves reduction to integer linear programming, along the lines of
the treatment of C2 in [5]. A significant innovation of the present paper, however, is the use of Hilbert bases (of
systems of linear Diophantine equations) to construct succinct certificates for finitely satisfiable C21E-formulas.

A closely related family of logics is obtained by considering transitive relations in place of equivalences. We
denote by L2kT the extension of L2 in which k distinguished binary predicates are required to be interpreted as
transitive relations, for any k ≥ 1; and we denote by C2kT the analogous extension of C2. It is easy to show
that L21T lacks the finite model property, and it is known (but by no means easy to show) that its satisfiability
problem is in 2-NEXPTIME-time [9]. (No matching lower bound has yet been obtained, and the decidability
of the finite satisfiability problem is still open.) The satisfiability and finite satisfiability problems for L2kT are
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2 I. Pratt-Hartmann: Counting and Equivalence

undecidable when k ≥ 2 [6, 10]. In fact, the satisfiability and finite satisfiability problems for the weaker two-
variable fragment with one equivalence and one transitive relation are also both undecidable [11]. In the context
of logics with counting quantifiers, however, the satisfiability and finite satisfiability problems for C2kT are both
undecidable for all k ≥ 1 [12]. (Essentially the same result is obtainable from [13] by a simple adaptation.) It is
possible to restore decidability—even in the presence of an arbitrary number of transitive relations—by restricting
the underlying logical syntax. A great variety of such languages have been studied under the rubric of description
logics, perhaps the best-known examples being SHIQ [14] or SHOIQ [15].

In the complexity-theoretic analysis of fragments of first-order logic, it is common to consider the restriction
to guarded quantification [16], since doing so typically yields satisfiability problems (and finite satisfiability
problems) with lower complexity. For example, the satisfiability problem for the guarded sub-fragment of L2

is EXPTIME-complete [17]; likewise, although the guarded sub-fragment of C2 is still expressive enough for
the finite model property to fail, its satisfiability and finite satisfiability problems are again both EXPTIME-
complete [18, 19]. On the other hand, it is easy to see that, in the presence of a single equivalence relation,
restriction to guarded quantification produces no complexity-theoretic gains, since, within any equivalence class,
all elements are accessible using guarded quantification (assuming that E may be used as a guard). In effect, the
guarded fragment of C21E enjoys the full power of C2.

Of some historical interest in this connection is the first-order theory of k equivalence relations. Here, we
have full-first-order logic at our disposal (not just C2), but no non-logical predicates other than those denoting
equivalences. It is reported in [20] that membership of a sentence in the first-order theory of one equivalence is
decidable (even with equality); however, the first-order theory of two equivalences is undecidable (even without
equality).

The structure of the paper is as follows. Section 2 establishes basic concepts and notation. Section 3 constructs
the apparatus required to describe certain local configurations occuring in structures; this apparatus will allow us
to apply techniques from linear integer programming to analyse of models of C21E-formulas. Section 4 shows
how, given a formula ϕ of C21E, a data-structure can be constructed which, on the assumption that ϕ is satisfiable,
is guaranteed to satisfy a collection of algorithmically checkable properties. We refer to such a data-structure as
a certificate. If ϕ is in fact finitely satisfiable, this data-structure satisfies additional properties, and is referred
to as a finite certificate. Section 5 establishes the converse: if a (finite) certificate for ϕ satisfies the requisite
properties, then ϕ is (finitely) satisfiable. Section 6 establishes that if ϕ has a (finite) certificate, then it has one
of exponentially bounded size, and that the properties it is required to satisfy can be checked in exponential time,
as a function of the size of ϕ. This establishes that the satisfiability and finite satisfiability problems for C21E are
both NEXPTIME-complete. Section 7 shows that the satisfiability and finite satisfiability problems for C22E are
undecidable, by computable reduction to the halting problem for deterministic 2-counter machines.

A table listing the most common mathematical symbols that occur throughout the paper is given at the end.

2 Preliminaries

2.1 Logic

We employ standard terminology and notation from model-theory. Structures are denoted by (possibly decorated)
fraktur letters A, B, and their domains by the corresponding Roman letters. Unless explicitly indicated to the
contrary (as we do occasionally in the sequel), structures are assumed to have non-empty domains. If r is a
symbol of the signature of A, we denote its interpretation by rA. If ϕ is a formula, with free variables included
in the list x1, . . . , xn, A is a structure and ā = a1, . . . , an a tuple of elements of A, we write A |= ϕ[a1, . . . , an]
to indicate that ā satisfies ϕ(x1, . . . , xn) in A; where ϕ is a sentence (i.e. has no free variables), we simply
write A |= ϕ to indicate that ϕ is true in A. We say ϕ is satisfiable if, for some A and some a1, . . . , an ∈ A,
A |= ϕ[a1, . . . , an]; if, in addition, A is finite, we say ϕ is finitely satisfiable. If ¬ϕ is not satisfiable, we say
ϕ is valid, and write |= ϕ. If L is a set of formulas, the (finite) satisfiability problem for L is the problem of
determining whether a given ϕ ∈ L is (finitely) satisfiable. A set of formulas has the finite model property if its
satisfiability and finite satisfiability problems coincide.

The two-variable fragment with counting, C2, is the set of function-free, first-order formulas (with equality),
featuring only the variables x and y, but with the counting quantifiers ∃[≤M ], ∃[≥M ] and ∃[=M ], for everyM ≥ 0,
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allowed. Formally, the subscriptsM are bit-strings; however, we equivocate in the natural way between these bit-
strings and the non-negative integers they encode. We read ∃[≤M ]x.ϕ as “There exist at most M x such that ϕ”,
and similarly for the other counting quantifiers. The formal semantics are as expected. Evidently, ∃[=0]x.ϕ and
∃[≤0]x.ϕ are logically equivalent to ∀x.¬ϕ, while ∃[≥0]x.ϕ is trivially true. We allow equality in C2-formulas;
this represents no increase in expressive power, since the identity relation is anyway definable by the formula
∀x.r(x, x) ∧ ∀x∃[=1]y.r(x, y). We do not allow individual constants in C2-formulas; this represents no effective
decrease in expressive power, since we can always declare a unary predicate p to be uniquely instantiated by
writing ∃[=1]x.p(x). Likewise, the use of predicates of arity greater than two adds no effective increase in
expressive power, and we therefore assume, for simplicity, that all predicates are unary or binary. It is easy to see
that C2 lacks the finite model property: the formula ∃x∀y¬r(y, x)∧∀x∃y.r(x, y)∧∀x∃≤1y.r(y, x) is satisfiable,
but only over infinite domains.

The two-variable fragment with counting and one equivalence, C21E, employs the same syntax and semantics
as C2, but with the restriction that, in any structure A, the distinguished binary predicate E be interpreted as an
equivalence. Where A is clear from context, we refer to the cliques of EA simply as equivalence classes, and we
say elements a, b ∈ A are equivalent if A |= E[a, b].

A formula ψ of C21E is in normal form if it conforms to the pattern:

∀x∀y(x = y ∨ α) ∧
m∧
h=1

∀x∃[=Mh]y(βh ∧ x 6= y), (1)

where α and the βh are quantifier-free, equality-free L2-formulas, m is a positive integer, and the Mh are (bit-
strings representing) positive integers. We refer to the integer M = max{Mh | 1 ≤ h ≤ m} as the ceiling of ψ.
Observe that ψ is not satisfiable over any domain of cardinality less than or equal to M .

The following lemma uses a familiar technique originally employed in [21] to reduce the depth of quantifica-
tion in L2-formulas.

Lemma 2.1 Given a C21E-formula ϕ, we can compute, in polynomial time, a normal-form C21E-formula ψ,
with ceiling M , such that, for any set A of cardinality greater than M , ψ is satisfiable over the domain A if and
only if ϕ is.

P r o o f. We may assume without loss of generality that ϕ is a universally quantified sentence. (Apply up to
two existential quantifiers and a redundant universal quantifier if necessary.) We build ψ in three stages.

Stage 1: Write ϕ(0) = ϕ, and suppose first that ϕ(0) contains a subformula π(u) = ∃[≤N ]v.γ, where u, v are
the variables x, y in some order, and γ is quantifier-free. Let p be a new unary predicate, let ϕ(1) be the result of
replacing π(u) in ϕ by the atomic formula p(u), and define

ψ′ := ϕ(1) ∧ ∀u∃[≤N ]v(p(u) ∧ γ) ∧ ∀u∃[≥(N+1)]v(p(u) ∨ γ).

It is routine to check that ∀u∃[≤N ]v(p(u) ∧ γ) ∧ ∀u∃[≥(N+1)]v(p(u) ∨ γ) entails ∀u(p(u)↔ ∃[≤N ]v.γ); hence,
ψ′ entails ϕ. Moreover, if A |= ϕ with |A| > N , then we may expand A to a model A′ of ψ′ by setting
pA
′

= {a ∈ A | A |= π[a]}. On the other hand, if ϕ(0) does not contain a subformula π(u) = ∃[≤N ]v.γ, then it
contains a subformula having one of the forms ∃[≥N ]v.γ, ∃[=N ]v.γ, ∃v.γ or ∀v.γ, and we may proceed similarly,
subject to the obvious adjustments. Now apply the same process to the subformula ϕ(1) and continue until we
obtain a universally quantified formula, say ϕ(k), in prenex form with quantifier depth at most two. Collecting
ϕ(k) together with all the added conjuncts, and applying trivial logical manipulations, we obtain a formula

ψ∗ := ∀x∀y.α′ ∧
m′∧
h=1

∀x∃[./hM ′h]y.β
′
h,

where: (i) α′ and the β′h are quantifier-free, (ii) the symbol ./h stands for any of ≤, ≥ or =; (iii) ψ∗ |= ϕ; and
(iv) if A |= ϕ with |A| > maxhM

′
h, then A may be expanded to a model of ψ∗.
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4 I. Pratt-Hartmann: Counting and Equivalence

Stage 2: Replace any conjunct of the form ∀x∃≤M ′hy.βh by ∀x∃=M ′h
y.q(x, y), where q is a new binary pred-

icate, and add the conjunct ∀x∀y(β → q(x, y)); similarly, mutatis mutandis, for the case where ./h is ≥. By
rearranging conjuncts again, we may henceforth assume that each of the symbols ./h in ψ∗ is in fact =.

Stage 3: Over domains of size at least 2, the formulas ∀x∀y.α′(x, y) and ∀x∀y(x = y ∨ (α′(x, y) ∧ α′(x, x)))
are logically equivalent. Let α be the result of eliminating equalities from (α′(x, y) ∧ α′(x, x)) in the obvious
way: i.e. replace any subformula u = u by > and any subformula u = v, with u, v different, by ⊥. Thus, over
domains of size at least 2, ∀x∀y.α′(x, y) is logically equivalent to ∀x∀y(x = y ∨ α). Similarly, replace each of
the conjuncts ∀x∃=M ′h

y.β′h (assuming M ′h ≥ 1) with the corresponding conjunction

∀x∃[=(M ′−1)]y(q(x, y) ∧ x 6= y) ∧ ∀x∃[=M ′]y(q′(x, y) ∧ x 6= y)∧
∀x∀y (x = y ∨ [(β′h(x, x)→ (β′h(x, y)↔ q(x, y))) ∧ (¬β′h(x, x)→ (β′h(x, y)↔ q′(x, y)))]) ,

where q and q′ are fresh binary predicates. Modulo trivial logical manipulations, the resulting formula ψ is of the
form (1), and is satisfiable over the over a set A with |A| > M if and only if ϕ is.

2.2 Linear algebra

We write N for the set of natural numbers, {0, 1, 2, . . . }. If A is a matrix, we write A[i, j] to denote the (i, j)th
entry of A, and similarly for vectors. A matrix or vector (or indeed any collection of numbers) is bounded by a
quantity M if each of its entries is, and absolutely bounded by M if the absolute value of each of its entries is.
Matrices, vectors and scalars that it is helpful to think of as constants will frequently be indicated in bold type. If
m, n are natural numbers with m ≤ n, we write [m,n] for the set {m,m+ 1, . . . , n}.

A linear Diophantine equation is a linear equation a · w + b = f · w + g, where all coefficients are (possibly
negative) integers. In this paper, we drop the modifier “linear” in the sequel, and simply speak of Diophantine
equations. As long as variables take only finite values, any system E of Diophantine equations may without loss
of generality be written in matrix form: Aw = b. We occasionally write E(w) to make the tuple of variables in
E explicit. We refer to the elements of A as the variable coefficients of E and the elements of b as the constant
coefficients of E . If b = 0, we say that E is homogeneous. If E is any system of Diophantine equations, we write
‖E‖ to denote the size of E , i.e. the total number of bits required to write all its coefficients; and we write |E| to
denote the cardinality of E , i.e. the number or rows in A.

We consider also Diophantine inequalities a·w ≤ b, where, coefficients are again (possibly negative) integers.
Any such inequality can be converted into an equivalent (in the obvious sense) Diophantine equation a·w+y = b,
where y is a fresh variable, usually referred to as a slack variable. Thus, a mixed system of r Diophantine
equations and inequalities can be converted into an equivalent system of r Diophantine equations by the addition
of at most r slack variables. At various points in the sequel, we shall need to consider disjunctions of Diophantine
equations and inequalities. We call such a disjunction a Diophantine clause.

We employ two basic results on systems of Diophantine equations, given in Propositions (2.2) and (2.4). Given
two vectors over N, say a and b, we write a E b if, for every i (1 ≤ i ≤ n), a[i] ≤ b[i]. Thus, E is a partial order;
we refer to it as the pointwise order. And if E is any homogeneous system of Diophantine equations, we define
its Hilbert basis, denoted H(E), to be the set of solutions of E over N that are minimal in the pointwise order. It
is obvious that every solution of E over N is a non-negative integer linear combination of vectors in H(E). The
following bound on H(E) can be established by a remarkably simple combinatorial argument.

Proposition 2.2 (Pottier [22], Theorem 1) Let E : Ax = 0 be a homogeneous system of linear Diophantine
equations, with A absolutely bounded byM , and having dimensions r×k. Then every vector inH(E) is bounded
by (kM + 1)r.

The restriction to the homogeneous case is easily lifted.

Corollary 2.3 Let E : Ax = b be a system of Diophantine equations, with A and b absolutely bounded by
M , and A of dimensions r × k. Then the set of solutions of E over N can be written as

{w0 + ζ1w1 + · · ·+ ζLwL | w0 ∈W, ζ1, . . . , ζL ∈ N},
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where W is a finite set of vectors over N, and w1, . . . ,wL a list of vectors over N. Each vector in W and each of
the vectors w1, . . . ,wL is bounded by ((k+1)M+1)r; hence |W| andL are bounded by (1+((k+1)M+1)r)k.

P r o o f. Let E ′ be the homogeneous system of Diophantine equations (A | −b)

(
x
y

)
= 0, where y is a new

variable. The solutions of E are evidently those of E ′ in which y = 1 (with the final 1 projected out). Now divide
H(E ′) into sets of vectors W′, W′′ and W′′′, according as the last element is 0, 1 or greater than 1, and enumerate
W′ as w′1, . . . ,w

′
L. Thus, any solution of E ′ in which y = 1 has the form w′′0 + ζ1w

′
1 + · · · + ζLw

′
L, where

w′′0 ∈W′′ and ζ1, . . . , ζL are non-negative integers. Now let W and w1, . . . ,wL be the result of projecting out
the last components of all the vectors in W′′ and w′1, . . . ,w

′
L, respectively. The final statement then follows

from Proposition 2.2.

Note that the bounds in Corollary 2.3 imply the familiar fact that, if a system of Diophantine equations E
has a solution over N, then it has such a solution in which all values are bounded by 2p(‖E‖), where p is a fixed
polynomial [23, Theorem 2], (see also [24]). This in turn implies that the problem of determining whether E has
a solution is in NPTIME; indeed, the problem is easily seen to be NPTIME-complete.

In the sequel, we shall require a slightly sharper complexity bound when E has many more variables than
equations. If a is a solution of E(w) over N, and ω is a subset of the variables in w, we say that a has footprint
ω if all variables outside ω are assigned the value 0 in a. The next result yields a bound on the cardinality of this
set.

Proposition 2.4 ( [25], Theorem 1(ii)) Let E : Ax = b be a system of Diophantine equations with A
absolutely bounded by M and of dimensions r× k. If E has a solution over N, then it has a solution over N with
footprint of size at most 2r log(4rM).

Strikingly, the bound obtained in Proposition 2.4 is independent both of the number of variables, k, and also
of the constant coefficients, b. This feature will figure crucially in the argument of Sec. 4.4 and Sec. 6.

2.3 Extended linear algebra

We write N∗ for the set of extended natural numbers, {0, 1, 2, . . . ,ℵ0}. We interpret the arithmetic operations +
and · as well as the ordering< over N∗ as expected. Specifically: ℵ0 +n = n+ℵ0 = ℵ0 +ℵ0 = ℵ0 for all n ∈ N;
ℵ0 · 0 = 0 · ℵ0 = 0, and ℵ0 · n = n · ℵ0 = ℵ0 · ℵ0 = ℵ0 for all n ∈ N with n > 0. The operations + and · are
associative and commutative, and satisfy the familiar distribution rule. We count ℵ0 as positive. These definitions
allow us to use extended natural numbers to reason about (possibly infinite) countable sets in the natural way.
For brevity, we occasionally refer to tuples of values over N∗ as N∗-vectors (and similarly for N-vectors). This
section shows how results on linear Diophantine equations in Sec. 2.2 can be adapted to the extended natural
numbers. Readers interested only in the finite satisfiability problem for C21E may skip this material, ignoring all
references to infinite values in the sequel.

When dealing with extended natural numbers, it is more convenient to present equations in a slightly different
form. A positive integer equation is an equation of the form a ·w+b = f ·w+g, where the variable coefficients
a, f are natural numbers, and the constant coefficients b, g are extended natural numbers. (We allow 0 as a
coefficient.) Note that we again suppress the word “linear” here, as it is simply assumed. A system E of positive
integer equations may thus be written in matrix form: Aw + b = Fw + g, where A, F are matrices over N
and b, g are N∗-vectors. Typically, we are interested in solutions over N∗. Notice that, in this case, systems
of positive integer equations cannot straightforwardly be re-written in the form Aw = b. For instance, the
single equation w1 + w2 = w1 has solutions (m, 0) and (ℵ0, n), for m,n ∈ N∗; but the system w2 = 0 has
only the solutions (m, 0). We use the terms positive integer inequality and positive integer clause to generalize
Diophantine inequalities and Diophantine clauses in the obvious way.

We apply the notions of boundedness and footprints to the extended natural nubers as follows. A matrix or
vector of extended natural numbers is said to be finitely bounded by M if each of its finite entries is bounded by
M . (Thus, any infinite entries do not affect the bound.) Given a system E(w) of positive integer equations, having
some solution a over N∗, we say that a has footprint ω, where ω is a subset of the variables in w, if all variables
outside ω are assigned the value 0 in a. (Thus, infinite entries in the solution do contribute to the footprint.)
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Suppose E(w) is a system of positive integer equations having solutions a, b over N∗. By re-ordering variables
if necessary, write w = w′, w′′ where w′ is the tuple of variables that take finite values in both a and b, and
w′′ is the tuple of variables that take infinite values in either a or b. Now consider the system of equations
E ′(w′) ⊆ E(w) featuring only the variables w′ (i.e. all coefficients of variables in w′′ are 0) and no infinite
constant coefficients. Thus, E ′(w′) is a system of Diophantine equations with a solution, say a′, over N; and it is
then obvious that setting all variables in w′′ to ℵ0 yields a solution a′,ℵ0 of E . (The argument relies at this point
on the restriction of variable coefficients to N.) Applying this argument to exhaustion, there is a unique smallest
collection of variables w0 from w, such that, re-ordering variables if necessary and writing w = w0, w1, we see
that E(w) has a solution a0,ℵ0, where a0 is an N-vector and ℵ0 a tuple of ℵ0s. We call such a solution minimally
finite. Of course, the same argument applies when confining attention to solutions with a particular footprint. For
any subset ω of the variables w, if there is a solution of E over N∗ with footprint ω, then we can speak of the
minimally finite solutions of E with footprint ω. Notice that what is unique about minimally finite solutions (with
a particular footprint) is the set of variables taking finite values: there may of course be more than one minimally
finite solution.

In Secs. 4.5 and 5.2 we shall have occasion to deal with equations, inequalities and clauses having infinite
variable coefficients. An extended integer equation is an equation of the form a · w + b = f · w + g, where all
coefficients are extended natural numbers. A system of such equations will again typically be written in matrix
form: Aw+b = Fw+g where A, F are matrices over N∗, and b, g are N∗-vectors. We use the terms extended
integer inequality and extended integer clause in the expected way. Corollary 2.3 has the following consequence.

Corollary 2.5 Let E be a system of r extended integer equations in k variables, with all coefficients finitely
bounded by M . If E has a solution over N∗, then E has a solution over N∗ finitely bounded by
((2k + 1)M + 1)(r+k).

P r o o f. Suppose E(w,w0, w
∗) has a solution a, 0,ℵ0, with all values in a finite and positive. Let E ′ ⊆ E

be the set of equations featuring no infinite terms in this solution (i.e. both sides of the equation are finite), and
let E+(w) be the result of removing all terms featuring the variables w0 from E ′. Let E ′′(w, z) be the set of
equations w = z + 1, where w is a variable in w, and z is a fresh variable. Thus, E ′′ asserts that the vector w
has only positive entries, and (E+ ∪ E ′′)(w, z) is a system of at most r + k Diophantine equations featuring at
most 2k variables with solution, say, a, b over N. Corollary 2.3 then ensures that (E+ ∪ E ′′)(w, z) has a solution
a′, b′ bounded by ((2k + 1)M + 1)(r+k). But in that case, a′, 0,ℵ0 is a solution of E , since both sides of every
equation in E \ E ′ will evaluate to ℵ0.

Extending the notion of footprint to solutions of systems of extended integer equations in the obvious way,
Proposition 2.4 has the following generalization.

Corollary 2.6 Let E be a system of r extended integer equations, with all variable coefficients finitely bounded
by M . If E has a solution over N∗, then it has a solution over N∗ with footprint of size at most 2r log(4rM).

P r o o f. Take any solution a of E over N∗. For each equation in E , if both sides of that equation evaluate
to ℵ0, mark that equation, pick one infinite term on each side, and, if that term involves a variable, mark that
variable. Let E ′ be the set of marked equations and E ′′ the set of unmarked equations. Let w′ be the tuple of
marked variables and w′′ the tuple of unmarked variables (in some order). Now write w′′ = w0, w

+, w∗, where
all variables in w0 take value 0 in a, all variables in w+ take a positive, finite value in a, and all variables in
w∗ take value ℵ0 in a. Write a = a′, 0, a+,ℵ0 corresponding to the decomposition w = w′, w0, w

+, w∗. Let
r′ = |E ′|. Thus, |E ′′| = (r − r′), and w′ is of length at most 2r′. If r′ = r, then a′, 0, 0, 0 is evidently a solution
of E with footprint of size at most 2r, and we are done. So we may assume r′ < r.

Notice that it is perfectly possible for E ′′ to contain marked variables. (This might occur if, for example, some
equation in E ′ involves a term ℵ0w1, where w1 takes a finite, non-zero value in a.) Let us freeze these values.
Formally, let E ′′′(w0, w

+, w∗) be the result of fixing all values of the variables w′ in E ′′ to the corresponding
values in a′. In fact, by construction of E ′′, we know that no variables w∗ occur in E ′′′ (i.e. they have zero-
coefficients). Moreover, the variables w0 do not contribute to the solution; so let E+(w+) be the result of
removing from E ′′′ all terms involving the variables in w0. Thus, E+(w+) is a system of Diophantine equations
with solution a+ over N. By Proposition 2.4, E+(w+) has a solution b+ over N with footprint of size at most
2(r− r′) log(4(r− r′)M). It follows that E ′′′(w0, w

+, w∗) has a solution 0, b+, 0 for tuples 0 of the appropriate
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length. But then a′, 0, b+, 0 is a solution of E , since all equations in E ′ are trivially secured by the fixed values a′.
Clearly, this solution has footprint of size at most 2r′ + 2(r − r′) log(4(r − r′)M).

We finish this section with an easy observation:
Lemma 2.7 Let E be a system of extended integer equations, and w0, . . . ,wL, N∗-vectors. The following are

equivalent:

(i) w0 is a solution of E and, for all ` (1 ≤ ` ≤ L), w0 + w` is a solution of E;

(ii) for all ζ1, . . . , ζL ∈ N∗, w0 + ζ1w1, . . . , ζLwL is a solution of E .

P r o o f. The implication (ii)⇒ (i) is trivial. For the converse, suppose (i) holds, write E as Ax+b = Fx+g,
and let ζ1, . . . , ζL be extended natural numbers. We wish to establish the vector equation:

Aw + b + ζ1Aw1 + · · ·+ ζLAwL = Fw + g + ζ1Fw1 + · · ·+ ζLFwL. (2)

Consider the jth entry of this vector equation. If (Aw0 + b)[j] = (Fw0 + g)[j] is infinite, then the jth entry
of (2) is trivial. On the other hand, if (Aw0+b)[j] = (Fw0+g)[j] is finite, then (i) implies (Aw`)[j]= (Fw`)[j]
for all ` (1 ≤ ` ≤ L), from which the jth entry of (2) again follows.

2.4 Combinatorics

The following fact will be used in Sec. 5.
Lemma 2.8 Let {Vx}x∈X be a finite family of disjoint (possibly infinite) sets, and let V =

⋃
x∈X Vx. Suppose

that:

(i) |V | is either even or infinite;

(ii) for all y ∈ X , |Vy| ≤
∑
x∈X\{y} |Vx|.

Then the elements of V can be arranged in pairs so that no pair has both its elements from the same Vx.

We might express condition (ii) of the lemma by saying that no set Vy contains an absolute majority of elements
in the family.

P r o o f. If any of the sets Vx is infinite, then, by (ii), at least two are, and the existence of the required pairing
is again immediate. Therefore, we may assume that V is finite, and proceed by induction on |V |. If |V | = 0,
there is nothing to show. Otherwise, let y ∈ X be such that |Vy| is largest, and choose u ∈ Vy . By (ii), there
exists z 6= y such that Vz 6= ∅, so choose z such that |Vz| is largest (for z ∈ X \ {y}), and choose v ∈ Vz . Now
define the family {V ′x}x∈X by setting V ′y = Vy \ {u}; V ′z = Vz \ {v}; and V ′x = Vx for any other x ∈ X . Then
{V ′x}x∈X satisfies (i). To see that it also satisfies (ii), we observe that, if V ′y is strictly largest among the sets {V ′x},
then the result is immediate since |V ′y | = |Vy| − 1 ≤

∑
x∈X\{y} |Vx| − 1 =

∑
x∈X\{y} |V ′x|. So we may assume

that there exists some w ∈ X \ {y, z} such that V ′w is largest among the sets V ′x: |V ′w| = |Vw| = |Vy| = |Vz| = k,
say. Now if k = 1, by (i), there exists x ∈ X \ {y, z, w} with V ′x = Vx 6= ∅ and it is immediate that V ′w does not
have an absolute majority. And if k > 1, |V ′w| = |Vw| = |Vy| = |V ′y | + 1 ≤ |V ′y | + |V ′z |, so that Vw again does
not have an absolute majority. By inductive hypothesis, the family {V ′x}x∈X has a pairing in which no pair has
both its elements from the same set V ′x. Now add (u, v) to this pairing.

The following lemma will be used in Sec. 4.5.
Lemma 2.9 Let (u1, . . . , un) and (v1, . . . , vn) be N-vectors such that

∑n
i=1 ui =

∑n
i=1 vi. The following

are equivalent:

(a) for all k (1 ≤ k ≤ n), uk ≤
∑
i 6=k vi;

(b) there exists k (1 ≤ k ≤ n) such that: (i)
∑k−1
i=1 ui ≤

∑n
i=k vi, (ii)

∑n
i=k+1 ui ≤

∑k
i=1 vi and

(iii) uk ≤
∑k−1
i=1 vi +

∑n
i=k+1 vi.
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8 I. Pratt-Hartmann: Counting and Equivalence

We might express condition (a) of the lemma by saying that no integer uk constitutes an absolute skew-majority.

P r o o f. Suppose (a) holds, and write S =
∑n
i=1 ui =

∑n
i=1 vi. If n ≤ 2, putting k = 1 evidently secures (b);

thus, we may assume that n > 2. From (a), u1 ≤
∑n
i=2 vi; so let k be the largest number (2 ≤ k ≤ n− 1) such

that
∑k−1
i=1 ui ≤

∑n
i=k vi. This secures (i). If k < n−1, then we have

∑k
i=1 ui >

∑n
i=k+1 vi by the maximality

of k; and, using the fact that
∑k
i=1 ui = S −

∑n
i=k+1 ui and

∑n
i=k+1 vi = S −

∑k
i=1 vi, we certainly obtain

(ii). On the other hand, if k = n − 1, then
∑n
i=k+1 ui = un, so that (a) immediately implies (ii). Finally, the

inequality (iii) is likewise an immediate consequence of (a). Conversely, suppose (b) holds, and choose any i
(1 ≤ i ≤ n). Then i is in one of the intervals [1, k− 1], [k + 1, n] or [k, k], so that one of the inequalities (i)–(iii)
certainly implies ui ≤

∑
i′ 6=i vi′ , as required by (a).

Lemma 2.9 guarantees that the n inequalities in (a), if true, are always ‘witnessed’ by some value of k (1 ≤
k ≤ n) satisfying the three inequalities in (b).

3 Local configurations in structures

In the sequel, we fix a normal-form C21E-formula ϕ. We use the symbols α, m, Mh, βh throughout to refer to
the parts of ϕ as indicated in (1), and we aditionally define M to be the ceiling of ϕ. We denote the number of
symbols occurring in ϕ by ‖ϕ‖, it being understood that a counting subscript Mh contributes dlogMhe symbols.
In this section, we construct the basic apparatus required to describe certain local configurations in structures
interpreting the signature of ϕ. This apparatus, which is essentially the same as that presented in [5], will allow
us to characterize collections of elements in these structures using non-negative integer vectors, and thence to
apply techniques from integer linear programming to analyse them.

For technical reasons, we shall work with a signature featuring a number of unary predicates not occurring in
ϕ. Henceforth, let

Z = max(3mM + 1, (mM + 1)2 + 1). (3)

and fix Σ to be the signature of ϕ together with (‖ϕ‖ + 5dlogZe) additional unary predicates, which we shall
refer to as spare predicates. Since ϕ is fixed in the sequel, we refer to any quantity bounded by p(‖ϕ‖), where p is
a fixed polynomial, as polynomially bounded, or simply polynomial. Likewise, quantities bounded by 2p(‖ϕ‖) are
said to be (singly) exponentially bounded or (singly) exponential; and quantities bounded by 22p(‖ϕ‖)

are said to
be doubly exponentially bounded or doubly exponential. Thus, |Σ| is polynomial, whileM and Z are exponential.
The quantity Z will feature at various points in the sequel as a ‘moderately large’ number.

3.1 Basic definitions

A 1-type is a maximal consistent set of literals over Σ involving only the variable x. Likewise, a 2-type is a
maximal consistent set of literals over Σ involving only the variables x and y and containing the literal x 6= y.
Here, consistency is understood to take account of the requirement that E is interpreted as an equivalence: every
1-type contains the literal E(x, x); every 2-type contains E(x, x) and E(y, y); and every 2-type contains E(x, y)
if and only if it contains E(y, x). We denote by τ−1 the 2-type obtained by exchanging the variables x and y
in τ , and call τ−1 the inverse of τ . We denote by tp1(τ) the 1-type obtained by removing from τ any literals
containing y; and we denote by tp2(τ) the 1-type obtained by first removing from τ any literals containing x, and
then replacing all occurrences of y by x. Evidently, tp2(τ) = tp1(τ−1). We equivocate freely between finite sets
of formulas and their conjunctions.

Let A be any structure interpreting Σ. If a ∈ A, then there exists a unique 1-type π(x) such that A |= π[a]; we
denote π by tpA[a]. If, in addition, b ∈ A \ {a}, then there exists a unique 2-type τ(x, y) such that A |= τ [a, b];
we denote τ by tpA[a, b]. Evidently, τ−1 = tpA[b, a]; tp1(τ) = tpA[a]; and tp2(τ) = tpA[b]. If π is a 1-type, we
say that π is realized in A if there exists a ∈ A with tpA[a] = π. If τ is a 2-type, we say that τ is realized in A if
there exist distinct a, b ∈ A with tpA[a, b] = τ .

We call a 2-type τ galactic if it contains the atom E(x, y), and cosmic otherwise, i.e. if it contains the atom
¬E(x, y). For any 2-type τ , τ is galactic (cosmic) if and only if τ−1 is. Recalling the form (1) of ϕ, we call the
2-type τ a ray-type if |= τ → βh for some h (1 ≤ h ≤ m). If ρ is a ray-type such that ρ−1 is also a ray-type,
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we say that ρ is invertible. A ray-type ρ is polarized if it is either non-invertible or if tp1(ρ) 6= tp2(ρ). It will be
convenient, in the sequel, to pair polarized, invertible, cosmic ray-types with their inverses: if ρ is a polarized,
invertible cosmic ray-type, we refer to the unordered pair (ρ, ρ−1) as a symmetrized cosmic ray-type. (We do
not require a corresponding notion for other sorts of ray-types.) If τ is a 2-type such that neither τ nor τ−1 is a
ray-type, we say that τ is dark.

Informally, if tpA[a, b] = ρ is a ray-type, we speak of the ordered pair 〈a, b〉 as a ray of type ρ, and we are
invited to imagine that this ray is emitted by a and absorbed by b. If ρ is invertible, then b reciprocates with a
ray of type ρ−1. Accordingly, we refer to the 1-types tp1(ρ) and tp2(ρ) as the emission-type and absorption-type
of ρ, respectively. Polarized ray-types (galactic or cosmic) are thus ray-types which are either non-invertible or
whose emission and absorption types are distinct. If tpA[a, b] is dark, then neither element emits a ray that is
absorbed by the other. By inspection of (1), we see that, if A |= ϕ, and a ∈ A, then a emits at least one ray. On
the other hand, a cannot emit more than M rays of any given type, and indeed cannot emit more than Mm rays
in total. The diagram in Fig. 1a illustrates a pair of elements a and b in such a structure A, with the first sending
a ray to the second.

Enumerate the 1-types as π1, . . . , πI . Notice that the number of 1-types, I = 2|Σ|−1, is singly exponen-
tially bounded. We fix this enumeration for the remainder of this paper. Enumerate the polarized ray-types as
ρ1, . . . , ρ8J . We may choose the enumeration so that the ray-types ρ1, . . . , ρ2J are all galactic and invertible,
the ray-types ρ2J+1, . . . , ρ4J are all galactic and non-invertible, the ray-types ρ4J+1, . . . , ρ6J are all cosmic and
invertible, and the ray-types ρ6J+1, . . . , ρ8J are all cosmic and non-invertible, thus:

ρ1, . . . , ρJ , ρJ+1, . . . , ρ2J︸ ︷︷ ︸
galactic, invertible

, ρ2J+1, . . . , ρ4J︸ ︷︷ ︸
galactic

non-invertible

, ρ4J+1, . . . , ρ5J , ρ5J+1, . . . , ρ6J︸ ︷︷ ︸
cosmic, invertible

, ρ6J+1, . . . , ρ8J︸ ︷︷ ︸
cosmic

non-invertible

.

We need not worry that there are more invertible than non-invertible ray-types: we can simply ‘pad out’ the latter
with unrealized dummy types. Notice that the quantity J (approximately one eighth the number of polarized
ray-types) is singly exponentially bounded. Since the rays in question are polarized, we certainly have ρj 6= ρ−1

j

for all invertible ray-types ρj (galactic or cosmic); hence we may unproblematically arrange the enumeration so
that ρ−1

j = ρJ+j for all j in the ranges 1 ≤ j ≤ J and 4J + 1 ≤ j ≤ 5J . It follows that the symmetrized cosmic
ray-types are exactly the pairs (ρ4J+j , ρ5J+j), where 1 ≤ j ≤ J . We fix the enumeration ρ1, . . . , ρ8J for the
remainder of this paper. The following notation will be used later in the paper for j in the range 1 ≤ j ≤ 2J . We
write:

j∗ =

{
j + J if 1 ≤ j ≤ J
j − J if J < j ≤ 2J .

Thus, for j in the range in question, ρ4J+j and ρ4J+j∗ are mutually inverse cosmic ray-types, and j∗∗ = j.

3.2 Differentiation and polarization

Recall that Σ features (‖ϕ‖ + 5dlogZe) spare unary predicates, not occurring in ϕ. We proceed to introduce a
class of Σ-structures in which the 1-type of each element encodes useful information about that element’s locality.
We show that we may without loss of generality restrict attention to such structures.

Say that a Σ-structure A is polarized if no element sends an invertible ray to any other element with the same
1-type as itself—equivalently, if every ray in A is polarized. Likewise, say that A is 2-polarized if it is polarized,
and no element sends invertible rays to any two elements with the same 1-type as each other. A moment’s thought
shows that A is 2-polarized just in case no two elements with the same 1-type are joined by a chain of at most
two invertible rays—i.e. just in case, for all distinct a, b such that tpA[a] = tpA[b], the ray-type tpA[a, b] is not
invertible and, moreover, there exists no c, distinct from a and b, such that tpA[a, c] and tpA[c, b] are invertible
ray-types.

Recalling the quantity Z defined in (3), say that a Σ-structure A is differentiated if, for every 1-type π:

(i) for every equivalence class B of A, π is realized either by at most one or by at least Z elements of B;

(ii) π is realized either in at most one or in at least Z equivalence classes of A.
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10 I. Pratt-Hartmann: Counting and Equivalence

Lemma 3.1 If ϕ has a model over some domainA, then ϕ has a 2-polarized, differentiated model interpreting
Σ over A.

P r o o f. Let A be a model of ϕ interpreting Σ. Without loss of generality, we can assume that all spare
predicates have empty extension in A. We first construct a 2-polarized model A′. Consider the graph (A,E),
where E is the set of pairs of distinct elements of A joined by a chain of one or two invertible rays:

E ={(a, b) ∈ A×A | a 6= b and tpA[a, b] is an invertible ray-type}∪
{(a, b) ∈ A×A | a 6= b and, for some c ∈ A \ {a, b},

tpA[a, c] and tpA[c, b] are invertible ray-types}.

This graph has degree at most (mM)2. Hence its vertices may be coloured using (mM)2 + 1 colours in such a
way that no two vertices joined by an edge have the same colour. Now take dlog((mM)2 + 1)e ≤ dlogZe spare
predicates, and re-interpret them so as to encode these colours in the obvious way. The resulting structure, A′, is
evidently 2-polarized.

We next construct a 2-polarized model A′′, in which every 1-type is realized in every equivalence class either
at most once or at least Z times. Let B be an equivalence class of A′, and suppose π is any 1-type realized in
A′ by at least two, and fewer than Z elements of B. Colour these elements with at most Z − 1 colours in such
a way that each has a different colour. Re-using the same colours, do the same for every 1-type in A′, and every
equivalence class. Colour any remaining elements uniformly with any colour. Take dlog(Z−1)e additional spare
predicates and re-interpret them so as to encode these colours, denoting the resulting structure by A′′. Evidently,
if B is an equivalence class, then every 1-type in A′′ is realized either by at most one or by at least Z elements of
B. In addition, A′′ is 2-polarized, since it was obtained from A′ by further differentiating the realized 1-types.

We next construct a 2-polarized differentiated model A′′′, by modifying A′′ so as to ensure that every 1-type is
realized in either at most one or in at least than Z equivalence classes. Since we assumed all spare predicates to
have empty extensions in A, and re-interpreted at most 2dlogZe of these to form A′′, we know that A′′ realizes
at most 2(‖ϕ‖+2dlogZe) different 1-types. Let B be the set of equivalence classes in A (equivalently, in A′′), and,
for any 1-type π realized in A′′, let Bπ be the set of those equivalence classes in which π is realized. We first
claim that there exists a subset B∗ of B with |B∗| ≤ 2(‖ϕ‖+2dlogZe)) · (Z− 1) such that, for every 1-type π, either
Bπ ⊆ B∗ or |Bπ \ B∗| ≥ Z. To see this, start with B∗ = ∅; if any π fails to satisfy the required condition, add all
the elements of Bπ to B∗, proceeding until there are no more 1-types to consider. This process must terminate in
at most 2(‖ϕ‖)+2dlogZe) rounds, in each of which at most (Z − 1) equivalence classes are added to B∗. Having
obtained B∗, take |B∗| ≤ 2(‖ϕ‖)+2dlogZe) · (Z − 1) colours, and modify the structure A′′ as follows. For each
equivalence classB ∈ B∗, pick a fresh colour, and colour all elements ofB uniformly with that colour. Then pick
any colour (not necessarily fresh) and use it to colour all other elements of A uniformly. Encode these colours
using at most dlog(2(‖ϕ‖+2dlogZe)) · Z)e = (‖ϕ‖ + 3dlogZe) additional spare predicates. Let the resulting
structure be A′′′. Since each equivalence class is coloured uniformly, the previous step in the construction is not
undone, whence A′′′ is differentiated. In addition, A′′′ is 2-polarized, since it was obtained from A′′ by further
differentiating the realized 1-types. The number of spare predicates required in the entire construction is at most
(dlogZe) + (dlogZe) + (‖ϕ‖+ 3dlogZe) = ‖ϕ‖+ 5dlogZe, so we do not run out.

3.3 Coupling: galactic and cosmic

Fix 1-types π and π′, not necessarily distinct. Recalling the form (1) of ϕ, we see that the conjunct ∀x∀y(x =
y ∨ α) might force a pair of distinct elements realizing these 1-types to be joined by a (galactic or cosmic) ray-
type. This situation will careful treatment in the sequel, and we need a mechanism to describe it. Define γ to be
the formula

(π(x) ∧ π′(y) ∧ α(x, y) ∧ α(y, x))→
m∨
h=1

(βh(x, y) ∨ βh(y, x)) .

Informally, for pairs of distinct elements, γ(x, y) expresses the condition that, if x and y have respective 1-types
π and π′, and are related in both directions by α, then one of them emits a ray absorbed by the other. We say
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that π and π′ are galactically coupled, and write π
g∼ π′, if |= ∀x∀y(E(x, y) ∧ x 6= y → γ); and we say that π

and π′ are cosmically coupled, and write π c∼ π′, if |= ∀x∀y(¬E(x, y)→ γ). Galactic and cosmic coupling are
important for the following reason. Suppose A |= ϕ, and a, b are equivalent but distinct elements of A such that
tpA[a] = π and tpA[b] = π′. If π

g∼ π′, then either tpA[a, b] or tpA[b, a] (possibly both) is a galactic ray-type.
Similarly, suppose a, b are non-equivalent elements of A such that tpA[a] = π and tpA[b] = π′. If π c∼ π′, then
either tpA[a, b] or tpA[b, a] (possibly both) is a cosmic ray-type.

A pair of 1-types that are both numerous in some equivalence class cannot be galactically coupled, with
corresponding remarks applying to cosmic coupling. This is shown in the next two lemmas.

Lemma 3.2 Suppose A |= ϕ, and let B be any equivalence class of A. If π and π′ are 1-types both realized
at least Z times in B, then π and π′ are not galactically coupled.

P r o o f. Certainly, from (3), Z ≥ mM(mM + 1) + 1. Suppose the conditions of the lemma hold, and let
D ⊆ B be a set of exactlymM +1 elements with 1-type π′. Mark every element ofB which absorbs a (galactic)
ray emitted by any element of D. There can be at most mM(mM +1) marked elements, so choose an unmarked
element a ∈ B having 1-type π. Since a emits only mM galactic rays, there exists b ∈ D such that neither
tpA[a, b] nor tpA[b, a] is a galactic ray-type.

Lemma 3.3 Suppose A |= ϕ, and π, π′ are 1-types for which either of the following holds:

(i) π is realized in at least Z different equivalence classes of A, and π′ is realized at least Z times in A;

(ii) π is realized in some equivalence class B at least Z times, and π′ is realized in some equivalence class B′

at least Z times, where B 6= B′.

Then π and π′ are not cosmically coupled.

P r o o f. From (3), Z ≥ (mM + 1)2 + 1. For condition (i), take a collection D of exactly (mM + 1) elements
realizing π′, and for each element b in this collection, mark the equivalence class of b, and mark every equivalence
class containing some element a such that tpA[b, a] is a cosmic ray-type. The total number of marked equivalence
classes is thus at most (mM + 1)2. Now choose an element a realizing π, and lying in an umarked equivalence
class. Since a emits at most mM cosmic rays, there exists b ∈ D such that tpA[a, b] is a dark cosmic 2-type.

For condition (ii), take a collection D ⊆ B′ of exactly (mM + 1) elements realizing π′. For each b ∈ D,
mark any element a of B such that tpA[b, a] is a cosmic ray-type. The number of marked elements is at most
mM(mM + 1), so choose some unmarked a ∈ B with 1-type π. Since a emits at most mM cosmic rays, there
exists b ∈ D such that tpA[a, b] is a dark cosmic 2-type.

3.4 Local finiteness and star-types

We now construct apparatus for describing the ‘local environment’ of elements in polarized structure interpreting
Σ. A star-type is a pair σ = 〈π, (v1, . . . , v8J)〉 where π is a 1-type and the vj are cardinal numbers such that
vj 6= 0 implies tp1(ρj) = π for all j (1 ≤ j ≤ 8J). We write tp(σ) = π and, abusing our vector notation slightly,
σ[j] = vj . To motivate this terminology, suppose A is a polarized structure interpreting Σ. For any a ∈ A, we
define

stA[a] = 〈tpA[a], (v1, . . . , v8J)〉, (4)

where vj = |{b ∈ A : b 6= a and tpA[a, b] = ρj}| for all j (1 ≤ j ≤ 8J). Evidently, stA[a] is a star-type. We
call stA[a] the star-type of a in A. If σ = stA[a] for some a ∈ A, we say σ is realized in A. We say that A
is locally finite if for all a ∈ A and all j (1 ≤ j ≤ 8J), the number of rays of type ρj emitted by a—i.e., the
quantity |{b ∈ A : b 6= a and tpA[a, b] = ρj}|—is finite. By inspection of (1), if A |= ϕ, then A is locally finite:
indeed, the quantities in question are all uniformly bounded by M . Thus, we will only ever need to deal with
locally finite structures in the sequel, and we will only ever encounter star-types with finite entries. Notice that
this applies even when A is infinite.

It is often useful to regard a star-type σ as a finite multiset over the list of polarized ray-types ρ1, . . . , ρ8J , with
multiplicities indicated by v1, . . . , v8J . Accordingly, we speak informally of σ emitting σ[j] rays of type ρj , for
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a b
ρ

tpA[a] = tp1(ρ) tpA[b] = tp2(ρ)

(a)

π

v1

v2

v8J

ρ1

ρ1

ρ2

ρ2

ρ8J

ρ8J

(b)

Fig. 1 Depiction of: (a) an element a sending a ray of type ρ to an element b in a structure A; and (b) a star type
〈π, (v1, v2, . . . , v8J)〉, emitting vj rays of type ρj for all j (1 ≤ j ≤ 8J).

all j (1 ≤ j ≤ 8J), as depicted in Fig. 1b. We remark in passing that, even in a locally finite structure, there is no
bound on the number of non-invertible rays absorbed by an element: indeed, it may be that an element absorbs a
ray emitted by every other element.

Later in the paper, it will be useful to consider a truncated form of star-types featuring only galactic rays. Re-
calling that ρ1, . . . , ρ4J are the galactic polarized ray-types, we say that a galactic star-type is a pair
〈π, (v1, . . . , v4J)〉 where π is a 1-type and the vj are cardinal numbers such that vj > 0 implies tp1(ρj) = π for
all j (1 ≤ j ≤ 4J). If A is a structure interpreting Σ, and a ∈ A, define

stA? [a] = 〈tpA[a], (v1, . . . , v4J)〉, (5)

where the vj are as in (4). We call stA? [a] the galactic star-type of a in A. Evidently, stA? [a] is a galactic star-type.
Galactic star-types are simply projections of star-types in which cosmic rays are ignored. They will not be used
until Sec. 5. Again, if A is locally finite, all values occurring in the realized galactic star-types in A will be finite.

A star-type σ = 〈tpA[a], (v1, . . . , v8J)〉 is 2-polarized if it does not emit two invertible rays (galactic or
cosmic) with the same absorption-type as each other—that is to say, if, for every 1-type π,∑

{vj : 1 ≤ j ≤ 2J, tp2(ρj) = π}+
∑
{vj : 4J < j ≤ 6J, tp2(ρj) = π} ≤ 1.

A polarized structure interpreting Σ is thus 2-polarized if and only if every star-type it realizes is 2-polarized.
Recalling the form (1) of ϕ, we say that a 2-type τ is compatible with ϕ if |= τ → (α(x, y) ∧ α(y, x)).

(Remember that τ by definition contains the literal x 6= y.) Evidently, in any model of ϕ, all realized 2-types are
compatible with ϕ. Similarly, we say that a star-type σ is compatible with ϕ if:

(i) for all j (1 ≤ j ≤ 8J), if σ[j] > 0, then ρj is compatible with ϕ; and

(ii) for all h (1 ≤ h ≤ m),
∑
{σ[j] | 1 ≤ j ≤ 8J , |= ρj → βh} = Mh.

Informally, σ is compatible with ϕ if it emits no rays forbidden by the conjunct ∀x∀y(x = y ∨ α), and emits the
right numbers of rays required by the conjuncts ∀x∃[=Mh]y(βh ∧ x 6= y). Evidently, if A is a polarized structure
interpreting Σ, then A |= ϕ if and only if every star-type and every dark 2-type realized in A is compatible with
ϕ. Finally, we observe that, if σ is compatible with ϕ, then σ[j] ≤ M for all j (1 ≤ j ≤ 8J). It follows that the
number of star-types compatible with ϕ is at most (M + 1)J—i.e., is doubly exponentially bounded.

Henceforth, we silently assume all star-types to have finite entries.

4 From models to certificates

In this section, we suppose that the C21E-formula ϕ given in (1) has a 2-polarized, differentiated model A inter-
preting the signature Σ, featuring (‖ϕ‖+ 5 logZ) spare predicates. By the Löwenheim-Skolem-Tarski theorem,
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we may assume without loss of generality that A is finite or countably infinite. Moreover, since A |= ϕ, A is
locally finite. Our aim is to construct a certificate for ϕ, namely, a data structure satisfying certain conditions
that depend only on ϕ (and not on A). In Sec. 5, we show that the existence of such a certificate constitutes a
guarantee that ϕ is satisfiable, and in Sec. 6 we show that this certificate may be assumed to be of size bounded by
an exponential function of ‖ϕ‖. This suffices to prove that the satisfiability problem for C21E is in NEXPTIME.
In the course of the argument, we further show that, if A is finite, the certificate obtained satisfies some simple
additional conditions, and that, conversely, the existence of a certificate satisfying these additional conditions
constitutes a guarantee that ϕ is finitely satisfiable. This suffices to prove that the finite satisfiability problem for
C21E is in NEXPTIME.

4.1 Numerical characterizations

Let us first enumerate the star-types realized in A as σ1, . . . , σK ; we fix this enumeration for the remainder of
Sec. 4. Unlike the enumerations {πi}I1 and {ρj}8J1 , the enumeration {σk}K1 depends on A. However, the number
of 2-polarized star-types compatible with ϕ is doubly exponentially bounded as a function of ‖(ϕ)‖; and so,
therefore, is K.

The following notion provides the fundamental numerical characterization of subsets of A used in this paper.
Let A′ ⊆ A; define the profile of A′ to be the N∗-vector

prA[A′] =(w1, . . . , wK),

where wk = |{a ∈ A′ : stA[a] = σk}| for all k (1 ≤ k ≤ K). The profile of A′ thus lists the numbers of each
star-type realized in A′. While it does not tell us how these elements are connected to each other (or to elements
outside A′), it nevertheless gives us relatively detailed information about A′ as a whole. It is easy to see that A′

is finite if and only if prA[A′] is—i.e. is an N-vector. Of primary interest in the sequel will be the case where A′

is an equivalence class or a union of equivalence classes.
In a similar vein, we define the cosmic spectrum (or c-spectrum) of A′ to be the N∗-vector

csA[A′] = (u1, . . . , u2J),

where uj = |{〈a, b〉 ∈ A′ × A : b 6= a and tpA[a, b] = ρ4J+j}| for all j (1 ≤ j ≤ 2J). The c-spectrum of A′

thus lists the total number of rays of each invertible cosmic type emitted by elements of A′. If A′ is finite, then
csA[A′] is finite; however, the converse implication does not hold, as elements may emit no cosmic rays at all.
The definition of csA[A′] takes no account of whether the rays involved are absorbed by other elements of A′ or
by elements outside A′: all that matters is that the rays should be emitted by elements of A′. We may think of the
c-spectrum of A′ as a more laconic version of its profile. In particular, while the length of the vector prA[A′] is
doubly exponentially bounded (as a function of ‖ϕ‖), the length of csA[A′] is singly exponentially bounded.

The following notation will be useful in the sequel. Define the integer array U, of dimensions (2J ×K), as
follows:

U[j, k] = σk[4J + j] (1 ≤ j ≤ 2J, 1 ≤ k ≤ K). (6)

for any A′ ⊆ A the following equations relate the c-spectrum of A′ to its profile:

csA[A′] = U · prA[A′].

Note that this equation holds even when A′ is infinite.

4.2 Special and ordinary elements

Recall that the model A is, by hypothesis, differentiated. For all i (1 ≤ i ≤ I), execute the following procedure.
If πi is realized in at least Z equivalence classes of A, select Z of those equivalence classes. If, on the other hand,
πi is realized in just one equivalence class B, select B, and if, in addition, πi is realized by exactly one element
a of B (and hence by exactly one element in the whole of A), also select every equivalence class B′ containing
any b such that tpA[a, b] is a cosmic ray-type. Call an equivalence class special if it is selected in this process.
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14 I. Pratt-Hartmann: Counting and Equivalence

Thus, a special equivalence class is one which realizes a 1-type not realized outside that equivalence class, or
which absorbs a cosmic ray emitted by an element whose 1-type is realized uniquely, or which has simply been
chosen as one of Z equivalence classes in which some 1-type is realized. An equivalence-class that is not special
is ordinary, and an element is special (ordinary) if its equivalence class is. Let A† be the set of special elements,
andA∗ the set of ordinary elements. Thus, A = A†∪A∗, andA† 6= ∅. BothA† andA∗ are unions of equivalence
classes.

Enumerate the special equivalence classes asB1, . . . , BG. Thus, 1 ≤ G < IZ+I(1+mM), i.e.G is (positive
and) singly exponentially bounded. Define I = {i | πi is realized exactly once in A}. For all i (1 ≤ i ≤ I) define
Gi = {g ∈ [1, G] | πi is realized at least once in Bg}. Thus, I and the Gi are all exponentially bounded. Now
consider the following sets of statements:

{(|Gi| ≤ 1) or (|Gi| ≥ Z) | 1 ≤ i ≤ I} (B1)

{Gi is a singleton | i ∈ I} (B2)

{(Gi = ∅) or (Gi′ = ∅) or (Gi = Gi′ and |Gi| = 1) | i, i′ ∈ [1, I] \ I, πi
c∼ πi′}. (B3)

We write B = B1 ∪ B2 ∪ B3.

Lemma 4.1 All the statements in B are true.

P r o o f. The statements in B1 and B2 are immediate by the construction of the sets Gi and I and the fact that
A is differentiated. For B3, fix i and i′, and suppose that πi and πi′ are c-coupled 1-types with i, i′ 6∈ I. Thus,
if the first two disjuncts are false, then πi and πi′ are each realized in A more than once, and hence, since A is
differentiated, at least Z times. In that case, suppose first that πi is realized in more than one equivalence class
of A. Since A is differentiated, πi is realized in at least Z equivalence classes of A. By Lemma 3.3(i), then, πi
and π′i are not c-coupled—a contradiction. If πi′ is realized in more than one equivalence class of A, the same
argument applies exchanging i and i′. So we may assume that πi is realized (at least Z times) in a single special
equivalence class Bg and πi′ is realized (at least Z times) in a single special equivalence class Bg

′
. Since πi and

πi′ are c-coupled, Lemma 3.3(ii) implies that g = g′, and the third disjunct holds as required.

The set I and the collection of sets Gi will form part of the certificate for ϕ, which we assemble in Sec. 4.6.
The statements B will feature among the conditions to which certificates are subject. Note that the bounds given
above on G, I and the Gi apply to any 2-polarized, differentiated model A, finite or infinite.

4.3 Equivalence classes

Let us remind ourselves that our goal in this section is to construct a certificate guaranteeing the (finite) satisfia-
bility of A. Our strategy will be to tackle the equivalence classes one at a time. Within each equivalence class,
say B, the equivalence relation referred to in ϕ simply becomes the total relation. Thus, we can think of B as a
model of a modified version of ϕ in which E does not feature, so that we are, in effect, dealing with the logic C2.
This observation allows us to characterize single equivalence classes by adapting the linear-programming-based
approach used in [5] to show that the (finite) satisfiability problem for C2 is in NEXPTIME. Two main technical
hurdles need to be overcome in order to extend this analysis to an algorithm for deciding (finite) satisfiability in
C21E. First, there is no bound on the number of equivalence classes in A, so that we cannot, for example, simply
assemble a collection of separate linear integer programming problems corresponding to the different equivalence
classes. Second, we need to take into account the constraints which ϕ imposes on the cosmic 2-types. The first
of these hurdles will be overcome in Sec. 4.4; the second, in Sec. 4.5. For the present, we confine ourselves to
the analysis of individual equivalence classes.

Recall the enumeration of the 1-types π1, . . . , πI , polarized ray-types ρ1, . . . , ρ8J and star-types σ1, . . . , σK .
We define the following integer constants for all i, j and k (1 ≤ i ≤ I , 1 ≤ j ≤ 2J , 1 ≤ k ≤ K):

pi,k =

{
1 if tp(σk) = πi;

0 otherwise.

tj,k =σk[j].
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Thus, the equation pi,k = 1 states that any element with star-type σk has 1-type πi, while tj,k gives the number
of rays of (invertible galactic) type ρj emitted by any element having star-type σk.

In a similar vein, for all i, j, k in the above ranges, all i′ (1 ≤ i′ ≤ I), and all c, d (1 ≤ c, d ≤ mM + 1), we
define the following integer constants:

oci,i′,k =

{
1 if tp(σk) = πi and

∑
{σk[j] | 1 ≤ j ≤ 4J and tp2(ρj) = πi′} ≥ c;

0 otherwise.

o∗i,i′,k =

{
1 if tp(σk) = πi and

∑
{σk[j] | 2J < j ≤ 4J and tp2(ρj) = πi′} = 0;

0 otherwise.

qdi,i′,k =

{
1 if tp(σk) = πi and

∑
{σk[j] | 4J < j ≤ 8J and tp2(ρj) = πi′} ≥ d;

0 otherwise.

q∗i,i′,k =

{
1 if tp(σk) = πi and

∑
{σk[j] | 6J < j ≤ 8J and tp2(ρj) = πi′} = 0

0 otherwise.

Thus, oci,i′,k = 1 states that any element with star-type σk has 1-type πi and emits at least c galactic rays
(invertible or non-invertible) that are absorbed by elements with 1-type πi′ ; and o∗i,i′,k = 1 states that any element
with star-type σk has 1-type πi and emits no non-invertible galactic rays that are absorbed by elements with 1-
type πi′ . The corresponding equations involving the constants qdi,i′,k and q∗i,i′,k are interpreted analogously, but
with “galactic ray” replaced by “cosmic ray”.

For convenience, we collect those constants with indices differing only in the value of k (1 ≤ k ≤ K) into
vectors of length K, thus:

p
i

= (pi,1, . . . ,pi,K) tj = (tj,1, . . . , tj,K)

oci,i′ = (oci,i′,1, . . . ,o
c
i,i′,K) qd

i,i′
= (qdi,i′,1, . . . ,q

d
i,i′,K)

o∗i,i′ = (o∗i,i′,1, . . . ,o
∗
i,i′,K) q∗

i,i′
= (q∗i,i′,1, . . . ,q

∗
i,i′,K).

Let w = (w1, . . . , wK) be an N∗-vector. Informally, we may think of the values of these variables as the
profile of some equivalence class in A. Consider the following sets of positive integer clauses:

{tj · w = tJ+j · w | 1 ≤ j ≤ J} (C0
1 )

{(p
i
· w ≤ 1) ∨ (p

i
· w ≥ Z) | 1 ≤ i ≤ I} (C0

2 )

{(p
i
· w ≥ c) ∨ (oci′,i · w = 0) | 1 ≤ i, i′ ≤ I, c = 1, 2} (C0

3 )

{(p
i
· w > 1) ∨ (oci,i′ · w = 0) ∨ (o∗i′,i · w ≥ c) | 1 ≤ i, i′ ≤ I, 1 ≤ c ≤ mM} (C0

4 )

{(p
i
· w = 0) ∨ (o∗i′,i · w < c) ∨ (oci,i′ · w ≥ 1) | 1 ≤ i, i′ ≤ I, πi

g∼ πi′ , c ≤ mM + 1} (C0
5 )

{p
i
· w ≤ 1) | i ∈ I} (C0

6 )

{q2
i′,i
· w = 0) | i ∈ I, 1 ≤ i′ ≤ I} (C0

7 )

{q1
i′,i
· w = 0) | 1 ≤ i, i′ ≤ I,Gi = ∅} (C0

8 )

{(p
i
· w ≤ 1) ∨ (p

i′
· w ≤ 1) | 1 ≤ i, i′ ≤ I, πi

g∼ πi′}. (C0
9 )

We write C0 = C0
1 ∪ · · · ∪ C0

9 . Notice that |C0|—that is, the number of clauses in C0—is singly exponentially
bounded, whereas the number K of variables in C0 is doubly exponentially bounded.

Lemma 4.2 Suppose B is an equivalence class of A. Then prA[B] satisfies C0(w).

We remark that, although all coefficients (variable or constant) mentioned in C0 are finite, the solution prA[B]
need not be. Similar remarks apply to Lemmas 4.3 and 4.4.

P r o o f. We write w for prA[B], and consider the sets of clauses C0
1 , . . . , C0

9 in turn.
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16 I. Pratt-Hartmann: Counting and Equivalence

C0
1 : The expression tj · w gives the total number of invertible galactic rays of type ρj emitted by elements of
B. The expression tJ+j · w gives the total number of invertible galactic rays of type ρJ+j = ρ−1

j emitted
by elements of B. Since B is an equivalence class, these must be equal.

C0
2 : The expression p

i
·w gives the total number of elements ofB having 1-type πi. The statement then follows

from the fact that A is differentiated.

C0
3 : If there are fewer than c elements in B of 1-type πi, then no element of B (having any 1-type πi′ ) emits c

or more galactic rays that are absorbed by elements whose 1-type is πi.

C0
4 : If a ∈ B emits a galactic ray that is absorbed by b ∈ B, then b emits no non-invertible, galactic ray that

is absorbed by a. Hence, if a is in addition the unique element of B with 1-type πi, then b emits no non-
invertible, galactic ray absorbed by any element whose 1-type is πi. Therefore, if a in fact emits at least c
rays that are absorbed by elements having 1-type πi′ , there must exist at least c elements of B having 1-type
πi′ and emitting no non-invertible, galactic ray absorbed by any element whose 1-type is πi.

C0
5 : If a ∈ B has 1-type πi, and b ∈ B has 1-type πi′ , where πi and πi′ are galactically coupled, then either
a emits a ray absorbed by b, or b emits a non-invertible ray absorbed by a. Hence, if there is at least one
element a ∈ B having 1-type πi, and at least c elements of B having 1-type πi′ that emit no non-invertible,
galactic ray absorbed by any element of 1-type πi (and hence by a), then a emits at least c galactic rays
absorbed by elements of type πi′ .

C0
6 : If the 1-type πi is realized exactly once in A, then it is realized at most once in any equivalence class.

C0
7 : If the 1-type πi is realized exactly once in A, then no element ofB emits two or more cosmic rays absorbed

by elements of type πi.

C0
8 : If the 1-type πi is not realized in A, then no element of B emits any cosmic rays absorbed by elements of

type πi.

C0
9 : If πi and πi′ are galactically coupled, then, by Lemma 3.2, these 1-types cannot both be realized at least Z

times in B. Since A is differentiated, one of them is realized at most once.

Focussing specifically on the ordinary equivalence classes of A, consider the following sets of positive integer
equations:

{p
i
· w = 0 | 1 ≤ i ≤ I, |Gi| ≤ 1} (C∗1 )

{q∗
i′,i
· w = 0 | i ∈ I, 1 ≤ i′ ≤ I, πi

c∼ πi′}. (C∗2 )

We write C∗ = C0 ∪ C∗1 ∪ C∗2 . Again, we see that |C∗| is singly exponentially s bounded.

Lemma 4.3 Suppose B is an ordinary equivalence class of A. Then prA[B] satisfies C∗(w).

P r o o f. We write w for prA[B]. The constraints in C0 are dealt with by Lemma 4.2. We consider the sets of
clauses C∗1 and C∗2 in turn.

C∗1 : If πi is realized in at most one special equivalence class, then it is not realized in any ordinary equivalence
class, since Z > 1.

C∗2 : Suppose πi is realized exactly once in A, say by the element a. By definition, no ordinary element absorbs
a ray emitted by a. Hence, if b is an ordinary element, of 1-type πi′ , such that πi and πi′ are c-coupled, b
must emit a non-invertible ray absorbed by a. Hence B cannot contain an element of 1-type πi′ that emits
no cosmic ray absorbed by any element of type πi.
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Turning now to the special equivalence classes of A, namely, B1, . . . , BG, let wg be a K-tuple of fresh
variables for all g (1 ≤ g ≤ G). We may think of the values of these variables as the profile of Bg in A. Write 1
for the vector (1, . . . , 1) of length K. For any g, consider the following sets of positive integer clauses:

{p
i
· wg = 0 | 1 ≤ i ≤ I and g 6∈ Gi} (Cg1 )

{p
i
· wg ≥ 1 | 1 ≤ i ≤ I and g ∈ Gi} (Cg2 )

{p
i
· wg ≥ 2 | 1 ≤ i ≤ I, Gi = {g} and i 6∈ I} (Cg3 )

{1 · wg ≥ 1} (Cg4 )

{q1
i′,i
· wg = 0 | 1 ≤ i, i′ ≤ I, Gi = {g}} (Cg5 )(qd
i,i′
· wg = 0)∨

 h6=g∑
1≤h≤G

q∗
i′,i
· wh ≥ d

∣∣∣∣∣∣ i ∈ I, Gi = {g}, 1 ≤ i′ ≤ I, d ≤ mM

 (Cg6 )

(qd
i,i′
· wg ≥ 1)∨

 h6=g∑
1≤h≤G

q∗
i′,i
· wh < d

∣∣∣∣∣∣ 1 ≤ i, i′ ≤ I, g ∈ Gi, πi c∼ πi′ , d ≤ mM + 1

 . (Cg7 )

We remark that Cg1 –Cg5 involve only the variables wg; by contrast, Cg6 and Cg7 involve all the variables w1, . . . , wG.
For all g (1 ≤ g ≤ G), we write Cg = Cg1 ∪ · · · ∪ C

g
7 ; again, |Cg| is singly exponentially bounded.

Lemma 4.4 For all g (1 ≤ g ≤ G), the (KG)-tuple prA[B1], . . . , prA[BG] satisfies Cg(w1, . . . , wG).

P r o o f. For all g (1 ≤ g ≤ G), we write wg for prA[Bg]. As we observed in the proof of Lemma 4.2, p
i
·wg

gives the number of elements in Bg realizing the 1-type πi. Similarly, the expression
∑
{q∗

i′,i
· wh | 1 ≤ h ≤

G, h 6= g} gives the number of elements in special equivalence classes other than Bg having 1-type πi′ , and
emitting no non-invertible, cosmic ray absorbed by any element whose 1-type is πi. Fixing g, we consider the
sets of clauses Cg1 , . . . , C

g
7 in turn.

Cg1 : If g 6∈ Gi, then πi is not realized in Bg .

Cg2 : If g ∈ Gi, then πi is realized in Bg .

Cg3 : If Gi = {g}, but i 6∈ I, then πi is realized in Bg , but not uniquely.

Cg4 : Bg is non-empty.

Cg5 : If Gi = {g}, then πi is realized only in Bg , and so no element of Bg (of any 1-type πi′ ) emits a cosmic
ray absorbed by an element of 1-type πi.

Cg6 : If a ∈ Bg emits a cosmic ray that is absorbed by an element b of a special equivalence class Bh (where
h 6= g), then b emits no non-invertible cosmic ray that is absorbed by a. Hence, if a is in addition the unique
element realizing the 1-type πi, then b emits no non-invertible, cosmic ray absorbed by any element whose
1-type is πi. Therefore, if a in fact emits at least d cosmic rays to be absorbed by elements having 1-type πi′
(with these elements being special, by definition), there must exist at least d elements in the various special
equivalence classes other than Bg having 1-type π′ and emitting no non-invertible, cosmic ray absorbed by
any element whose 1-type is πi.

Cg7 : Let πi and πi′ be cosmically coupled, and suppose g ∈ Gi. Pick a ∈ Bg with 1-type πi. If b is an element
of a special equivalence class Bh (h 6= g), having 1-type πi′ , then either a emits a cosmic ray absorbed
by b, or b emits a non-invertible cosmic ray absorbed by a. Hence, if a emits fewer than d cosmic rays
absorbed by elements of type πi′ , then there must be fewer than d elements in special equivalence classes
other than Bg having 1-type πi′ that emit no non-invertible, cosmic ray absorbed by a, and hence fewer
than d elements in special equivalence classes other than Bg having 1-type πi′ that emit no non-invertible,
cosmic ray absorbed by any element of 1-type πi.
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18 I. Pratt-Hartmann: Counting and Equivalence

Writing w† to denote the (KG)-tuple w1, . . . , wG, define the set of positive integer clauses C† to be

C†(w†) =

G⋃
g=1

(
C0(wg) ∪ Cg(w†)

)
.

The tuple (KG)-tuple prA[B1], . . . , prA[BG] will form part of the certificate for ϕ, which we assemble in
Sec. 4.6. The positive integer clauses C†(w†) will feature among the conditions to which certificates are sub-
ject. The positive integer clauses C∗(w), by contrast, will feature only implicitly in these conditions, as part of
additional machinery constructed in Secs. 4.4–4.5.

4.4 Clusters

We now group the equivalence classes of A into larger units, called clusters. The number of clusters will be
bounded as a (doubly exponential) function of ‖ϕ‖; the number of equivalence classes within each cluster, by
contrast, will not be bounded a priori. However, within each cluster, any equivalence class will be characterized
by a linear combination of a fixed set of constant N∗-vectors (N-vectors in case A is finite). These vectors will
form a part of the certificate for ϕ, which we assemble in Sec. 4.6. We remind the reader of the notions of profile
and c-spectrum, established in Sec. 4.1, as well as the matrix U relating them, and defined in (6).

We first consider the special elementsA† = B1∪· · ·∪BG. Here, clustering is degenerate: we define a special
cluster to be a special equivalence class, and we list the special clusters as C1, . . . , CG, where Cg = Bg for all
g (1 ≤ g ≤ G). This completes the definition of the special clusters of A.

Now let us turn to the ordinary elements of A, namely the set A∗ = A \ A†. The argument here is rather
intricate, and so we break it up into three stages.

Hyper-clusters

Lemma 4.3 states that the profile of any ordinary equivalence class satisfies the clauses C∗(w). Now replace any
clause in C∗ by one of its disjuncts, so that a mixed system of positive integer equations and inequalities results.
Enumerate the systems obtained in this way as Q1, . . . ,Qz. Thus z is doubly exponentially bounded. For each
z (1 ≤ z ≤ z), let Ez denote the set of those ordinary equivalence classes B such that z is the smallest integer
for which prA[B] satisfies Qz; and let Ez =

⋃
Ez . Discarding any empty Ez and re-numbering if necessary,

we ensure that E1, . . . , Ez is a partition of A∗. We call any set Ez a hyper-cluster. Thus, the hyper-cluster Ez
is a union of equivalence classes all of which have profiles satisfying Qz . Hyper-clusters are by construction
non-empty: if A∗ = ∅, we have z = 0, i.e. there are no hyper-clusters at all. By adding slack variables to w, each
Qz can be written as a system of positive integer equations

Ez : Azw + bz = Fzw + g
z
. (7)

We may take the dimensions of all the matrices Az and Fz to beR×K∗, whereR = |C∗| andK ≤ K∗ ≤ K+R.
Thus, R is singly exponential in ‖ϕ‖, and K∗ doubly exponential. We remark that w features at most R slack
variables.

Super-clusters

Fixing some value z (1 ≤ z ≤ z), consider any equivalence class B ⊆ Ez . Thus, prA[B], together with
appropriate values for slack variables, yields an N∗-vector satisfying (7). Recall now the matrix U defined in (6),
so that we have U·prA[B] = csA[B]. By adding extra columns of zeros to U to accommodate the slack variables,
we see that prA[B] (together with the chosen values for slack variables) satisfies not only (7), but also:

Uw = csA[B]. (8)

Observe that the total number of equations in the combined system (7)–(8) is R+ 2J . This system has a solution
prA[B] over N∗ (over N if A is finite), and, by inspection of C∗ and U, its variable coefficients are bounded by
Mm+ 1. Writing

K0 = 2(R+ 2J) log(4(R+ 2J)(Mm+ 1)),
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Corollary 2.6 guarantees that (7) and (8) have a solution over N∗ in which at most K0 values are non-zero—
i.e. with footprint of cardinality at mostK0. Indeed, if A is finite, Proposition 2.4 guarantees that (7) and (8) have a
solution over N with footprint of cardinality at mostK0. Observe thatK0 is singly exponentially bounded. Notice
that it is crucial here that the bound returned by Corollary 2.6 (Proposition 2.4) is independent of the constant
coefficients in the system of equations to which it applies; indeed, equations (8) involve constant coefficients in
csA[B] on which there is no a priori bound.

Continuing to fix z, list all subsets of the set of variables {w1, . . . , wK} of size at most K0 as ω1, . . . , ωy.
Thus, y is doubly exponentially bounded. For all y (1 ≤ y ≤ y), let Dy,z be the set of equivalence classes
B ⊆ Ez for which y is the smallest number such that (7) and (8) have a solution with footprint ωy; and let
Dy,z =

⋃
Dy,z . Discarding any empty Dy,z (notice that this depends on z) and re-numbering if necessary, we

may assume that each Dy,z is non-empty, whence the sets D1,z, . . . , Dy(z),z partition Ez , where y(z) ≤ y. We
call any such set Dy,z a super-cluster. Thus, if B is an equivalence class included in Dy,z , then the system
of equations (7) and (8) have a solution with footprint, say, ωy,z of cardinality at most K0. We remark that,
while prA[B] (together with appropriate values for slack variables) is a solution of (7) and (8), it might not have
footprint ωy,z .

Fixing also the value y (1 ≤ y ≤ y(z)), let Ey,z be the result of ignoring all terms in Ez involving variables
outside the footprint ωy,z . Thus, Ey,z is a system of positive integer equations involving at most K0 variables,
with all coefficients bounded by Mm+ 1. (Remember: Ez does not include the equations (8).) We now establish
the following: there exist a set of N∗-vectors, W and a list of N-vectors w1, . . .wL such that, for any equivalence
class B ⊆ Dy,z , there exists a vector in the set

{w0 + ζ1w1 + · · ·+ ζLwL | w0 ∈W and ζ1, . . . , ζL ∈ N}.

satisfying (7) and (8). Moreover, for all w0 ∈ W and all ` (1 ≤ ` ≤ L), both w0 and w0 + w` are solutions
(over N∗) of the system of equations Ez given in (7). In addition, the N∗-vectors Wy,z are doubly exponentially
finitely bounded and the N-vectors wL doubly exponentially bounded. Finally, A is finite, no infinite values
occur: i.e., Wy,z is a set of doubly exponentially bounded N-vectors.

We deal first with the case where A is finite, since it involves less clutter. Since Ey,z has a solution over N,
Corollary 2.3 guarantees the existence of a set of N-vectors, Wy,z and a list of N-vectors wy,z

1 , . . .wy,z
L such that

the set of solutions of (7) over N with footprint ωy,z is exactly

{w0 + ζ1w
y,z
1 + · · ·+ ζLw

y,z
L | w0 ∈Wy,z and ζ1, . . . , ζL ∈ N}.

In particular, for any equivalence class B ⊆ Dy,z , there exists a vector in this set satisfying (7) and (8). Note
that we take vectors w0,w

y,z
1 , . . . ,wy,z

L here to have the same length as w, it being understood that all entries
corresponding to variables lying outside the footprint ωy,z are zero. All these vectors are non-negative and
bounded by ((K0 + 1)(Mm + 1) + 1)(R+2J)—i.e., are doubly exponentially bounded. It follows that |Wy,z|
and L are bounded by (1 + ((K0 + 1)(Mm + 1) + 1)(R+2J))K0—again, doubly exponentially. It immediately
follows from the above observations that, for all w0 ∈ W and all ` (1 ≤ ` ≤ L), both w0 and w0 + w` are
solutions (over N) of the system of Diophantine equations Ez given in (7).

Now consider the case where A is infinite, so that the combined system of positive integer equations (7)–(8)
has a solution over N∗ with footprint ωy,z . Recalling the discussion of minimally finite solutions from Sec. 2.3,
let us identify the collection of variables ω−y,z taking finite values in any minimally finite solution with footprint
ωy,z , and let us take E−y,z to be the result of ignoring all those equations in Ey,z which involve no infinite terms
in any minimally finite solutions (i.e., have no infinite constant coefficients and no non-zero coefficients of any
variables outside ω−y,z). Let us write E−y,z as A−y,zw

− + b−y,z = F−y,zw
− + g−

y,z
. Thus, E−y,z is a system of

Diophantine equations with a solution over N, and by exactly the same reasoning as in the finite case, there exist
a set of N-vectors, W− and a list of N-vectors w−1 , . . .w

−
L , all doubly exponentially bounded, such that the set

of solutions of E−y,z over N is exactly

{w−0 + ζ1w
−
1 + · · ·+ ζLw

−
L | w

−
0 ∈W− and ζ1, . . . , ζL ∈ N}.

Notice that, in this case we must have, for all ` (1 ≤ ` ≤ L), A−y,zw
−
` = F−y,zw

−
` . We now provide values to the

remaining variables as expected: we give all entries in the vectors W corresponding to variables of ωy,z \ ω−y,z
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B1
0

C1

B2
0

C2

· · · BG0

CG

BG+1
0

BG+1
c(G)−1· · ·

CG+1

· · · BH0 BHc(H)−1· · ·

CH

Special clusters Ordinary clusters

Fig. 2 The organization of equivalence classes into clusters (finite case).

the value ℵ0, and all entries corresponding to variables outside ωy,z the value 0; and we give all entries in the w`

corresponding to variables outside ω−y,z the value 0. That is, we let W = {(w−0 ,ℵ0, 0) | w−0 ∈W′}, and we let
w` = (w−` , 0, 0) for all ` (1 ≤ ` ≤ L). It is immediate that W and the w` have the properties claimed above.

Ordinary clusters

Continuing to fix z and y, let us enumerate Wy,z as w1,y,z
0 , . . . ,w

x(y,z),y,z
0 , where x(y, z) = |Wy,z|. For all

x (1 ≤ x ≤ x(y, z)), let Cx,y,z be the set of equivalence classes B ⊆ Dz,y such that x is the smallest value
for which there exists a vector of the form wx,y,z

0 + ζ1w
y,z
1 + · · · + ζLw

y,z
L satisfying (7) and (8); and let

Cx,y,z =
⋃
Cx,y,z . Again, by discarding any empty Cx,y,z and re-numbering if necessary, we may assume that

the C1,y,z, . . . , Cx(z,y),y,z partition Dy,z . We call any set Cx,y,z an ordinary cluster. For notational convenience,
we define, for each x (1 ≤ x ≤ x(y, z)) and each ` (1 ≤ ` ≤ L), wx,y,z

` = wy,z
` . (That is: when ` ≥ 1, we

allow ourselves to add redundant x-superscripts to wy,z
` .) It follows that, if B is an equivalence class included in

Cx,z,y , then there exists a vector of the form

wx,y,z
0 + ζ1w

x,y,z
1 + · · ·+ ζLw

x,y,z
L ,

where ζ1, . . . , ζL ∈ N, satisfying (7) and (8). We remind ourselves at this point that the only infinite values
occurring in this expression are in the vectors wx,y,z

0 ; and if A is finite, there are no infinite values at all.
Almost there. Let us say that a cluster is a special cluster or ordinary cluster; let us enumerate the ordinary

clusters Cx,y,z (1 ≤ z ≤ z, 1 ≤ y ≤ y(z), 1 ≤ x ≤ x(y, z)) as CG+1, . . . , CH ; and let us re-index the vectors
wx,y,z
` as wh

` in a corresponding fashion. In addition, if h (G < h ≤ H) is the new index corresponding to the
triple (x, y, z), we write Qh = Qz and Eh = Ez . In this way, the sequence C1, . . . , CG, CG+1, . . . , CH enu-
merates all the clusters of A, with the special clusters first. For all h (G < h ≤ H) and all ` (1 ≤ ` ≤ L), wh

0

and wh
0 + wh

` are solutions of Eh. Furthermore, if B is an equivalence class included in the ordinary cluster Ch

(G < h ≤ H), then there exists an N∗-vector

w = wh
0 + ζ1w

h
1 + · · ·+ ζLw

h
L, (9)

satisfying Eh together with the equations Uw = csA[B]. If A is finite, w is an N-vector. This completes the
definition of the clusters of A. Observe that the total number of clusters, H , is doubly exponentially bounded.

For all h (1 ≤ h ≤ H), let c(h) be the number of equivalence classes included inCh, and list these equivalence
classes asBhs (0 ≤ s < c(h)). Note that we allow the possibility that c(h) may be ℵ0; of course, if A is finite, then
c(h) is finite. Remember also that each special cluster consists of a single (special) equivalence class; thus, for
1 ≤ g ≤ G, we have c(g) = 1 and Bg0 = Bg . The resulting arrangement of clusters is shown, for the case where
A is finite, in Fig. 2; if A is infinite, an ordinary cluster Ch may contain ℵ0 equivalence classes Bh0 , B

h
1 , . . . , but

the picture is essentially the same.
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Ch

. . .

Fig. 3 The modular structure of c-spectra of equivalence classes (depicted as small rectangles) in the ordinary cluster Ch:
each ‘core’ (depicted as a circle) has c-spectrum uh

0 ; each ‘peripheral constellation’ has c-spectrum uh
` (1 ≤ ` ≤ L, with `

indicated by the shading).

Summary

Having decomposed A into special clusters C1, . . . , CG and ordinary clusters CG+1, . . . , CH , let us summarize
what we know about the latter. For notational convenience, we define the N∗-vectors

uh` = Uwh
` (10)

for all h (G < h ≤ H) and ` (0 ≤ ` ≤ L). Again, if A is finite, these will be N-vectors. For any value h in this
range, the following has been established.

(i) The cluster Ch is a union of equivalence classes, and for each of these equivalence classes, B, there exist
non-negative integers ζ1, . . . , ζL (depending on B) such that, by (8), (9) and (10),

csA[B] =uh0 + ζ1u
h
1 + · · ·+ ζLu

h
L. (11)

(ii) For all ` (1 ≤ ` ≤ L), the N∗-vectors (N-vectors) wh
0 and wh

0 +wh
` are solutions of Eh. Hence, by Lemma 2.7,

for all ζ1, . . . , ζL ∈ N∗, wh
0 + ζ1w

h
1 , . . . , ζLw

h
L is also a solution of Eh.

(iii) Any solution over N∗ of the system of positive integer equations Eh is a solution (discarding slack variables)
of Qh, and hence of the system of positive integer clauses C∗.
(iv) The system Eh has singly exponentially many equations and doubly exponentially many variables, with all
coefficients singly exponentially bounded. The N∗-vectors wh

` (0 ≤ ` ≤ L) are doubly exponentially finitely
bounded, but with footprint of singly exponential cardinality. For 1 ≤ ` ≤ L the wh

` are all finite. Moreover, if
A is finite, the wh

0 are also all finite.

To understand the significance of the foregoing construction, fix some ordinary cluster Ch (G < h ≤ H), and
consider its c-spectrum. Evidently, csA[Ch] =

∑
{csA[B] | B ⊆ Ch}. Hence, from Property (i) above, we have

csA[Ch] = zh0u
h
0 + zh1u

h
1 + · · ·+ zhLu

h
L, (12)

where zh` ∈ N∗ (0 ≤ ` ≤ L). If A is finite, the sum csA[Ch] =
∑
{csA[B] | B ⊆ Ch} has only finitely many

terms, all of which are N-vectors. Hence, zh` ∈ N for all h and ` in the given ranges.
Pictorially, we may imagine each equivalence classB ⊆ Ch to be composed of various groups of elements, or

‘constellations’: a single ‘core constellation’ having c-spectrum uh0 , and, for each ` (1 ≤ ` ≤ L), some number
(possibly zero) of ‘peripheral constellations’ each having c-spectrum uh` , as depicted in Fig. 3. The number zh0
is simply the number of equivalence classes in Ch, while the numbers zh` (1 ≤ ` ≤ L) are simply the totals
obtained by summing the coefficients ζ` in (11) corresponding to all the B included in Ch. The key to our
approach is that—subject to a caveat to be discussed in Sec. 4.5—we do not particularly mind how the various
peripheral constellations are distributed between the equivalence classes inCh: all that matters is the total number
of constellations of each type, as given by the parameters zh` (G < h ≤ H , 0 ≤ ` ≤ L). And, while we have no
a priori bound on the number of ordinary equivalence classes, we do have such a bound on L and H .

The collections of systems of Diophantine equations Eh and N∗-vectors (or N-vectors) wh
` will form part of

the certificate for ϕ, which we assemble in Sec. 4.6.
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4.5 Sectors and terminators

Having written Equations (12), we are tantalizingly close to constructing a certificate guaranteeing the (finite)
satisfiability of ϕ. Observe that the bounds derived above mean that the collection of possible vectors uh` is
computable from ϕ alone—while the extended natural numbers zh` depend on the model A with which we started.
Recalling the discussion at the end of Sec 4.4, we can regard each uh` as arising from a clump of elements:
if ` = 0, these elements form the ‘core’ of some equivalence-class; if 1 ≤ ` ≤ L, they form a ‘peripheral
constellation’, as depicted in Fig. 3. By contrast, the extended natural numbers zh` just tell us how many of these
various cores and peripheral constellations we are dealing with. The values zh` satisfy some obvious constraints.
Most notably, the total number of rays of any invertible cosmic type emitted by elements of the model must equal
the total number of rays of the inverse type emitted by elements of the model, whence, for all j (1 ≤ j ≤ J),
(
∑H
h=1

∑L
`=0 z

h
` u

h
` )[j] = (

∑H
h=1

∑L
`=0 z

h
` u

h
` )[J + j]. Bearing in mind the results of Sec. 2.2, it is natural to

wonder whether the sought-after certificate guaranteeing the (finite) satisfiability of ϕ is not simply provided by
the N∗-vectors uh` . As long as there exist zh` ∈ N∗ satisfying the constraints just mentioned, then, for each h,
we can take zh` of clumps of elements whose profiles are given by the corresponding vectors wh

` (with ` ranging
from 0 to L), and assemble them into a collection of equivalence classes to form the ordinary clusters Ch as
depicted in Fig. 3. The fact that the wh

` form a Hilbert basis for the system of positive integer equations Eh
means (anticipating the results of Sec. 5) that any way of distributing peripheral constellations over cores within
each cluster Ch will produce collections of elements that can be assembled into equivalence classes compatible
with ϕ. And the fact that the number of cosmic rays of opposite invertible types balances will mean that we can
join up the cosmic rays to complete the construction of the model. (The non-invertible cosmic rays, as we will
see, can always be absorbed by the special clusters.)

This indeed is the basic strategy we follow in this paper. However, there is a fly in the ointment. Let us remind
ourselves of the notation

j∗ =

{
j + J if 1 ≤ j ≤ J
j − J if J < j ≤ 2J .

Consider any j in the range 1 ≤ j ≤ 2J , so that ρ4J+j is an invertible cosmic ray-type, and ρ4J+j∗ , its inverse.
By definition, a cosmic ray emitted by an element of some equivalence class B must be absorbed by an element
of A \ B. Therefore, for every h (1 ≤ h ≤ H), and every s (0 ≤ s < c(h)) the elements of Bhs cannot possibly
emit more rays of type ρ4J+j than the rest of A emits rays of type ρ4J+j∗ . In symbols:

(csA[Bhs ])[j] ≤
∑{

(csA[Bh
′

s′ ])[j
∗]
∣∣∣ 1 ≤ h′ ≤ H, 0 ≤ s′ < c(h′), Bhs 6= Bh

′

s′ )
}
. (13)

The problem is that the conditions on the N∗-vectors uh` outlined above do not incorporate this observation: our
proposed certificate is thus in danger of allowing us to construct equivalence classes in such a way that one of
those equivalence classes emits more invertible cosmic rays of a particular type than all the others can possibly
absorb. How can we ensure—in a succinct way—that this cannot happen? Not by writing (13) directly, because
this requires information on the cosmic spectrum of the individual equivalence classes, and we do not know how
many of those there are. In this section, we solve this problem by organizing the equivalence classes Bhs in
each cluster Ch into an alternating sequence of groups, which we refer to as sectors and terminators. Essential
to the argument at this point is Lemma 2.9, which converts a large collection of inequalities—viz (13)—into a
disjunction of triples of inequalities.

Let us write ≺ for the lexicographic ordering on ordered pairs of extended natural numbers: (h, s) ≺ (h′, s′)
if either h < h′, or both h = h′ and s < s′. We transfer this ordering to equivalence classes Bhs by writing
Bhs ≺ Bh

′

s′ if (h, s) ≺ (h′, s′), i.e. giving them the left-to-right order shown in Fig. 2. We use the symbols �, �
and � in the expected way.

To make the essential ideas a little more salient, we deal first with the case where A is finite. Thus, all values
c(h) (1 ≤ h ≤ H) are finite, whence the sum in (13) involves only finitely many terms. (Indeed, the individual
summands are also finite). Fix some j (1 ≤ j ≤ 2J), so that ρ4J+j is an invertible cosmic ray-type, and
ρ4J+j∗ , its inverse, and consider the inequality (13). Note that (ssA[Bhs ])[j] and (ssA[Bhs ])[j∗] are simply natural
numbers. Allowing h and s to vary (1 ≤ h ≤ H , 0 ≤ s < c(h)), we can form the list of natural numbers
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{(ssA[Bhs ])[j]}h,s, with the index-pairs (h, s) ordered lexicographically; and similarly for {(ssA[Bhs ])[j∗]}h,s.
Applying Lemma 2.9, we see that (13) corresponds to Statement (a) of that lemma, whence, by the equivalent
Statement (b), there exists an index-pair (h(j), s(j)) with 1 ≤ h(j) ≤ H and 0 ≤ s(j) < c(h(j)), satisfying∑

{(csA[Bhs ])[j] | Bhs ≺ B
h(j)
s(j))} ≤

∑
{(csA[Bhs ])[j∗] | Bhs � B

h(j)
s(j))} (14)∑

{(csA[Bhs ])[j] | Bhs � B
h(j)
s(j))} ≤

∑
{(csA[Bhs ])[j∗] | Bhs � B

h(j)
s(j))} (15)

csA[B
h(j)
s(j) ])[j] ≤

∑
{(csA[Bhs ])[j∗] | Bhs ≺ B

h(j)
s(j))}+

∑
{(csA[Bhs ])[j∗] | Bhs � B

h(j)
s(j))}. (16)

We now deal with the case where A is infinite. Fixing j (1 ≤ j ≤ 2J) as before, we seek an index-pair
(h(j), s(j)) satisfying (14)–(16). Consider the collection of extended integers (ssA[Bhs ])[j∗], with h and s varying
in the ranges 1 ≤ h ≤ H and 0 ≤ s < c(h). If (ssA[Bhs ])[j∗] = ℵ0 for any values of h and s, pick h(j) = h and
s(j) = s to be such a pair. Then (14)–(15) are trivial, and (16) follows immediately from (13). If, on the other
hand, for some value of h, (ssA[Bhs ])[j∗] is positive for infinitely many values of s, then we partition Ch into two
clusters, say C ′ and C ′′, as follows. Let t be the largest value such that for some previously considered j′, we
have h(j′) = h and s(j′) = t. We take Bh1 , . . . , B

h
t to be the first equivalence classes of C ′, and then distribute

the remaining equivalence classes of Ch among C ′ and C ′′ in such a way that each contains infinitely many Bhs
(with s varying) for which (ssA[Bhs ])[j∗] is positive. Replace the cluster Ch by these new clusters, C ′, and C ′′,
in that order, and then re-number systematically. (Thus, C ′′ becomes Ch+1.) Setting h(j) = h+ 1 and s(j) = 0
then makes all of the inequalities (14)–(16) trivial, because all values on the right-hand sides become infinite.
Note also that, provided the previously-defined values of h have been adjusted to reflect the re-numbering, the
inequalities for the previously considered values of j will not be disturbed by this splitting. Thus, we are left with
the case where the values (ssA[Bhs ])[j∗] are all finite, and indeed positive for only finitely many values of s. But
then we may simply ignore the zero terms, and obtain h(j) and s(j) exactly as for the finite case.

Let this choice of h(j) and s(j) be made for all j (1 ≤ j ≤ 2J). Thus, we have established the inequali-
ties (14)–(16) for all j in this range. These 2J inequalities will play a key role in constructing the certificate for
ϕ—once we have re-organized them slightly. To this end, fix h (1 ≤ h ≤ H), and let

Sh =

{
{0} if 1 ≤ h ≤ G
{s(j) | 1 ≤ j ≤ 2J, h(j) = h} otherwise.

Thus, for the special clusters, Ch (1 ≤ h ≤ G), Sh simply records the index of the unique equivalence class Bh0
in that cluster; while, for the ordinary clusters, Ch (G < h ≤ H), Sh is guaranteed to include those indices s(j)
(with j varying), for which Bh(j)

s(j) is included in Ch. The special treatment of special clusters in this regard is
merely for notational convenience, and plays no essential role in the proof. We remark that, for ordinary clusters,
Ch, the index-set Sh may be empty.

Let b(h) = |Sh|, and enumerate Sh as a strictly increasing sequence of extended natural numbers s1 ≤ · · · ≤
sb(h); if b(h) = 0, this is simply the empty sequence. Evidently, b(h) ≤ 2J , and sb(h) < c(h). By definition,
s(j) must be one of the elements sp in the enumeration s1, . . . , sb(h) of Sh(j); and we write p(j) = p to identify
the index of this element. The functions

h : [1, 2J ]→ [1, H] p : [1, 2J ]→ [1, 2J ]

will form part of the certificate for ϕ. Notice that p(j) ≤ b(h(j)) ≤ 2J . Keeping h fixed, and recalling the
enumeration s1, . . . , sb(h) of Sh, we define, for all p (1 ≤ p ≤ b(h)),

Ḃhp =Bhsp . (17)

In addition, writing s0 = −1, and sb(h)+1 = c(h), we define, for all p (1 ≤ p ≤ b(h) + 1),

B̂hp =
⋃
{Bhs | sp−1 < s < sp}. (18)

We refer to the (possibly empty) sets of elements B̂hp as the sectors of Ch, and to the sets of elements Ḃhp as the
terminators of Ch. The resulting internal organization of clusters into sectors and terminators is illustrated in
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B̂h1 Ḃh1 B̂h2 Ḃh2 · · · Ḃhb(h) B̂hb(h)+1

Fig. 4 The division of Ch into (b(h) + 1) sectors B̂h
p (unshaded) and b(h) terminators (shaded).

Fig. 4. Thus, Ch is thus decomposed into b(h) + 1 sectors and b(h) terminators, where the value b(h) = 0 is
allowed. For special clusters, Cg , this decomposition necessarily takes the form: b(g) = 1, B̂g1 = ∅, Ḃg1 = Cg;
B̂g2 = ∅. Observe that the sectors B̂hp may be unions of infinitely many equivalence classes if A is infinite.

Notice that, since each terminator was chosen for a particular value j (1 ≤ j ≤ 2J) or for a special equivalence
class, the total number of terminators

∑H
h=1 b(h) is bounded by 2J+G. We shall see presently that the terminator

Ḃ
h(j)
p(j) functions as a witness guaranteeing that no equivalence class emits more rays of invertible cosmic type

ρ4J+j than the rest of A emits rays of the inverse type ρ4J+j∗ .
Having constructed the various terminators and sectors, let us write arithmetic expressions for their c-spectra.

To reduce notational clutter, define, for all h (1 ≤ h ≤ H)

u̇hp = csA[Ḃhp ] (1 ≤ p ≤ b(h)), ûhp = csA[B̂hp ] (1 ≤ p ≤ b(h) + 1).

From (17) and (18), we have, for h and p in the appropriate ranges,

u̇hp = csA[Bhsp ] ûhp =
∑
{csA[Bhs ] | sp−1 < s < sp}. (19)

(Note that the sequence s1, . . . , sb(h) used in these equations depends on h, and recall also that, if A is infinite,
sp might equal ℵ0 when p = b(h) + 1.) Considering first the special clusters, fix g in the range [1, G]. By
construction, in this case, Ḃg1 = Bh0 and B̂g1 = B̂g2 = ∅. Continuing to write the profile of Bg1 as wg (as in the
proof of Lemma 4.4), the following system of positive integer equations is satisfied:

{(u̇g1 = Uwg), (ûg1 = 0), (ûg2 = 0) | 1 ≤ g ≤ G}. (D1)

Turning now to the ordinary clusters, fix h in the range [G+1, H]. Since the cosmic spectrum of every equivalence
class included in Ch has the form (11), we see that, for all s (0 ≤ s < c(h)), there exist ζhs,1, . . . , ζ

h
s,L ∈ N, such

that, writing ζhs,0 = 1,

csA[Bhs ] = ζhs,0u
h
0 + ζhs,1u

h
1 + · · ·+ ζhs,Lu

h
L. (20)

Therefore, from (19), there exist nonnegative extended integers,

żhp,` =ζhsp,` ẑhp,` =
∑
{ζhs,` | sp−1 < s < sp},

satisfying the following system of extended integer equations:{(
u̇hp =

∑L
`=0 ż

h
p,`u

h
`

)∣∣∣G < h ≤ H, 1 ≤ p ≤ b(h)
}

{(
ûhp =

∑L
`=0 ẑ

h
p,`u

h
`

)∣∣∣G < h ≤ H, 1 ≤ p ≤ b(h) + 1
}
.

(D2)

Thus, D1–D2 express the c-spectrum of every sector and every terminator in terms of the parameters wg , żhp,`
and ẑhp,` (whose values depend on A), via the vectors uh` = Uwh

` (which, with some limited guessing, can
be computed from ϕ). Notice that the equations in D2 really are extended positive integer equations, since the
vectors uh0 may contain infinite values. Of course, if A is finite, no infinite values occur, and we have a system of
positive integer equations.
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A little reflection shows that the values of the parameters wg , żhp,` and ẑhp,` satisfy certain conditions. First,
since each terminator comprises a single equivalence class, and ζhs,0 in (20) equals 1, the following simple system
of linear Diophantine equations is satisfied:

{żhp,0 = 1 | G < h ≤ H, 1 ≤ p ≤ b(h)}. (E1)

Note that the total number of equations in E1 is at most 2J , since this is the maximum number of the sum∑H
h=G+1 b(h). By contrast, ẑhp,0 equals the number of equivalence classes included in the sector B̂hs and may be

any extended natural number (finite if A is). Note also that the condition ẑhp,0 = 0 means that the sector B̂hp is
empty, in which case csA[B̂hp ] = 0. Therefore, we may assume that the following system of linear Diophantine
clauses is satisfied.{

(ẑhp,0 ≥ 1) ∨

(
L∑
`=1

ẑhp,` = 0

) ∣∣∣∣∣ G < h ≤ H, 1 ≤ p ≤ b(h) + 1

}
. (E2)

Having expressed the c-spectra of all the sectors and terminators—i.e. the quantities u̇hp and ûhp—in terms of
the various parameters wg , żhp,` and ẑhp,`, we can now do the same for the the c-spectrum of the whole domain.
Writing u = csA[A], it is immediate by inspection of Fig. 4 that

u =

H∑
h=1

b(h)+1∑
p=1

ûhp +

b(h)∑
p=1

u̇hp

 . (D3)

The vector u alerts us to a further condition on the parameters wg , żhp,` and ẑhp,`. Since each ray of invertible
cosmic type ρ4J+j (1 ≤ j ≤ J) may be paired with a ray of (distinct) inverse type, ρ−1

4J+j = ρ5J+j , the
following equations hold:

{u[j] = u[j + J ] | 1 ≤ j ≤ J}. (E3)

Now for the promised re-organization of the inequalities (14)—(16). We begin by defining the N∗-vectors u−,
u+, u◦, of length 2J , as follows. For all j (1 ≤ j ≤ 2J), u−[j] is the number of rays of invertible cosmic type
ρ4J+j emitted by those equivalence classes Bhs occurring lexicographically before Ḃh(j)

p(j) ; u+[j] is the number of

rays of the same type emitted by those equivalence classes Bhs occurring lexicographically after Ḃh(j)
p(j) ; and u◦[j]

is the number of rays of the same type emitted by Ḃh(j)
p(j) itself. In symbols:

u−[j] =
∑
{(csA[Bhs ])[j] | Bhs ≺ Ḃ

h(j)
p(j)}

u+[j] =
∑
{(csA[Bhs ])[j] | Bhs � Ḃ

h(j)
p(j)}

u◦[j] = (csA[Ḃ
h(j)
p(j) ])[j].

In a similar vein, we define the N∗-vectors v−, v+ and v◦, of length 2J , as follows. For all j (1 ≤ j ≤ 2J), v−[j]
is the number of rays of invertible cosmic type ρ4J+j∗ (note the j∗ instead of j) emitted by those equivalence
classes Bhs occurring lexicographically before Ḃh(j)

p(j) ; v+[j] is the number of rays of the same type emitted by

those equivalence classesBhs occurring lexicographically after Ḃh(j)
p(j) ; and v◦[j] is the number of rays of the same

type emitted by Ḃh(j)
p(j) itself. In symbols:

v−[j] =
∑
{(csA[Bhs ])[j∗] | Bhs ≺ Ḃ

h(j)
p(j)}

v+[j] =
∑
{(csA[Bhs ])[j∗] | Bhs � Ḃ

h(j)
p(j)}

v◦[j] = (csA[Ḃ
h(j)
p(j) ])[j∗].
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Now, taking j = 1, . . . , 2J in the inequalities (14)—(16), we obtain the system of positive integer inequalities:

{u−[j] ≤ v◦[j] + v+[j] | 1 ≤ j ≤ 2J} (E4)

{u+[j] ≤ v−[j] + v◦[j] | 1 ≤ j ≤ 2J} (E5)

{u◦[j] ≤ v−[j] + v+[j] | 1 ≤ j ≤ 2J}. (E6)

To see that E4 is a consequence of (14), suppose 1 ≤ j ≤ 2J . Then

u−[j] =
∑
{(csA[Bhs ])[j] | Bhs ≺ Ḃ

h(j)
p(j)} ≤ {(csA[Bhs ])[j∗] | Bhs � Ḃ

h(j)
p(j)} = v◦[j] + v+[j].

And similarly for E5–E6.
Thus, we see that E4–E6 are nothing but a re-organized form of the inequalities (14)–(16), which constitute

a succinct guarantee that, for each j (1 ≤ j ≤ J), no sector or terminator—and hence certainly no equivalence
class—accounts for more rays of any invertible cosmic type than the other elements of A emit of the inverse
type. The point of this re-organization is that we can express the vectors u−, u+, u◦, v−, v+ and v◦ in terms
of the vectors u̇hp and ûhp . We see from Equations (17) and (18) that each terminator is a single equivalence
class, and each sector is a sequence of equivalence classes consecutive under the ordering ≺. Evidently, then, an
equivalence class Bhs occurs strictly before Ḃh(j)

p(j) in the ordering ≺ just in case it is included in a sector B̂hp such

that (h, p) � (h(j), p(j)) or an a terminator Ḃhp such that (h, p) ≺ (h(j), p(j)); likewise, Bhs evidently occurs

strictly after Ḃh(j)
p(j) in the ordering ≺ just in case it is included in a sector B̂hp or an a terminator Ḃhp such that

(h, p) � (h(j), p(j)). Thus:{
u−[j] =

∑
{u̇hp [j] | (h, p) ≺ (h(j), p(j))}

+
∑
{ûhp [j] | (h, p) � (h(j), p(j))} | 1 ≤ j ≤ 2J

}
(D4){

u+[j] =
∑
{u̇hp [j] | (H, b(H)) � (h, p) � (h(j), p(j))}

+
∑
{ûhp [j] | (H, b(H) + 1) � (h, p) � (h(j), p(j))} | 1 ≤ j ≤ 2J

}
(D5){

u◦[j] = u̇
h(j)
p(j)[j] | 1 ≤ j ≤ 2J

}
. (D6)

And by parallel reasoning:{
v−[j] =

∑
{u̇hp [j∗] | (h, p) ≺ (h(j), p(j))}

+
∑
{ûhp [j∗] | (h, p) � (h(j), p(j))} | 1 ≤ j ≤ 2J

}
(D7){

v+[j] =
∑
{u̇hp [j∗] | (H, b(H)) � (h, p) � (h(j), p(j))}

+
∑
{ûhp [j∗] | (H, b(H) + 1) � (h, p) � (h(j), p(j))} | 1 ≤ j ≤ 2J

}
(D8){

v◦[j] = u̇
h(j)
p(j)[j

∗]
∣∣∣ 1 ≤ j ≤ 2J

}
. (D9)

Observe that the sums in D4–D9, unlike those in (14)–(16), involve only finitely—indeed, at most doubly expo-
nentially many—terms.

Let us gather together the above systems of extended integer clauses (or positive integer clauses, in case A is
finite), writing

D = D1 ∪ · · · ∪ D9

E = E1 ∪ · · · ∪ E6.

Let us further write ż for the tuple of values żhp,` in some arbitrary fixed order, and similarly for ẑ. By regarding
equations D as definitions of their left-hand sides, and performing the appropriate substitutions, we may regard
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E as a system of (extended) positive integer clauses in the vector variables w†, ż and ẑ, for which we have
constructed a solution over N∗ (or over N, if A is finite). Crucially, the coefficients in these equations are all
finitely bounded as a function of ‖ϕ‖, while the constructed solution depends on the model A. Note also that
|E1| and |E3|, . . . , |E6|are singly exponentially bounded, while |E2| is doubly exponentially bounded, a matter to
which we shall return in Sec. 6.

4.6 Certificates

Let us summarize the argument so far. From the formula ϕ and its expanded signature Σ, we defined the constants
I and J , representing, respectively, the number of 1-types, and (approximately) one eighth of the number of
polarized ray-types. Supposing ϕ to have a countable, 2-polarized, differentiated model A, interpreting Σ, we
listed the star-types σ1, . . . , σK realized in A, noting that these must be 2-polarized and compatible with ϕ. We
identified the set I ⊆ {1, . . . , I} of indices of 1-types uniquely realized in A, enumerated the special equivalence
classes in A as B1, . . . , BG, and defined the sets Gi (1 ≤ i ≤ I) of indices of the special equivalence classes in
which πi is realized. We observed in Sec. 4.2 that all statements in B hold. Denoting the profile of the special
equivalence class Bg by wg , and writing w† = w1 · · ·wG, we further observed in Sec. 4.3 that w† satisfies the
system of positive integer clauses C†(w). We re-named the special equivalence classes as special clusters Cg

(1 ≤ g ≤ G); and we organized the ordinary (i.e., non-special) equivalence classes of A into ordinary clusters
Ch (G < h ≤ H). Each ordinary cluster Ch was associated with a system Qh(w) of positive integer equations
and inequalities that propositionally entail the clauses C∗(w). By adding slack variables to w, we transformedQh
into a system of positive integer equations Eh, and thence obtained a sequence of N∗-vectors wh

0 and N-vectors
wh
` (1 ≤ ` ≤ L) such that wh

0 and wh
0 +wh

` is a solution of Eh for all ` (1 ≤ ` ≤ L). The coefficients of Eh were
all singly exponentially absolutely bounded, and the number L was doubly exponentially bounded; in addition,
the vectors wh

` were all doubly exponentially finitely bounded, but had footprints of singly exponentially bounded
cardinality. Finally, we computed the doubly exponentially finitely bounded vectors uh` = Uwh

` . The argument
of Sec. 4.4 showed that the wh

` (0 ≤ ` ≤ L) could be chosen in such a way that the c-spectrum of any equivalence
class in the cluster Ch is a linear combination of the uh` , where the coefficients are extended natural numbers. In
the case where A is finite, all values obtained were finite.

We then decomposed each cluster Ch (1 ≤ h ≤ H) into a sequence of sectors B̂hp (1 ≤ p ≤ b(h) + 1) and
terminators Ḃhp (1 ≤ p ≤ b(h)), where b : [1, H] → [0, 2J ] is a function. For h > G, we chose extended
integers ẑhp,0, . . . , ẑ

h
p,L such that the c-spectrum of the sector B̂hp was given by

∑L
`=0 ẑ

h
p,`u

h
` ; and we chose

integers żhp,0, . . . , ż
h
p,L, such that the c-spectrum of the terminator Ḃhp was given by

∑L
`=0 ż

h
p,`u

h
` . (Actually,

żhp,0 = 1.) Finally, in Sec. 4.5, we defined functions h : [1, 2J ] → [1, H], p : [1, 2J ] → [1, 2J ] with p(j) ≤
b(h(j)) specifying, for each j in these functions’ domain, a terminator Ḃh(j)

p(j) witnessing the fact that no sector or
terminator—and hence, no equivalence class—emits more rays of the invertible cosmic type ρ4J+j than the rest
of the model can absorb. Writing ż for the sequence of variables żhp,` (G < h ≤ H , 1 ≤ p ≤ b(h), 1 ≤ ` ≤ L) in
some order, and similarly for ẑ, we showed that, under the definitions D, the system of extended integer clauses
E(w†, ż, ẑ) has a solution in N∗. Applying Corollary 2.5, we see that it has a solution which is triply exponentially
finitely bounded. We observed that, if A is finite, then E(w†, ż, ẑ) is a system of Diophantine clauses, and has a
solution over N. Applying Corollary 2.3, we see that it has a solution which is triply exponentially bounded.

Let ϕ, Σ, π1, . . . , πI and ρ1, . . . , ρ8J , be as described in Sec. 3, then, and let the sets of statements, constraints
and definitions B, C∗, C†, D and E be as described in Sec. 4. A certificate (for ϕ) is a tuple

C = 〈G,H, I, J,K,L, {σk}, I, {Gi}, b, h, p, {Eh}, {wh
` }, a†, ḃ, b̂〉 (21)

where:

C1: G, H , I , J , K, L are positive integers with G ≤ H;

C2: for all k (1 ≤ k ≤ K), σk is a 2-polarized star-type over Σ compatible with ϕ;

C3: I is a set of integers in the range [1, I], and for all i (1 ≤ i ≤ I), Gi is a set of integers in the range [1, G],
satisfying all the statements in B;
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C4: b : [1, H] → [0, 2J ], h : [1, 2J ] → [1, H] and p : [1, 2J ] → [1, 2J ] are functions such that b(g) = 1 for all
g (1 ≤ g ≤ G), p(j) ≤ b(h(j)) for each j (1 ≤ j ≤ 2J), and

∑H
h=1 b(h) ≤ 2J +G;

C5: for all h (G < h ≤ H), Eh is a system of positive integer equations which (converting equations with slack
variables to inequalities) propositionally entails the constraints C∗(w);

C6: for all h (G < h ≤ H), wh
0 is a solution of Eh over N∗, and, for all ` (1 ≤ ` ≤ L), wh

` is an N-vector such
that wh

0 + wh
` is a solution of Eh;

C7: a†, ḃ, b̂ are N∗-vectors such that C†(a†) and E(a†, ḃ, b̂).

We say that C is finite if a†, ḃ, b̂ and the {wh
0} are all N-vectors—equivalently, if the symbol ℵ0 does not appear

anywhere in C. (Of course, the word “finite” is being used metonymically here: all certificates, considered as
data-structures, are finite objects.)

By Lemma 3.1, if ϕ has a (finite) model, then ϕ has a countable (finite) 2-polarized, differentiated, countable
model, A, interpreting Σ. In this section, we used the model A to guide the construction of a certificate C for ϕ,
with C finite if A is. Thus, we have shown:

Lemma 4.5 Suppose ϕ is a C21E-formula in normal form. If ϕ is (finitely) satisfiable, then ϕ has a (finite)
certificate of the form (21) in which: (i) G, I and J are all exponentially bounded as a function of ‖ϕ‖; (ii) H ,
K and L are all doubly exponentially bounded; (iii) the coefficients of Eh are all singly exponentially absolutely
bounded; (iv) the N∗-vectors (N-vectors) wh

` , are all doubly exponentially finitely bounded; and (v) the N∗-
vectors (N-vectors) a†, ḃ, b̂ are all triply exponentially finitely bounded.

If C is a certificate, take its size, denoted ‖C‖, to be the number of bits required to write it (under some natural
encoding). Thus, Lemma 4.5 states that, if ϕ has a finite model, then it has a certificate of doubly exponential
size. In the next section, we prove the converse: if ϕ has a (finite) certificate, then it is (finitely) satisfiable. In
section 6, we improve the size bound.

5 From certificates to models

Let a certificate C of the form (21) be given. We keep C fixed throught this section, using it to construct a model
A of ϕ. If C is finite, then A will be finite. Recall in particular that C features a list of star-types σ1, . . . , σK .

5.1 Galaxies and the cosmos

A set of stars is a set A together with a mapping st : A → {σ1, . . . , σK}. We call any element a ∈ A a star,
and we call st(a) the intrinsic star-type of a. We write tp(a) for tp(st(a)), and call this 1-type the intrinsic 1-type
of a. If st(a) = 〈π, (v1, . . . , v8J)〉, then we write st?(a) for 〈π, (v1, . . . , v4J)〉, and we call st?(a) the intrinsic
galactic star-type of a. We allow A to be infinite; however, we shall always (silently) assume sets of stars to be
countable. Taking the illustration of the star-type σ = 〈π, (v1, . . . , v8J)〉 in Fig. 1b as our cue, we informally
speak of any star a with intrinsic type σ as ‘emitting’ a collection of ‘rays’ of the various types. Specifically: for
each j (1 ≤ j ≤ 8J), we shall say that a emits σ[j] rays of type ρj . We employ this way of speaking throughout
this section.

If A′ ⊆ A, we define the intrinsic profile of A′, denoted pr(A′), to be the N∗-vector (w1, . . . , wK), where
wk = |{a ∈ A′ | st(a) = σk}|. Likewise, we define the intrinsic c-spectrum of A′, denoted cs(A′), to be the
N∗-vector (u1, . . . , u2J), where, for all j (1 ≤ j ≤ 2J), uj is the total number of rays of (invertible, cosmic) type
ρ4J+j emitted by the stars in A′. Recalling the matrix U from Sec. 4.1, we see that cs(A′) = U · pr(A′). Do not
confuse the notation st(a), where a is a star, with the notation stA[a], where a is an element of the domain of a
polarized structure A; similarly for st?(a), tp(a), pr(A′) and cs(A′). So far in this section, we have not built any
structures. For brevity in the sequel, if A′ is a set of stars, we speak of the rays emitted by A′ when we mean the
rays emitted by the stars contained in A′. Thus, cs(A′) tells us how many cosmic rays of each type are emitted
by A′.

Of course, if A is a set of stars, there is nothing to prevent us from using A as the domain of a polarized
structure A interpreting Σ. In that case, any a ∈ A also has a star-type σA[a], and indeed a galactic a star-type
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σA
? [a], both defined as in Sec. 3.4. To avoid confusion, we typically refer to the star-type σA[a] as the extrinsic

star-type of a, and similarly for galactic star-types, 1-types, profiles, etc. However, the case we are most interested
in is the one where the intrinsic notions defined above coincide with their extrinsic counterparts. If A is a set of
stars, then we call a polarized structure A interpreting Σ over A a cosmos if, for all a ∈ A, st(a) = stA[a]. In this
section, we shall construct a (finite) cosmos from a (finite) certificate.

We begin on a small scale. Let B be a set of stars. Say that a galaxy is a polarized structure B interpreting Σ
over B, satisfying the following properties:

(i) EB is the total relation B ×B;

(ii) for all b ∈ B, st(b) is compatible with ϕ, and stB? [b] = st?(b);

(iii) every (dark, galactic) 2-type realized in B is compatible with ϕ.

By property (i), the qualifier ‘galactic’ can be removed from property (iii) without change of meaning, since all
2-types realized in B are necessarily galactic. By property (ii), the qualifier ‘dark’ can removed from property
(iii) without change of meaning, since all ray-types in B must be compatible with ϕ. It is obvious that, if A is
a cosmos, then the equivalence classes of A are galaxies. Note that, formally, we allow the set of stars B—and
hence the galaxy B—to be empty.

Recall the system of positive integer clauses C0(w), as well as the various constants p
i
, tj , o

c
i,i′ , o

∗
i,i′ , q

d
i,i′

,
q∗
i,i′

from Sec. 4.3. The next lemma is, in effect, a converse of Lemma 4.2.

Lemma 5.1 Suppose the N∗-vector w = (w1, . . . , wK) satisfies C0(w). Then there exists a galaxy B such
that pr(B) = w.

P r o o f. Let B be a set of stars with intrinsic profile w. For each a ∈ B, and each galactic ray—say, of type
ρ—emitted by a, we show how to select some b ∈ B\{a} for which tpB[a, b] has not yet been defined, so that we
can set tpB[a, b] = ρ. We say in this case that b absorbs the ray in question. We then complete the construction
of B by setting any 2-types not defined by this process to be dark galactic 2-types compatible with ϕ. Clearly,
following this construction, EB = B × B. Moreover, since every galactic ray emitted by any star in a ∈ B is
found an absorption site in B, and all other 2-types are dark, stB? [a] = st?(a). The construction proceeds in three
stages.

Stage 1: Consider first the invertible galactic ray-types ρ1, . . . , ρ2J , and fix j (1 ≤ j ≤ J) for the moment.
Recall that the chosen enumeration of the ray-types ensures that ρ−1

j = ρJ+j . The total number of rays of type
ρj emitted by the elements of B is tj · w; and the total number of rays of type ρ−1

j emitted by the elements of
B is tJ+j · w. By C0

1 , these are equal, so let the two sets of rays be put in 1–1 correspondence. Do this for all
j (1 ≤ j ≤ J). Now take and a, b ∈ B such that a and b emit invertible galactic rays that have been paired in
this process. Suppose the type of the ray emitted by a is ρ. Let π = tp(a) and π′ = tp(b). Then π = tp1(ρ) and
π′ = tp2(ρ). Recalling that the certificate C given in (21) is subject to the condition C2, the star-types σ1, . . . , σK
are 2-polarized. Since, therefore, all ray-types considered are polarized, π 6= π′, whence a 6= b. And since all the
intrinsic star-types of a and b are 2-polarized, there can be no other invertible ray emitted by a with absorption-
type π′ and no other invertible ray emitted by b with absorption-type π; hence a cannot be chosen to absorb
any other invertible galactic ray emitted by b, and b cannot be chosen to absorb any other invertible galactic ray
emitted by a. Therefore, we may set tpB[a, b] = ρ for any such pair a, b, without danger of clashes. At the end
of this stage, absorption sites have been found for all the invertible galactic rays emitted by the stars in B.

Stage 2: Fix i and i′ (1 ≤ i, i′ ≤ I), and write π = πi and π′ = πi′ . We proceed to find absorption sites for all
non-invertible galactic rays of absorption-type π′ emitted by stars having intrinsic 1-type π, and, simultaneously,
absorption sites for all non-invertible galactic rays of absorption-type π emitted by stars having intrinsic 1-type
π′. The number of stars of B having intrinsic 1-type π is p

i
· w, and the number of stars of B having intrinsic

1-type π′ is p
i′
· w. By C0

2 , each of these numbers is either at most 1 or at least Z.
If p

i
· w = 0, then, by C0

3 , putting c = 1, we have o1
i′,i · w = 0. That is to say, no star of B having intrinsic

1-type π′ emits any ray with absorption-type π. Hence, for the pair of 1-types π and π′, there is no work to do.
An exactly similar argument applies if p

i′
· w = 0. Henceforth, then, we may assume that these quantities are

both positive.
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B0

B1

B2

B′0

B′1

B′2

Fig. 5 Finding absorption sites for non-invertible galactic rays

Now suppose p
i
· w = 1, and let a be the unique star of B having intrinsic 1-type π. By C0

3 , putting c = 2,
o2
i′,i ·w = 0: that is to say, none of the stars of intrinsic 1-type π′ inB emits more than one galactic ray (invertible

or non-invertible) with absorption-type π. Suppose, then, b has intrinsic 1-type π′ and emits exactly one non-
invertible galactic ray with absorption-type π (and therefore no invertible galactic rays with absorption-type π).
Let ρ be the type of this ray. We note first that that a 6= b; for otherwise, we have i = i′, and therefore p

i
·w = 1,

o1
i,i′ · w > 0 and o∗i′,i · w = 0, contradicting C0

4 (with c = 1). Since b emits no invertible galactic rays with
absorption-type π, tpB[b, a] is currently undefined, so we may set tpB[b, a] = ρ without undoing any of the work
of Stage 1. Clearly, we can carry out these assignments for all stars of B having intrinsic 1-type π′ and emitting
exactly one non-invertible galactic ray with absorption-type π. It remains to deal with any galactic rays emitted
by a and having absorption-type π′. Let the number of such rays be c. Certainly, c ≤ Mm, and if c = 0, there
is nothing to do; so we may assume 1 ≤ c ≤ Mm. Since a has 1-type π, we have oci,i′ · w > 0, whence by C0

4 ,
o∗i′,i ·w ≥ c. That is, we can find at least c stars ofB having intrinsic 1-type π′ that do not emit any non-invertible
galactic rays with absorption-type π—hence which do not emit any rays which were assigned to be absorbed by
a in this stage. Of these c stars, up to one may have been chosen in Stage 1 to absorb an invertible galactic ray
emitted by a: if so, it has already been dealt with in Stage 1; and therefore, for each non-invertible ray—say of
type ρ—emitted by a and having absorption-type π′, we can find a fresh star b of 1-type π′ that does not send any
galactic ray to a, and for which tpB[a, b] was not defined in Stage 1. Hence we may set tpB[a, b] = ρ without
undoing any work of Stage 1 or any work previously done in this stage. Thus, we have again found absorption
sites for all non-invertible galactic rays of absorption-type π′ emitted by the unique star having intrinsic 1-type
π, and absorption sites for all non-invertible galactic rays of absorption-type π emitted by stars having intrinsic
1-type π′. An exactly similar argument applies if p

i′
· w = 1. Henceforth, then, we may assume that p

i
· w and

p
i′
· w are both at least 2.

By C0
2 , B contains at least Z ≥ 3Mm stars having intrinsic 1-type π, and at least Z ≥ 3Mm stars having

intrinsic 1-type π′. Partition the former set into subsets B0, B1, B2 of cardinality at least Mm; and partition the
latter into subsets B′0, B′1, B′2 of cardinality at least Mm. No star in B emits more than Mm rays in total. For
each ` (0 ≤ ` < 3), and for for each non-invertible ray—say of type ρ—emitted by any star a ∈ B` and having
absorption-type π′, we may choose a fresh star b ∈ B′`+1 (addition in subscripts modulo 3) not chosen to absorb
any other galactic ray emitted by a, and set tpB[a, b] = ρ. Likewise, for each ` (0 ≤ ` < 3), and for for each non-
invertible ray—say of type ρ—emitted by any star b ∈ B′` and having absorption-type π′, we may choose a fresh
star a ∈ B`+1 not chosen to absorb any other galactic ray emitted by b, and set tpB[b, a] = ρ. The arrangement
is depicted in Fig. 5; by inspection, none of these type assignments clashes with any other, even when π = π′.
Once again, we have found absorption sites for all non-invertible galactic rays of absorption-type π′ emitted by
each star having intrinsic 1-type π, and absorption sites for all non-invertible galactic rays of absorption-type π
emitted by each star having intrinsic 1-type π′.

Stage 3: We have now found absorption sites for all the galactic rays emitted by the stars in B, and it remains to
set any remaining 2-types. Suppose, then, a and b are distinct stars such that tpB[a, b] has not yet been assigned.
Let tp(a) = πi = π and tp(b) = πi′ = π′. Suppose first that π and π′ are not galactically coupled. This means
that there exists a dark galactic 2-type τ compatible with ϕ, such that tp1(τ) = π and tp2(τ) = π′. Then we set
tpB[a, b] = τ . We will complete the proof by showing that, if π and π′ are galactically coupled, then tpB[a, b]
was in fact defined in Stages 1 or 2, so there is nothing to do in this case.
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Suppose, then π
g∼ π′. By C0

9 , either a is the unique star in B having intrinsic 1-type π, or b is the unique star
of B having intrinsic 1-type π′. Without loss of generality, suppose the former. Obviously, if b emits a galactic
ray with absorption-type π, then a will have been chosen to absorb that ray in Stage 1 or Stage 2 (it was the only
candidate), and thus tpB[a, b] is already defined. So assume b emits no such ray, and let c′ ≤Mm be the number
of galactic rays (invertible or non-invertible) with absorption type π′ emitted by a. Since a is the unique star of B
having intrinsic 1-type π, we have oc

′+1
i,i′ ·w = 0, and hence, putting c = c′+ 1 in C0

5 , o∗i′,i ·w ≤ c′. Let B′ be the
set of stars of B having intrinsic 1-type π′ that do not send any non-invertible galactic ray to a. Thus, |B′| ≤ c′.
Yet the elements of B′ are the only stars that can serve as absorption sites for the c′ galactic rays emitted by a
and having absorption-type π′. Thus, every element of b ∈ B′ was chosen as such an absorption site in Stages 1
and 2; and therefore tpB[a, b] is already defined, as required.

5.2 Constructing the cosmos: the stars

Recalling that the certificate C given in (21) is subject to the condition C7, we see that the system of positive
integer clauses C†(w†) has a solution a†. For ease of comparison with Sec. 4, we shall henceforth write w† =

w1, . . . , wG to denote this solution. For the same reason, we write ż and ẑ for the vectors ḃ and b̂, respectively.
Furthermore, we take the various vectors u̇hp , ûhp , v̇hp , v̂hp , u−, u+, u◦, v−, v+ and v◦ to be defined in terms of w†,
ż and ẑ by the equations in D. Thus, for all g (1 ≤ g ≤ G), we have C0(wg); and we have E(w†, ż, ẑ). Note that,
if C is finite, then all the vectors mentioned here are N-vectors.

We begin by constructing the stars that will become special elements of our model. By Lemma 5.1, let Bg

be a galaxy with profile wg , for all g (1 ≤ g ≤ G). By Cg4 , these galaxies are all non-empty. The galaxies
B1, . . . ,BG will form the special equivalence classes in our model of ϕ. As in Section 4.4, we impose on each
special equivalence class Bg a degenerate decomposition into the empty sectors B̂g1 = B̂g2 = ∅ and the single
terminator Ḃg1 = Bg . To maintain consistency with notation to be introduced shortly, for all g (1 ≤ g ≤ G), we
write

ẇg1 = wg ŵg1 = ŵg2 = 0.

Thus, pr(Ḃg1 ) = ẇg1, pr(B̂g1 ) = ŵg1 and pr(B̂g2 ) = ŵg2.
We turn now to the ordinary stars. Fix some h (G < h ≤ H). Define

ẇhp =żhp,0w
h
0 + żhp,1w

h
1 + · · ·+ żhp,Lw

h
L (1 ≤ p ≤ b(h))

ŵhp =ẑhp,0w
h
0 + ẑhp,1w

h
1 + · · ·+ ẑhp,Lw

h
L (1 ≤ p ≤ b(h) + 1).

(Remember that b(h) may be zero.) If 1 ≤ p ≤ b(h), then, by E1, żhp,0 = 1, whence, by C6 and Lemma 2.7, ẇhp
is a solution of Eh, and thus, by C5, satisfies the system of positive integer clauses C∗. By Lemma 5.1, then, let
Ḃh
p be a galaxy with intrinsic profile ẇhp over a domain Ḃhp . Now consider ŵhp , for any p (1 ≤ p ≤ b(h) + 1). We

have two cases. If ẑhp,0 = 0, then, by E2, ŵhp = 0; in that case, we let B̂hp be the empty set of stars, with intrinsic
profile 0. Otherwise, ẑhp,0 > 0, and we proceed as follows. By C6 and Lemma 2.7 again, both wh

0 and also the
vector w̃ = wh

0 + żhp,1w
h
1 + · · · + żhp,Lw

h
L are solutions of Eh, and thus by C5 satisfy the system of positive

integer clauses C∗. Again, if C is finite, then the wh
0 are all N-vectors. By Lemma 5.1, then, there exist galaxies

B, with intrinsic profile wh
0 , and B̃, with intrinsic profile w̃. Now take ẑhp,0 − 1 copies of B and a single copy

of B̃ (all disjoint), and let B̂hp be the union of their domains. (Here, if ẑhp,0 = ℵ0, then we take ẑhp,0 − 1 = ℵ0.)
Evidently, pr(B̂hp ) = ŵhp . The sets Ḃhp and B̂hp will form, respectively, the sectors and terminators of the cluster
Ch; we may imagine them to be arranged as in Fig. 4. Let this construction be carried out for all values of h
(G < h ≤ H). Putting the special and ordinary clusters together, we see that, for all h (1 ≤ h ≤ H):

pr(Ḃhp ) =ẇhp (1 ≤ p ≤ b(h)), pr(B̂hp ) =ŵhp (1 ≤ p ≤ b(h) + 1). (22)

Let

A = (B1 ∪ · · ·BG) ∪
H⋃

h=G+1

b(h)⋃
p=1

Ḃhp ∪
b(h)+1⋃
p=1

B̂hp

 =

H⋃
h=1

b(h)⋃
p=1

Ḃhp ∪
b(h)+1⋃
p=1

B̂hp

 .
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The set of stars A will form the domain of the model being constructed. Evidently, if C is finite, then A is finite.
For convenience, we write A† = Bg1 ∪ · · · ∪BG and A∗ = A \A†.

Let us pause to review the construction of some non-empty sector B̂hp outlined above (where G < h ≤ H).
Our aim was to build a collection of stars with intrinsic profile ŵhp = zhp,0ŵ

h
0 + zhp,1ŵ

h
1 + · · · + zhp,Lŵ

h
L, that

could be organized into galaxies. Essentially, we proceeded as follows. For each ` (0 ≤ ` ≤ L), we took zhp,` sets
of stars, each with intrinsic profile ŵh

` . It helps to imagine that, for ` = 0, the sets of stars in question formed
‘galactic cores’, while for 1 ≤ ` ≤ L, they formed ‘peripheral constellations’. Thus, we had at out disposal zhp,0
galactic cores, and for each ` (1 ≤ ` ≤ L), zhp,` peripheral constellations of the `th type. The question was: how
to distribute the various peripheral constellations between the zhp,0 galactic cores so that each core, together with
its allotted constellations, could be used to manufacture a galaxy using Lemma 5.1? According to conditions C5

and C6, the answer is: any way we like. Any combination of one galactic core and some collection of peripheral
constellations is a set of stars whose intrinsic profile satisfies C∗, and hence which may be the domain of a galaxy.
Therefore, we made the simplest possible choice, and associated all the peripheral constellations with a single
galactic core (to form a galaxy with profile w̃), leaving all the other galactic cores, if any, to form galaxies on
their own.

We shall require the intrinsic c-spectra of these sets of stars. It follows from (22) and D1 and D2 that, for all
h (1 ≤ h ≤ H):

cs(Ḃhp ) =u̇hp (1 ≤ p ≤ b(h)), cs(B̂hp ) =ûhp (1 ≤ p ≤ b(h) + 1). (23)

5.3 Constructing the cosmos: the invertible cosmic rays

We wish to define a model A |= ϕ over the set of starsA. If B is any of the galaxies formed in the construction of
A, then we set A|B = B, thus guaranteeing that, for all a ∈ A, stA? [a] = st?(a). That is, all galactic rays emitted
by the stars in A have been found absorption sites in the same galaxy as the star emitting them, and all remaining
pairs of elements from the same galaxy of A have been assigned a dark galactic 2-type compatible with ϕ. It
remains to specify the 2-types of pairs of elements from different galaxies in such a way that stA[a] = st(a) for
all a ∈ A, and that all dark cosmic types are compatible with ϕ. We begin with the invertible cosmic rays, i.e.
those of any of the types ρ4J+1, . . . , ρ6J .

We impose a standard ordering ≺ on the sectors and terminators as defined as follows. If (h, p) ≺ (h′, p′),
then we take both B̂hp and Ḃhp to precede both B̂h

′

p′ and Ḃh
′

p′ ; and in addition, we take B̂hp to be the immediate
predecessor of Ḃhp . (For a single value of h, this is the left-to-right ordering illustrated in Fig. 4.) We again use
the symbol ≺ to denote this ordering, since no confusion should result. Of course, ≺ is intended to mirror the
ordering on equivalence classes employed in Sec 4.5. Let the collection {B̂hp , Ḃhp }h,p of sectors and terminators
be enumerated as B1, . . . Bn, under the standard ordering, ≺.

Fix j in the range 1 ≤ j ≤ 2J . For all i (1 ≤ i ≤ n), let Ui be the set of rays of invertible cosmic type ρ4J+j

emitted by Bi, and let ui = |Ui|. Similarly, let Vi be the set of rays of invertible cosmic type ρ4J+j∗ emitted by
Bi, and let vi = |Vi|. Let U =

⋃n
i=1 Ui and V =

⋃n
i=1 Vi. Our goal is to pair the rays in U 1–1 with those in V

so that no resulting pair is emitted by stars from the same Bi. We remark that the sets Ui, Vi, U and V , as well as
the extended natural numbers ui and vi depend on j; we suppress this dependency in the notation to avoid clutter.
Notice, incidentally, that replacing j by j∗ systematically exchanges the Uis and Vis.

Keeping the value of j fixed, we observe that u1, . . . , un is simply a list of the extended natural numbers u̇hp [j]

and ûhp [j] in some order, whenceD3 implies u[j] =
∑n
i=1 ui. Likewise, v1, . . . , vn is a list of the extended natural

numbers u̇hp [j∗] and ûhp [j∗] in some order, whence u[j∗] =
∑n
i=1 vi. It follows from E3 that

∑n
i=1 ui =

∑n
i=1 vi.

Moreover, let k (1 ≤ k ≤ n) be such that Bk = Ḃ
h(j)
p(j) . Since we have chosen the standard ordering ≺ to list the

sectors and terminators B1, . . . , Bn, it follows from (23) and D4–D9 that

u−[j] =u1 + · · ·+ uk−1 v−[j] =v1 + · · ·+ vk−1

u+[j] =uk+1 + · · ·+ un v+[j] =vk+1 + · · ·+ vn

u◦[j] =uk v◦[j] =vk.
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Thus, E4–E6 just amount to saying: (i)
∑k−1
i=1 ui ≤

∑n
i=k vi, (ii)

∑n
i=k+1 ui ≤

∑k
i=1 vi and (iii) uk ≤∑k−1

i=1 vi +
∑n
i=k+1 vi. This is statement (b) of Lemma 2.9; by the equivalent statement (a), ui ≤

∑
i′ 6=i vi′

for all i (1 ≤ i ≤ n). Actually, we have a little more. Since we can repeat the same argument with j replaced
by the value j∗ (which simply exchanges the u’s and v’s), we have, for all i (1 ≤ i ≤ n), vi ≤

∑
i′ 6=i ui′ , and,

indeed, (ui+vi) ≤
∑
i′ 6=i(ui′+vi′) for all i (1 ≤ i ≤ n). Thus, we have established that, for all j (1 ≤ j ≤ 2J),

no sector or terminator emits more rays of any invertible cosmic type ρ4J+j than the other sectors or terminators
(taken together) emit rays of the inverse type ρ4J+j∗ ; and indeed, for all j (1 ≤ j ≤ J), no sector or termina-
tor emits more rays of any symmetrized cosmic type (ρ4J+j , ρ5J+j) than the other sectors or terminators taken
together.

Having established these facts, we proceed with the pairing of the invertible cosmic rays emitted throughout
A. We begin with the case where C—and hence the set of stars A—is finite. (This is actually the more difficult
case.) Here, it is easier to work with sets of symmetrized rays. Fix j again, this time in the range 1 ≤ j ≤ J .
Thus, j specifies a symmetrized ray-type (ρ4J+j , ρ5J+j). Define the Ui, Vi, ui, vi as above, for this chosen value
of j. For all i (1 ≤ i ≤ n), let Wi = Ui ∪ Vi, and let wi = |Wi|. Thus, Wi is the set of rays of symmetrized type
(ρ4J+j , ρ5J+j) emitted by Bi. Let W =

⋃n
i=1Wi. We showed above that

∑n
i=1 ui =

∑n
i=1 vi, Moreover, we

also showed above that, for all i (1 ≤ i ≤ n), (ui + vi) ≤
∑
i′ 6=i(ui′ + vi′). That is, |W | =

∑n
i=1 wi is an even

number (remember: if C is finite, all values in question are finite); and wi ≤
∑
i′ 6=i wi′ for all i (1 ≤ i ≤ n).

Therefore, by Lemma 2.8, the rays in the various sets Wi can be paired up so that all paired rays belong to
different sets in the family—in other words, are emitted by stars lying in different sectors or terminators, and
hence certainly by stars lying in different galaxies. Let such a pairing be chosen.

Consider two rays that have been paired up in this process, emitted by stars a and b, say. Either the rays in
question are of opposite types (i.e. one ρ4J+j and one ρ5J+j) or of the same type (i.e. both ρ4J+j or both ρ5J+j).
In the former case, we say that the pair is good, in the latter case, bad. We now show how to modify this pairing
so that all pairs are good. Observe first that the number of bad pairs in which both rays are of type ρ4J+j equals
the number of bad pairs in which both rays are of type ρ5J+j , since, otherwise, the total number of cosmic rays
of type ρ4J+j and the number of cosmic rays of type ρ5J+j would be different, contradicting E3. (In this step, we
are using the assumption that the number of rays in question is finite.) Let the set of bad pairs of type ρ4J+j be
matched 1–1 with the set of bad pairs of type ρ5J+j . Take any bad pair of type ρ4J+j , and let the stars emitting
these (paired) rays be a and b; take the bad pair of type ρ5J+j that is matched with it, and let the stars emitting
these (paired) rays be a′ and b′. The fact that the relevant star-types are 2-polarized ensures that a, b, a′ and b′ are
all distinct; moreover, by construction, a and b are from different galaxies, as are a′ and b′. Suppose first that a
and a′ are from the same galaxy. Then a and b′ are from different galaxies, as are a′ and b. Hence we may replace
the bad pairs (a, b) and (a′, b′) with the good pairs (a, b′) and (a′, b). If b and b′ are from the same galaxy, a
symmetric argument applies. If a and a′ are from different galaxies and b and b′ are also from different galaxies,
then we may replace the bad pairs (a, b) and (a′, b′) with the good pairs (a, a′) and (b, b′). By doing this for all
matched bad pairs, we obtain a pairing in which all pairs are good. Thus, we may pair the invertible cosmic rays
emitted by the stars of A of type ρ4J+j 1–1 with the invertible cosmic rays of type ρ5J+j emitted by the stars of
A, such that any two rays paired in this way are emitted by stars in different galaxies. This completes the pairing
in the case where C is finite.

Now consider the case where C is infinite. Again, fix j in the range 1 ≤ j ≤ J , and define the Ui, Vi,
ui, vi as above, for this chosen value of j. We showed above that for all i (i ≤ i ≤ n), ui ≤

∑
i′ 6=i vi′ and

vi ≤
∑
i′ 6=i ui′ . In addition, we showed that

∑n
i=1 ui =

∑n
i=1 vi. If this common sum is finite, we can proceed

as in the case where C is finite, and there is nothing more to do. Thus, we may assume that there exist i and i′

such that ui = vi′ = ℵ0. If i = i′, we have the following:

1. Bi emits ℵ0 rays of type ρ4J+j and ℵ0 rays of type ρ4J+j∗ ;

2. A \Bi emits ℵ0 rays of type ρ4J+j∗ and ℵ0 rays of type ρ4J+j .

But then we can pair the ℵ0 rays of type ρ4J+j emitted by Bi with the ℵ0 rays of type ρ4J+j∗ emitted by A \Bi;
and similarly with ρ4J+j and ρ4J+j∗ interchanged. This is the required pairing. Hence we may assume that
i 6= i′, and indeed that vi and ui′ are both finite. Moreover, by replacing j by j∗ if necessary (which, remember,
simply exchanges the Uis and the Vis), we may assume without loss of generality that vi ≤ ui′ . Now observe the
following:
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ℵ0

vi

ui′

ℵ0

Bi Bi′ A \ (Bi ∪Bi′)

ρ4J+j∗

ρ4J+j

Step 1
Step 2
Step 3

Fig. 6 Fixing the invertible cosmic rays of type ρ4J+j and ρ5J+j (infinite case).

1. Bi emits ℵ0 rays of type ρ4J+j and vi rays of type ρ4J+j∗ ;

2. Bi′ emits ℵ0 rays of type ρ4J+j∗ and ui′ rays of type ρ4J+j ;

3. A \Bi emits ℵ0 rays of type ρ4J+j∗ and at least vi rays of type ρ4J+j ;

4. A \Bi′ emits ℵ0 rays of type ρ4J+j and at least ui′ rays of type ρ4J+j∗ .

We create the pairing in three steps (Fig. 6). Step 1: pair up all vi rays of type ρ4J+j∗ emitted by Bi with vi of
the rays of type ρ4J+j are emitted by Bi′ ; then pair up the (ui′ − vi) remaining rays of type ρ4J+j emitted by
Bi′ with rays of type ρ4J+j∗ are emitted by A \ (Bi ∪ Bi′). Notice that these are guaranteed to exist, because
A \ Bi′ emits at least ui′ rays of type ρ4J+j∗ and Bi emits only vi rays of type ρ4J+j∗ . Step 2: pair any rays
of type ρ4J+j∗ emitted by A \ (Bi ∪ Bi′) with rays of type ρ4J+j emitted by Bi; this is possible since there are
infinitely many of the latter, and indeed, we may perform this pairing in such a way that Bi still emits infinitely
many unpaired rays of type ρ4J+j . Likewise, pair any rays of type ρ4J+j emitted by A \ (Bi ∪Bi′) with rays of
type ρ4J+j∗ emitted by Bi′ , again in such a way that Bi′ still emits infinitely many unpaired rays of type ρ4J+j∗ .
Step 3: pair the (infinitely many) unpaired rays of type ρ4J+j emitted by Bi with the (infinitely many) unpaired
rays of type ρ4J+j∗ emitted by Bi′ . This completes the pairing in the case where C is infinite.

Let us carry out this process independently for all j (1 ≤ j ≤ J). Suppose a ∈ A emits a ray of type ρ4J+j ,
paired with ray of type ρ5J+j emitted by b, and let the intrinsic 1-type of a be π and the intrinsic 1-type of b be π′.
By the above construction, a and b are from different galaxies; moreover, since the intrinsic star-types of a and b
are 2-polarized, a emits no other invertible ray with absorption-type π′, and b emits no other invertible ray with
absorption-type π. Thus we may simply set tpA[a, b] = ρ4J+j , without danger of clashes. In this way, we obtain
an absorption site for every invertible cosmic ray emitted by every star in A. This is all thanks to the functions h
and p in C, which allow us to pick a small collection of equivalence classes—namely, the Ḃh(j)

p(j)—witnessing the
fact that no equivalence class emits more rays of invertible cosmic type than the rest of the cosmos can absorb.

5.4 Constructing the cosmos: the non-invertible cosmic rays

Recall that the set of stars A is partitioned into A† and A∗ (though the latter set may be empty). We consider first
the non-invertible cosmic rays emitted by the stars in A∗. The plan is to find stars in A† to absorb them. Fix i
(1 ≤ i ≤ I). Let a be a star in A∗: we consider any non-invertible cosmic rays with absorption type πi emitted
by a. Note that a belongs to a galaxy whose intrinsic profile satisfies the linear Diophantine clauses C∗. Suppose
first that Gi = ∅. Then, by C0

8 , a emits no cosmic rays with absorption type πi, and so there is nothing to do.
Suppose now that i ∈ I. By C3, all the statements in B hold; and from B2, Gi = {g} for some g (1 ≤ g ≤ G).
By Cg2 , Bg2 contains a star b with 1-type πi. On the other hand, by C0

7 , a cannot emit more than one cosmic ray
with absorption type πi. Thus, if a emits a non-invertible cosmic ray, say of type ρj , having absorption type πi,
it cannot emit any invertible cosmic ray with absorption type πi, whence tpA[a, b] must currently be undefined.
Thus, we may set tpA[a, b] = ρj , and we have found an absorption site for the ray in question. Henceforth, then,
we may assume i 6∈ I. Suppose that, nevertheless, |Gi| = 1, and let Gi = {g}, where 1 ≤ g ≤ G. By Cg3 and C0

2 ,
Bg1 ⊆ A† contains at least Z ≥ mM stars having intrinsic 1-type πi. Since a cannot emit more than this number
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of rays in total, we can certainly find fresh stars in A† (i.e., stars b for which tpA[a, b] has not been defined) to
absorb all the non-invertible cosmic rays with absorption type πi emitted by a. If b is chosen to absorb such a ray
of type ρj , we set tpA[a, b] = ρj . Thus, we may assume |Gi| > 1, and hence, by B1, |Gi| ≥ Z ≥ mM . But then,
by Cg2 (where g ∈ Gi), A† contains at least mM stars of 1-type πi, and we may proceed as in the previous case.
Evidently this procedure can be executed for all a ∈ A∗, and for all i (1 ≤ i ≤ I), with none of these 2-type
assignments overwriting any other. At the end of this process, every ray (galactic or cosmic) emitted by any star
a ∈ A∗, has been found an absorption site b ∈ A†; and the relevant 2-type tpA[a, b] has been set to be the type of
that ray.

We consider next the non-invertible cosmic rays emitted by the stars inA†. Fix integers i and i′ (1 ≤ i, i′ ≤ I),
and write π = πi and π′ = πi′ . (We allow the possibility that i = i′.) We proceed to find absorption sites
for all non-invertible cosmic rays of absorption-type π′ emitted by stars in A† having intrinsic 1-type π, and,
simultaneously, absorption sites for all non-invertible galactic rays of absorption-type π emitted by stars in A†

having intrinsic 1-type π′. If Gi is empty, then, by the constraints Cg1 (where 1 ≤ g ≤ G), there are no cosmic rays
with emission-type π, and by C0

8 , there are no cosmic rays with absorption-type π, whence there is nothing to do.
A symmetrical argument applies if Gi′ is empty. Henceforth then, we assume that Gi and Gi′ have cardinality at
least 1. We have three cases to consider.

Case 1: i ∈ I. By B2, Gi = {g} for some g (1 ≤ g ≤ G). By Cg2 , Bg1 contains at least one star with intrinsic
1-type π, and by C0

6 , exactly one. Denote that star by a. Now let b be any star of A† with intrinsic 1-type π′

emitting a non-invertible cosmic ray with absorption-type π. By Cg5 , b 6∈ Bg1 , and indeed i 6= i′; moreover, by
C0

7 , b emits exactly one such ray—say of type ρj , and indeed emits no invertible cosmic ray with absorption-type
π. It follows that tpA[b, a] is currently undefined; so we can select a to absorb the non-invertible cosmic ray
emitted by b with absorption type π, setting tpA[b, a] = ρj . In the other direction, let a emit d cosmic rays
(invertible or non-invertible) having absorption type π′, where d ≤ mM . Thus, qd

i,i′
· wg > 0, whence, by Cg6 ,∑

{q∗
i′,i
·wh | 1 ≤ h ≤ G, h 6= g} ≥ d, i.e. there exist at least d stars in b ∈ A†\Bg1 having 1-type π′, and which

emit no non-invertible cosmic ray with absorption type π. For any such b, tpA[a, b], either is currently undefined,
or b already absorbs an invertible ray sent by a. Now, if a emits any invertible cosmic ray with absorption type π′,
then this will have been accounted for previously, and so it (and the star chosen to absorb it) may be disregarded.
Considering the remaining (non-invertible) cosmic rays emitted by a with absorption type π′, then, we can find,
for each such ray—and having type, say, ρj—a fresh absorption site b of type π emitting no ray with absorption
type π; we then assign tpA[a, b] = ρj .

Case 2: i′ ∈ I. We proceed symmetrically to Case 1.

Case 3: i, i′ 6∈ I. By B1, either |Gi| = 1 or |Gi| ≥ Z ≥ 2mM , and either |Gi′ | = 1 or |Gi′ | ≥ Z. We consider the
four resulting sub-cases in turn. Observe first however, the combined effect of C0

2 and Cg3 : if Gi = {g} for some
g (1 ≤ g ≤ G), then, as we are now supposing i 6∈ I, it follows that Bg1 contains at least Z ≥ 3mM stars with
intrinsic 1-type π; and similarly for π′.

Sub-case 3(i): |Gi| = |Gi′ | = 1. Let Gi = {g}, Gi′ = {g′}, If g = g′, then by the constraints Cg
′′

1 (where g′′ 6= g),
no elements of A† \ Bg1 can have 1-type π or π′, and by Cg5 , no elements of Bg1 can emit any cosmic rays with
absorption type π or π′, whence there are no rays to consider, and nothing to do. If, on the other hand, g 6= g′,
let Di be the set of stars (in Bg1 ) having intrinsic 1-type π, and partition Di into two subsets, Di,0 and Di,1, each
of cardinality at least mM . Do the same for i′. Each star a ∈ Di,` (` = 0, 1), emits a collection of at most mM
cosmic rays with absorption type π′; for each non-invertible ray in this collection, having type, say, ρj , we may
choose a fresh absorption site b ∈ Di′,`, and assign tpA[a, b] = ρj . (If a emits an invertible cosmic ray with
absorption type π′, this will already have been found an absorption site; and we choose other absorption sites in
Di′,` for the non-invertible rays.) Likewise, for each non-invertible cosmic ray with absorption type πi emitted
by b ∈ Di′,` (` = 0, 1), and having type, say, ρj , we may choose a fresh absorption site a ∈ Di,`+1 (addition
in subscript modulo 2), and assign tpA[b, a] = ρj . The partitions {Di,0, Di,1} and {Di′,0, Di′,1} ensure that
these assignments do not overwrite each other (Fig. 7). We remark in this context that Di and Di′ are necessarily
disjoint (and in fact i 6= i′).
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Di,0

Di,1

D′i′,0

D′i′,1

Fig. 7 Finding absorption sites for non-invertible cosmic rays

Sub-case 3(ii): |Gi| = 1, but |Gi′ | ≥ Z. Let Di be the set of stars having intrinsic 1-type π, and write Gi = {g}.
By the constraints Cg

′

1 (g′ 6= g), we have Di ⊆ Bg1 . By Cg5 , no star in Bg1—and in particular, no such star with
intrinsic 1-type π′—can emit any cosmic rays with absorption type π; so letDi′ be the the stars inA† \Bg1 having
intrinsic 1-type π′. By the constraints Cg

′

2 (g′ 6= g), we have |Di′ | ≥ (Z − 1) ≥ 2mM . Now proceed as for the
first sub-case.

Sub-case 3(iii): |Gi′ | = 1, but |Gi| ≥ Z. Symmetric to Sub-case 3(ii):

Sub-case 3(iv): |Gi| ≥ Z and |Gi′ | ≥ Z. Partition Gi into three sets, Gi,0, Gi,1 and Gi,2, each with cardinality
exactly mM . Partition Gi′ into Gi′,0, Gi′,1, Gi′,2, similarly. It is easy to see that these partitions can be chosen
such that g ∈ Gi,` and g ∈ Gi′ implies g ∈ Gi′,`. For ` = 0, 1, 2, let Di,` be the set of stars with intrinsic 1-type
π lying in some Bg1 with g ∈ Gi,`, and let Di′,` be the set of stars with intrinsic 1-type π′ lying in some Bg1
with g ∈ Gi′,`. By the various constraints Cg2 (1 ≤ g ≤ G), we have |Di,`| ≥ mM , for ` = 0, 1, 2; similarly
for Di′,`. Notice that, by the way in which Gi′ and Gi′ are partitioned, ` 6= `′ implies D`,i ∩ D`′,i′ = ∅. Now,
each star a ∈ Di,` (` = 0, 1, 2), emits a collection of at most mM cosmic rays with absorption type π′; for each
non-invertible ray in this collection, having type, say, ρj , we may choose a fresh absorption site b ∈ Di′,`+1

(addition in subscripts modulo 3), and assign tpA[a, b] = ρj . Similarly, each b ∈ Di′,` (` = 0, 1, 2), emits
a collection of at most mM cosmic rays with absorption type π; for each non-invertible ray in this collection,
having type, say, ρj , we may choose a fresh absorption site a ∈ Di,`+1 (addition in subscripts modulo 3), and
assign tpA[b, a] = ρj . By arranging the various sets Di,` and Di′,` similarly to the sets B` and B′` in Fig. 5, we
see that these assignments do not overwrite each other, and that no ray is emitted and absorbed by stars in the
same galaxy.

Clearly, we may carry out the above assignments for all pairs of indices i, i′, without danger of overwriting.
At the end of this process, every ray (galactic or cosmic, invertible or non-invertible), emitted by any star a ∈ A,
has been found an absorption site b ∈ A; and the relevant 2-type tpA[a, b] has been set to be the type of this ray.

5.5 Constructing the cosmos: the dark cosmic 2-types

To complete the construction of A, we must set any two-types not considered in the above process to be a dark
cosmic 2-type compatible with ϕ. (We require a dark cosmic 2-type, because, having found absorption sites for
all rays, we want to secure stA[a] = st(a) for any a ∈ A.) Suppose, then, that a and b are stars from different
galaxies, and let a have 1-type π = πi, and b, 1-type π′ = πi′ . If π and π′ are not c-coupled, and tpA[a, b] has not
yet been defined, we can simply choose any dark cosmic 2-type τ compatible with ϕ and satisfying tp1(τ) = π,
tp2(τ) = π′, and set tpA[a, b] = τ . It therefore suffices to show that, if π and π′ are c-coupled, then either a has
been chosen to absorb a ray emitted by b or vice versa, and therefore that tpA[a, b] has already been defined.

Suppose, then, π and π′ are c-coupled. Since π and π′ are by assumption both realized, the sets of cluases C∗1
and Cg1 guarantee that both Gi and Gi′ are non-empty; indeed we cannot have Gi = Gi′ with this set a singleton,
since a and b are, by hypothesis, from different galaxies. By B3, then, either i ∈ I or i′ ∈ I. Suppose the
former. By B2, we have Gi = {g} for some g (1 ≤ g ≤ G), and by the various constraints Cg

′′

1 (g′′ 6= g), C0
6

and C∗1 , a ∈ Bg1 is the only star in A with intrinsic 1-type π. Now if b ∈ A∗, then, by C∗2 , b emits a ray with
absorption-type π. Certainly, then, a will have been chosen to absorb this ray, since it is the only candidate with
the correct intrinsic 1-type. Moreover, if b ∈ A† emits any cosmic ray with absorption-type π, then that ray must
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likewise have been absorbed by a. Thus we may suppose that b belongs to the set D of stars in A† with 1-type π′

that do not emit any cosmic rays with absorption type π. By construction of A†,

|D| =
∑
{q∗
i′,i
· wh | 1 ≤ h ≤ G, h 6= g}.

Now suppose a emits d′ ≤ mM non-invertible cosmic rays with absorption type π′. Thus, qd
′+1
i,i′

· wg = 0, so
that, setting the parameter d in Cg7 to d′ + 1, we have |D| ≤ d′; and each such ray will have been chosen a fresh
absorption site among the elements of D, thus covering that set. Hence, tpA[a, b] has already been defined, as
required.

This completes the construction of A. Since every ray emitted by every star has been found an absorption
site, and all other 2-types assigned are dark, we have stA[a] = st(a), for all a ∈ A. But each of the star-types
σ1, . . . , σK is compatible with ϕ, as are all the assigned dark 2-types, whence A |= ϕ. We have shown:

Lemma 5.2 Suppose ϕ is a C21E-formula in the form (1). If a (finite) certificate for ϕ exists, then ϕ is (finitely)
satisfiable.

6 Proof of main result

Lemma 4.5 states that, if a formula ϕ of the form (1) is satisfiable, there exists a certificate

C = 〈G,H, I, J,K,L, {σk}, I, {Gi}, b, h, p, {Eh}, {wh
` }, a†, ḃ, b̂〉 (24)

satisfying conditions C1–C7, with ‖C‖ doubly exponentially bounded. We proceed to show that, in fact, such a C
exists with ‖C‖ singly exponentially bounded.

We begin with the numbers H and L. Condition C7 states that a† is a solution of the system of positive
integer clauses C†(w†), and that a†, ḃ, b̂ is a solution of the system of extended integer equations and inequalities
E(w†, ż, ẑ). We proceed to construct solutions in which at most singly exponentially many values are non-zero.
Our basic tools will be Proposition 2.4 and Corollary 2.6. However, both C† and E2 are systems of positive integer
clauses; moreover, |E2| is at best doubly exponentially bounded. For this reason, we must proceed with caution.

We begin with the set of clauses C†(w†). For each clause in this set, select some disjunct of that clause
satisfied by a†; and let C̃(w†) be the set of selected equations and inequalities. Thus, C̃(w†) is also satisfied by
a†, propositionally entails C†(w†), and has the same cardinality as C†(w†). Let w be the tuple of variables w†, ż,
and let a be the corresponding tuple of constants a†, ḃ. Thus, a, b̂ is a solution of the system of extended integer
equations and inequalities

F(w, ẑ) = C̃(w†) ∪ E1(w, ẑ) ∪ E3(w, ẑ) ∪ E4(w, ẑ) ∪ E5(w, ẑ) ∪ ∪E6(w, ẑ).

And, of course, b̂ a solution of E2(ẑ). (Note that E2 does not feature the variables w†, ż.) Let n = |F|, let Nv
be the maximum value of any finite variable coefficient in F , and let N be the maximum value of any finite
coefficient in F . Thus, we see that n is exponentially bounded, and N (and hence Nv) is doubly exponentially
bounded.

Let us consider now the set of positive integer clauses E2; we repeat it here for ease of reference:{
(ẑhp,0 ≥ 1) ∨

(
L∑
`=1

ẑhp,` = 0

) ∣∣∣∣∣ G < h ≤ H, 1 ≤ p ≤ b(h) + 1

}
. (E2)

The tuple ẑ is simply an ordering of the collection of variables {żhp,`}, with h, p and ` varying over their usual
ranges (i.e., G < h ≤ H , 1 ≤ p ≤ b(h) + 1, 0 ≤ ` ≤ L). Thus, we may write b̂hp,` to denote that element of
the tuple b̂ corresponding to ẑhp,`. Reordering ẑ if necessary, let us write ẑ = z1, z2, z3, where: (i) z1 is the tuple
of all variables ẑhp,0; (ii) z2 is the tuple of all variables ẑhp,`, with ` ≥ 1, for which b̂hp,` > 0; (iii) z3 is the tuple
of all variables ẑhp,`, with ` ≥ 1, for which b̂hp,` = 0. Re-ordering the b̂ = b1, b2, 0 correspondingly, we see that
F(w, z1, z2, z3) has solution a, b1, b2, 0.
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Now freeze the values a, b1 and 0 for the moment. That is, consider the system of extended integer equations
and inequalities

F ′(z2) = F(a, b1, z2, 0).

Notice that |F ′| = |F| = n, and that the largest finite variable coefficient in F ′ is still at most Nv . Since
F ′(z2) has a solution over N∗, by Corollary 2.6, it has a solution b′2, in which at most exponentially many values
are positive. Reordering the variables z2 if necessary, let us write z2 = z2,1, z2,2 and b′2 = b2,1, 0, where the
tuple b2,1 is of at most exponential length, and F(w, z1, z2,1, z2,2, z3) has solution a, b1, b2,1, 0, 0. Notice also,
however, that the tuple b1, b2,1, 0, 0 satisfies E2(z1, z2,1, z2,2, z3), since the values of all the variables zhp,0 remain
unchanged from b̂, as do the values of all the variables zhp,` (` ≥ 1) such that b̂hp,` = 0.

Reordering the variables z1 if necessary (which are all of the form ẑh0,p), let us write z1 = z1,1, z1,2, where z1,1

consists of those variables ẑh0,p such that, for some ` (1 ≤ ` ≤ L), ẑh`,p is in z2,1 (i.e. was assigned a non-zero value
in the tuple b′2). Since z2,1 has at most exponential length, so has z1,1. Reordering b1 = b1,1, b1,2 correspondingly,
we see that F(w, z1,1, z1,2, z2,1, z2,2, z3) has solution a, b1,1, b1,2, b2,1, 0, 0, and E2(z1,1, z1,2, z2,1, z2,2, z3) has
solution b1,1, b1,2, b2,1, 0, 0.

Now freeze the values b1,1 and b2,1, together with both the 0s. That is, consider the system of extended integer
equations and inequalities

F ′′(w, z1,2) = F(w, b1,1, z1,2, b2,1, 0, 0).

The number of equations in F ′′ is still n, and the largest finite variable coefficient is still at most Nv . Since
F ′′(w, z1,2) has a solution over N∗, by Corollary 2.6, it has a solution a′, b′1,2, in which at most exponentially
many values are positive. We claim that b1,1, b

′
1,2, b2,1, 0, 0 is a solution of E2(z1,1, z1,2, z2,1, z2,2, z3). For the

only variables whose values have changed (in comparison to the solution b1,1, b1,2, b2,1, 0, 0) are those in z1,2,
i.e. those zh0,p for which all the corresponding variables zh`,p (` ≥ 1) are in z2,2, which guarantees that the sums∑L
`=1 ẑ

h
p,` occurring in the relevant clauses of E2 are zero.

Hence (F ∪ E2)(w, z1,1, z1,2, z2,1, z2,2, z3) has the solution a′, b1,1, b
′
1,2, b2,1, 0, 0, featuring only exponen-

tially many positive values. By renumbering if necessary, this means that H and L may be assumed to be singly
exponentially bounded, since all terms involving zero-valued variables can be simply deleted from the equations
and inequalities in E .

We next deal with the value K. Observe first that, as we have just shown, we may assume that only expo-
nentially many of the values in the tuple a† are non-zero. (Model-theoretically speaking, this means that, among
the special elements of the constructed cosmos, only exponentially many star-types are realized.) Moreover, as
we earlier established, each of the vectors wh

` has at most exponentially large footprint, and we have just shown
(via the bounds on H and L) that there are only exponentially many of them. (Model-theoretically speaking,
this means that, among the ordinary elements of the constructed cosmos, only exponentially many star-types are
realized.) Thus, we may safely ignore all but at most singly exponentially many star-types in our enumeration
σ1, . . . , σK . By projecting out components of vectors corresponding to unrealized star-types, we may assume K
too is exponentially bounded.

Finally, we consider the vectors a†, ḃ and b̂. Having established singly exponential bounds on H , K and
L, these are simply required as solutions over N∗ to a system of extended integer equations and inequalities in
exponentially many variables, with all coefficients doubly exponentially finitely bounded. By Corollary 2.5, such
a solution exists which is doubly exponentially finitely bounded, yielding a C of singly exponential size.

The argument the case where C is finite proceeds in exactly the same way, noting that we are dealing only with
systems of Diophantine integer clauses with solutions over N. The only change of wording required is that we
use Proposition 2.4 instead of Corollary 2.6, and Corollary 2.3, instead of Corollary 2.5.

We have thus strengthened Lemma 4.5.
Lemma 6.1 Suppose ϕ is a C21E-formula in normal form. If ϕ is (finitely) satisfiable, then ϕ has a (finite)

certificate C, with ‖C‖ singly exponentially bounded as a function of ‖ϕ‖.
We can now prove the main theorem of this paper.
Theorem 6.2 The (finite) satisfiability problem for C21E is NEXPTIME-complete.
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P r o o f. It is obvious that we can check whether a (finite) certificate C satisfies the conditions C1–C7 given
in Sec. 4.6 in time bounded by a polynomial function of ‖C‖. Equally obviously, given a C2-formula ϕ with
ceiling M , and a structure A with |A| ≤ M , we can determine in time bounded by a polynomial function of
‖ϕ‖ and M (and hence by a singly exponential function of ‖ϕ‖) whether A |= ϕ. The upper bound then follows
from Lemmas 2.1, 5.2 and 6.1. The lower bound follows from the well-known fact that the (finite) satisfiability
problem for the two-variable fragment of first-order logic is NEXPTIME-hard (see, e.g. [26], p. 255).

Corollary 6.3 If ϕ is a finitely satisfiable C21E-formula, then ϕ has a model of size bounded by a doubly
exponential function of ‖ϕ‖.

P r o o f. Immediate from the bounds on ‖C‖ established above together with the model-construction process
in Sec. 5.

7 Two equivalence relations

In this section, we show that the satisfiability and finite satisfiability problems for C22E are both undecidable.
A deterministic 2-counter machine M has a finite set of states s0, . . . , sL and two counters, c1 and c2, each

holding a non-negative integer. We regard s0 as a start state and sL as a stop state. The basic operations of M are:
test whether ci holds the value 0; and increment/decrement ci (where attempting to decrement zero yields zero).
The program of M associates with each state s` other than sL a basic operation (i.e. a zero-test, increment or
decrement), together with a specification of the next state of the machine (depending, in the case of of zero-tests,
on the outcome). No action is specified for the stop state. A configuration for M is a triple comprising a state
together with the values of c1 and c2. The run of M is the (finite or infinite) sequence of configurations starting
with 〈s0, 0, 0〉, where each configuration is obtained from its predecessor as specified by the program of M, in
the obvious way. We allow this sequence to stop if a configuration featuring the stop state, sL, is encountered,
in which case we say that the machine M terminates. It is well-known that deterministic Turing machines may
be effectively simulated by deterministic 2-counter machines. Hence, the problem of deciding whether a given
deterministic 2-counter machine terminates is r.e.-complete.

We proceed to show how runs of deterministic 2-counter machines can be encoded using the logic C22E.
Recall that, in C22E, the distinguished binary predicates E1 and E2 must be interpreted as equivalences. Where
a structure A is clear from context, we refer to the equivalence classes of EA

1 as E1-classes, and similarly for
E2. Note that the coarsest common refinement EA

1 ∩ EA
2 of these two equivalences is also an equivalence; to

aid intuition, we refer to its equivalence classes as configurations. We write E12(x, y) as an abbreviation for the
formula E1(x, y) ∧ E2(x, y). We employ unary predicates d1, d2 to partition the universe, in such a way that,
within any E1- or E2-class, the elements satisfying them form configurations:

∀x((d1(x) ∨ d2(x)) ∧ (¬d1(x) ∨ ¬d2(x))) (25)
2∧
k=1

∀x∀y(E12(x, y) ∧ dk(x)→ dk(y)) (26)

2∧
k=1

2∧
j=1

∀x∀y(Ek(x, y) ∧ dj(x) ∧ dj(y)→ E3−k(x, y)). (27)

We call a configration whose elements satisfy dk a dk-configuration. It follows that each equivalence class
contains at most one d1-configuration, and at most one d2-configuration. Where two different configurations, B
and B′, lie in some Ek-class (k ∈ {1, 2}), then we say that B′ is the successor of B if B is a dk-configuration
and B′ a d3−k-configuration. Thus, for B and B′ as described, one is the successor of the other. Successors,
where they exist, are obviously unique.

We employ unary predicates s1, . . . , sL, and refer to them as states; we also employ an additional unary
predicate s to stand for their disjunction. We require that every configuration contains a unique element satisfying
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E1 E1
E2 E2

s, s0
s s s s

d1 d1 d1d2 d2

Fig. 8 Initial segment of a chain of configurations: each configuration (white region) contains a unique s-element determining
its state; the first configuration is in the start state, and forms an E2-class on its own.

s, which will be in exactly one state:

∀x∃[=1]y(E12(x, y) ∧ s(y)) (28)

∀x

(
s(x)→

L∨
`=1

s`(x)

)
∧

∧
1≤`<`′≤L

∀x(s`(x)→ ¬s`′(x)). (29)

A configuration whose s-element satisfies s` will be said to be in state s`. We call s0 the start state and sL,
the stop state. We employ a binary predicate t, and we require that t(x, y) holds only between s-elements of
configurations one of which is the successor of the other:

∀x∀y(t(x, y)→ (s(x) ∧ s(y) ∧
2∨
k=1

(Ek(x, y) ∧ ¬E3−k(x, y) ∧ dk(x)))). (30)

We require that there exists a d1-configuration in the start state, that this configuration is the only one in its
E2-class (i.e., is not the successor of any configuration), and that every configuration in a state other than the stop
state has a successor:

∃x(d1(x) ∧ s0(x) ∧ ∀y(E2(x, y)→ E1(x, y))) (31)
L−1∧
`=0

∀x(s`(x)→ ∃y.t(x, y)). (32)

It follows that, in any model of (25)–(32), there is a chain, B0, B1, . . . , (possibly infinite) of distinct configu-
rations, where B0 is in the start state, and where each Bi+1 is the successor of Bi. Moreover, if this chain is
finite and maximal (i.e. cannot be extended), then its final configuration must be in the stop state. Notice that this
condition must obtain if the model is finite. The situation is illustrated in Fig. 8.

Recall that, if B is any configuration, then B contains exactly one element satisfying s. We employ two
further unary predicates c1 and c2: we refer to the set of elements of B satisfying ci (1 ≤ i ≤ 2) as the the
ci-counter in B, and we refer to the cardinality of this set as the value of that counter. It helps to assume that the
sets of elements of B satisfying the respective predicates s, c1 and c2 partition B; however, this is not formally a
requirement.

We now consider any deterministic 2-register machine, M, and proceed to describe the run of M using C22E-
formulas. We first define, for i = 1, 2, a 1-place formula c◦i (x), which, in effect, states that the ci-register in the
configuration containing x is zero:

¬∃y(E12(x, y) ∧ ci(y)).

Using these formulas, we fix these register values for any d1-configuration that is not a successor to be zero:

∀x(d1(x) ∧ ∀y(E2(x, y)→ E1(x, y))→ c◦1(x) ∧ c◦2(x)).

We next define a formula c=i (x, y) with the following property. Suppose b and b′ are elements of configurations
B and B′, respectively, where B′ is the successor of B: if the pair 〈b, b′〉 satisfies c=i (x, y) then the ci-counter of
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Eks s
ci cirk

Fig. 9 Successive configurations whose elements satisfy the formula c=i (x, y): the ci counters are in 1–1 correspondence
under rk, and so are equinumerous.

B and the ci-counter of B′ contain the same value. To construct c=i (x, y), we employ a pair of binary predicates
r1, r2, denoting relations contained within the equivalences E1, E2, respectively, but disjoint from the other:

2∧
k=1

∀x∀y(rk(x, y)→ Ek(x, y) ∧ ¬E3−k(x, y)). (33)

Recall that, under our assumptions concerning b and b′, if b satisfies dk then b and b′ lie in a common Ek class.
The formula c=i (x, y) then simply states that, in that case, every element in the ci-register of B is related by rk
to exactly one element in the ci-register of B′, and that every element in the ci-register of B′ is related by the
inverse of rk to exactly one element in the ci-register of B.

2∧
k=1

(dk(x)→ ∀y(E12(x, y) ∧ ci(y)→ ∃[=1]x(rk(y, x) ∧ ci(x)))∧

∀x(E12(y, x) ∧ ci(x) → ∃[=1]y(rk(y, x)) ∧ ci(y))).

Note how the variables x and y are ‘re-used’ by quantifiers. This formula relies on the sentence (33) to have its
advertised effect: the relation rk holds only between elements in the same Ek-class but different E3−k-classes.
The situation is illustrated in Fig. 9.

Similarly, we can define a formula c+i (x, y) entailing that, if the configurationB′ containing y is the successor
of the configurationB containing x, then the ci-register ofB′ is one greater than that ofB, and a formula c−i (x, y)
entailing that the ci-register of B′ is one less than that of B (or that both are zero).

Using the formulas c◦i (x), c+i (x, y) and c−i (x, y), we may then encode the program of M in the expected way.
For example, if the basic operation of M associated with state si is to increment counter c1 and move to state sj ,
then we require:

∀x∀y(si(x) ∧ t(x, y)→ (c+1 (x, y) ∧ c=2 (x, y) ∧ sj(y))).

Writing such formulas for all states si (0 ≤ i < L), we can effectively construct a C22E-formula ϕM any
model of which contains a sequence of configurations B0, B1, . . . , encoding the run of M. Indeed, ϕM has a
finite model if and only if M has a terminating run. Hence:

Theorem 7.1 The finite satisfiability problem for C22E is r.e.-complete.

Bearing in mind that M terminates just in case its run encounters the stop state, we see that ϕM ∧ ∀x¬sL(x)
has an (infinite) model if and only if M is non-terminating. Hence:

Theorem 7.2 The satisfiability problem for C22E is co-r.e.-complete.

Table of symbols

The following table lists mathematical symbols used with the same meanings over several sections of the paper.
Symbols with only local use are not listed here.
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Symbol Explanation Pages
ϕ a C21E-formula in normal form 8
Z a number exponentially large in ‖ϕ‖ 8
Σ signature of ϕ with polynomially many spare predicates 8
πi (1 ≤ i ≤ I) the 1-types of Σ 9
ρj (1 ≤ j ≤ 8J) the ray-types of Σ 9
A a structure interpreting Σ, often a model of ϕ 12, 32
σk (1 ≤ k ≤ K) star-types occurring in the structure A or certificate C 13, 28
Bg = Cg (1 ≤ g ≤ G) a special equivalence class, special cluster 14, 18
I the 1-types uniquely realized in A 14
Gi the indices of the special equivalence classes realizing πi 14
w† = w1, . . . , wG profiles of special equivalence classes 18
Ch (1 ≤ h ≤ H) a cluster 20
Eh (G < h ≤ H) equations satisfied by the profile of Ch 20
wh
` (1 ≤ ` ≤ L) a basis vector for solutions of Eh 20

Bhs (0 ≤ s < c(h)) an equivalence class/galaxy in Ch (c(h) may be ℵ0) 20
Ḃhp (1 ≤ p ≤ b(h)) a terminator in Ch (b(h) may be 0) 23
B̂hp (1 ≤ p ≤ b(h) + 1) a sector in Ch 23
żh`,p (ż) number of occurrences of `th constellation in Ḃhp 24
ẑh`,p (ẑ) number of occurrences of `th constellation in B̂hp 24
D the equations D1–D9 26
E(w†, ż, ẑ) the equations and inequalities E1–E6, using D as definitions 26
a†, ḃ, b̂ a solution for E(w†, ż, ẑ) 27
C a certificate 27
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