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1. INTRODUCTION
In earlier lectures at this Summer School, Professor Kumme1 has

spoken in some detail about the fundamental development and applications"
of the exp(S) or coupled-cluster formalism (CCF) of quantum many-body
theory. It should be clear from these lectures that the CCF is strongly
anchored to "the hamiltonian of the system under consideration, and
indeed this has been one of its underlying sources of strength. It is
however not surprising therefore that calculations of quantities other
than ground-state (g.s.) and excited-state (e.s.) energies, and other
quantities easily accessible through the Schrodinger equation, have been
slower to be developed. Indeed, most of what Professor Kummel has
spoken about here can be characterised as a cluster decomposition (for
both the g.s. and e.s. cases separately) of the many-body Schrodinger
equation.

What I intend to discuss in this lecture is a recent development a~
Manchester of the CCFl) in which we have succeeded in imbedding the well-
known theory of linear response within this formalism, and have shown
how out of it emerges a whole new hierarchy of very useful sum rules.
One outcome of this work is that it now provides a very valuable bridge
between the otherwise somewhat disjoint, although clearly intimately
related, g.s. and e.s. formalisms, and also gives a set of independent
yardsticks against which approximations in both formalisms can be
assessed for mutual compatibility. The new formalism will also allow
any extra information that we possess (either from experiment or other
theoretical frameworks) about either the excitation spectrum or the g.s.
correlations of the many-body system, to be used to extract information
within the CCF on the other.

2. THE SCHRODINGER EQUATION AND ITS CCF DECOMPOSITION
While not wishing to repeat too much of what Professor Kummel has

already described in detail, it will be useful for us first to consider
from our new perspective such of the main elements as will be needed la-
ter of the CCF applied to both the g.s. and e.s: Schrodinger equation.
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For simplicity and ease of exposition, the entire ensuing discussion is
given for infinite (N + w) homogeneous systems of bosons. The later
extension to Fermi systems is, in principle at least, straightforward!
2.1 The ground-state CCF

A convenient starting-point for the g.s. CCF2-9) is the usual exp(S)
expression for the exact g.s. N-body wavefunction I'!'>,

S NI'!'> = e 14» ; S = L S (l )
1 n

in terms of an arbitrary N-body model (or reference or uncorrelated)
state 14» which we shall choose for simplicity to be a single-state
(usually zero~omentum) boson condensate,

14» = (N!)-i(bt)Nlvac> (2)o
where Ivac> is the vacuum state and 0 labels the condensate-state.
In terms of a complete set of boson creation operators bt, which cre-

a
ate the (arbitrary) complete orthonormal single-particle (s.p.) basis
la> when acting on Ivac>, the correlation operators Sn' which ex-
cite n particles from the condensate into "normally unoccupied" (par-
ticle) states, leaving n condensate-hole states, may be written as

Sn (n! )-1 L b: •••b: (N-ibo)n Sn(PI ···Pn). (3)
Pl·· ·Pn 1 n

In Eq. (3) and elsewhere, the labels PI···Pn indicate non-condensate
(or particle) states, and Eq. (3) thus displays the 1inked-cluster as-
pect of the original exp(S) ansatz of Eq. (1).

The g.s. coup1ed-cluster equations are now formally derived in two
simple steps. The g.s. Schrodinger equation with energy eigenvalue E,
is first pre~ultiplied by the operator exp(-S) as a formal step which
eliminates from the outset some "unlinked" terms which otherwise have to
be specifically removed later; and secondly the scalar product is then
taken either with the model state 14» or with the n particle-hole
states,

bt •••bt (N-ib )nl4» (4)
PI Pn 0

The states 14» and (4) clearly span the entire N-boson Hilbert space
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when n runs from 1 to N, and when the labels Pi run over all
(non-condensate) states of the complete s.p. basis. Thus, the resulting
equations.

E
o

(5a)
(5b)

which are the g.s. coupled-cluster equations are fully equivalent to
(and just a cluster decomposition of) the g.s. N-boson 5chrodinger equa-
tion. Further evaluation of Eqs. (5) is straightforward although alge-
braically tedious. For example, in a momentum-eigenstate (plane-wave)
s.p. basis, and taking the model state to be the zero;nomentum condensate,
we find that 51 = 0 by momentum conservation, and Eqs. (5a) and (5b) in
the case n = 2. reduce respectively in the case of a hamiltonian cont-
aining local pairwise interaction potentials only, with a momentum-space
representation as V(q), to:

~ = iNV(O) + iIV(q)52(q)
q

ii2g
2 52 (q) + NV(q)[1+52 (q)]2 + (-4IN)S2(q) + L V (q-q' )S2(q')m +q'

\ (') 2 ~ (+ +, + +, ) 5 (+ + +, +')+ L V q [N 53 q,q ,-q-q + iN If q.-q,q ,-q ]
->-q'

where S2(q) - S2(q,-q). The five terms in Eq , (6b) represent respec-
tively (i) the kinetic energy (KE) contribution; (ii) the term that.
with the KE. generates the random-phase approximation (RPA); (iii) the
term that generates the fully self-consistent energy insertions on the
bare zero;nomentum condensate propagator (i .e., the boson analogue of
the fermion "hole-potential "); (iv) the term that repeatedly scatters
two particles outside the condensate and hence generates the two-particle
ladder diagrams and the associated Bethe-Goldstone equation; and finally
(v) the coupling terms to three - and four-body clusters.

Of course. in order to be useful in practice. One has to truncate
the hierarchy of Eqs. (5b), and I remind you only of the "natural" trun-
cation of the so-called 5UBn scheme wherein each of the amplitudes 5i
is set to zero for i > n, and the remaining n coupled, nonlinear equa-

(6a)

(6b)
a ,
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tions are solved for the subsystem amplitudes
2.2 The excited-state CCF

S [o ••• p ) withn 1 n $ n.

As described above the g.s. CCF presumably relates not only to the
g.s. but also to those excited states with the same relevant quantum
numbers as the g.s. that have non-zero inner product with the model
state 1$>. In this context we note that Eqs. (l) and (3) automati-
cally provide a normalization <$I~> = 1. To proceed therefore. we may
restrict ourselves to excited states I~~> which are orthogonal to both
1$> and I~>. Emrich10} has then shown that an appropriate (linked)
choice of e.s. CCF wavefunction is

N
S(~) = IS(~)

1 n

(n!)-l I bt •••bt (N-~b )ns(~)(p •••p)P •••p PI Pn 0 n 1 n
1 n

where each nonzero vector S~~}I$> is assumed to have a nonzero inner
product with I~~>. If the excited state is a momentum eigenstate with
eigenvalue Ci. and i'fwe choose again to work in a plane-wave s.p. ba-
sis. the implication of this is that the s.p. momenta (PI···Pn) +

(i<I· •• kn) in Eq. (7) must sum to q. whereas in the g.s. Eq. (3) they
must sum to zero.

The e.s. CCF equations are now again easy to derive formally. In
order to eliminate the g.s. energy level E. the e.s. Schrodinger equa-
tion with energy eigenvalue E~ =: E+w~ is first combined with the g.s.
equation to give

[H.s(~}]I~> = w S(~) I~> •~

(7)

(8)

in terms of the excitation energy. w~. A similar procedure as in the
g.s. case then leads to the linked CCF e.s. equations.

<$I(N-~bt)nb •••b e-~H S(~)]esl~> = w S(~)(p •••p ) (9)
o P p' ~n 1 n

n 1

as the counterpart of the g.s. Eqs. (5). The e.s. equations thus take
the form of a coupled set of linear eigenvalue equations for the e.s.
subsystem amplitudes S(~)(Pl···P) with the same excitation energyn n ---
eigenvalue w~ in each. and where the g.s. correlations have to be
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known and used as input.
The e.s. equations (9) must again be truncated in practice, and

again as the obvious. extension of the 9.s. SUBn scheme, I recall only the
SUB(m,n) scheme where the operators s~!~and Sn+i are equated to zer?
for all i ~ 1, and the remaining n lowest g.s. Eqs. (5) and m
lowest e.s. Eqs. (9) are solved together. There immediately arises at
this point the problem of choosing "compatible" (m,n) pairs from the
otherwise essentially distinct g.s. and e.s. CCF formalisms. With no
further information, it is very difficult to know for example, whether
increasing m for a given n (g.s. input) necessarily leads to increa-
singly "better" approximations. We shall see that the CCF linear res-
ponse theory presented below can shed light on this question in its role
as a bridge between the g.s. and e.s. formalisms.

3. LINEAR RESPONSE AND SUM RULES WITHIN THE CCF
As usual we now consider the response of the system in its g.s. to

the addition of a small perturbation AV to the hamiltonian H, by ex- _
panding the g.s. energy and wavefunction in powers of the notional coup-
ling parameter A,

H -+ H' H + AV ,
E -+ E' E + AE(1} + A2E(2} + ,0' , (1O)

I~> -+ I~'> I~> + AI~(1» + A21~(2}> +
There are now various possible routes for a CCF analysis. Arponen,11)
for example, has defined I~'> = exp(S')I~> and used Eqs. (10) to deter-
mine the perturbed correlation operator S'. Guided by the usual deriva-
tion of sum rules however, we1} have followed another route by making
immediate contact with the excitation spectrum I~~> of the unperturbed
hami1 toni an H. We now restrict ourselves to first order changes in the
g.s. wavefunction (i.e., linear response) and expand 1~(1» as

HI~ > =~ (11 )

We further impose again the restrictions <~I~~> = 0 = <~I~~> from the
outset, for all states entering the assumed expansion (11), and we re-
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strict ourselves also to perturbations v that satisfy the relations
<~Ivl~> = 0 = <~Ivl~>. which are in fact satisfied by almost all pertur-
bations of interest. Under these conditions. it is trivial to derive
the usual results of (first- and second-order) perturbation theory that
E(l) = 0 and.

IWR.gR.I~R.> = - vl~> (12 )R.

<~ Ivi ~>
gR. =

R.
(13 )wR. <~R.I~R.>

E(2) =
<~Ivl~ >

IgR. R.
(14 )<~I~>R.

By acting repeatedly on Eq. (12) with the operator (H-E). it is also
easy to prove. for any positive integer m, the important relation,

~wR.mgR.I~R.> = -v(m)I~>

v (1) = v; v (m) = [H • v (m-l )] • m ~ 2 •

Equation (15) forms the basis for all of the ensuing sum rules, both for
the well-known (various moments of the) energy-weighted dynamic liquid
structure function T(q,w) and, as we shall see, for their cluster
decompositions.

(15 )

3.1 CCF sub-sum-rules
Taking. for example, the inner product of Eq. (15) with the typical

boson CCF states (5). after an initial pre-multiplication by e-5,
gives the double hierarchy of general sum rules (or, for reasons given
below. what we shall call the CCF sub-sum-rules),

v m (R.) -i t n -5 5
[.w g S (p. "P ) = - <~I (N b ) b ···b e v )e I ~>R.R. R. n 1 n 0 Pn PI (m ' (16 )

valid for arbitrary perturbation v. The sub-sum-rules (16) are now
clearly seen to provide the bridge already mentioned between the excita-
tion spectrum and its e.s. CCF description. which occur on the left-
hand side only. and the g.s. CCF correlattons which appear only on the
right-hand side.

In order to make explicit further progress, we now specialize to
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excited states which are eigenstates of momentum, and also restrict the
remaining discussion to the very important illustrative example,

t tv + i(p+ + p+) = v
q q

q f 0
(17)

t
p +-q

The operator p! creates a density fluctuation with momentum q, and
the perturbatio~ (17) therefore destroys the translational invariance
of the system. If we choose now to work in the natural momentum-

.eigenstate (i·.e., plane-wave) s.p. basis, and with the model state I~>
as the zero-momentum condensate, then Eq. (13) shows that the only
excited states which carry non-zero weight gt in Eq. (11) are momen-
.tim eigenstates with eigenvalue ± q. Non-trivial results will thus be
- + +obtained from Eq. (16) only if the s.p. momenta (PloooPn) + (kloookn)
sum to ± q, and to be specific in the following discussion we shall
assume they sum to T q (and hence that the excited states also have
momentum eigenvalue +q).

With this choice of perturbation from Eq. (17), the right-hand side
of Eq. (16) can be evaluated explicitly for given indices (m,n). For
example, the lowest three n = 1 sub-sum-rules can be evaluated as,

(lBa)

112 2-~~[l-S(q)]2m 2 (lBb)

_~{(11~~2r[l+S2(q)]_:2 r (qoq')V(q')

q'

~ + + + + ( , (+ +') }x [N S3{q,q',-q-q')+S2 q )+S2 q+q ] ,

where we have assumed again that the bosons interact only through pair-
wise forces with a local (velocity-independent) potential V, so that
[p , V] = O. Given sufficient patience, similar sub-sum-rules can be
eviluated for arbitrary (m,n).

(lBc)
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3.2 Sum rules for the dynamic liquid structure function
We can also readily make contact with the usual sum rules for the

energy-weighted moments of the dynamic liquid structure function T(q,w),
t<~lp+I~~><~~lp+I~>

T(q,w) = I~ <~I~><~ I~ ; o (w-wt) (19)
t ~

by taking the inner product of our basic Eq. (15) with the state vl~>,
and again restricting ourselves to perturbations v of the form (17).
For example, the lowest two sum rules (m = 1,2) are then easily shown
to give the well-known "static sum rule" for the static structure func-
tion T(q) == <~Ip+p + I~>/ <~I~>, and the "f'-sum ru1eJ012) respectively.q -qExpressed in our CCF language and in the more usual way, these can
respectively be written as,

-T(q) ~ fdwT(q,w) =T(q)
o

_fl~2 ~ [dwWT(q,w)=fl~;2
o

Further information on these sum rules can be found, for example, in
Refs. [13,14], and Feenberg14) in particular also gives forms of the
1es~ well-known higher sum rules, with m = 3,4, in this hierarchy.
Furthermore, in the limit of vanishing momentum transfer, the energy
shift E(2) of Eq. (14) due to the perturbation (17) can also be calcu-
lated macroscopically in the usual well-known fashion,13,14) to give the

.>.:

"compres sibil ity sum ru 1e ",

<~I'I'>
<~lp+l~t>

2 ~ wf g~ -(=~'-+r=~>-

<~I~>

(20a)

(20b)

- 2m1
C2 ~ lim r dw T(q,w) = -21

2 (21)q+O w mc
o

in"terms of the (isothermal) first-sound velocity c.
In order to compare our sub-sum-rules (18a,b) with the sum rules

(20a,b) it is convenient to expand <~lp+I~~> = <~leSlle-Sp+I~~>, by
inserting for the unit operator :t1 so i~dicated, the iden~ity in the
N-boson Hilbert space.
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(22 )
This then yields the expression.

It t -~ nl<'!'b •• -b (N b) '!'>
Pl Pn 0N

S\R.)(q) + I J, I
n=Z n. P "'P

1 n

x <~I (N-ibt)nb ···b e-sp+I'!'» , (23)
o Pn PI q R.

If Eq. (23) is now inserted into Eqs. (20). it is seen that the first
term on the right-hand side of Eq. (23) thereby reproduces exactly the
corresponding left-hand sides of Eqs. (18). From the remaining terms in
Eq. (23). we get for n > 1. a very complex non-linear dependance on
the g.s. subsystem amplitudes {S}. but with each term linear in the
e.s. amplitudes {S~R.)}. We see ~n this way that the sets of sub-sum-
rules (16) with m = 1.2 respectively and in each case for all n cor-
respond just to Eqs. (20a) and (20b) respectively. In general we can
see that [with the choice of perturbation of Eq. (17)J each sum rule
from an energy-weighted moment (in index m) of the dynamic structure
function is given a cluster decomposition (in index n) by our CCF sub-
sum-rules (and hence this choice of name).

<'!'I'!'>

3.3 One-state approximation
Purely in order to demonstrate the sort of results obtainable with

our new sub-sum-rules. we now make the drastic approximation that a
single excited state R. exhausts the sum rules. which is the so-called
one-state approximation. Simple division of the two lowest sub-sum-
rules (18a) and (18b) then gives.

w+w(q) = (~2q2/2m)[1-S2(q)J/[1+S2(q)J (24)
In order to make use of Eq. (21) in the interesting long-wavelength
limit. we need now to approximate Eq. (23). In the spirit of the one-
state approximation already made, the obvious choice is the RPA. which
can be characterised in the present context by working in SUB2 approxi-
mation. with the further approximation of neglecting all contributions
which depend on momenta other than ± q. In the RPA, only the term with
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n = 2 survives out of the summand on the right-hand side of Eq. (23).
A calculation within the RPA then shows.

<4>I(N-~bt/b~+e-sp*eSs(t)I4» '" 2[1+S2(q)Js(t)(q) (25)o q ~ y 1

<'¥ 1blt>t+(N-!bo fl '1'>/ <'1'1'1'> e S2 (q) / [1 - S22(q) J (26)
q ~ .

where the symbol '" indicates that these results are true only in the
RPA. The derivation of Eq. (25) is straightforward. but the derivation
of Eq. (26) requires a procedure similar to that used in deriving
Eq. (23). Equation (21) thus reduces in the RPA to.

1im}: g S(R.)(q) [1 - S (q)Tl " - (4mc2)-1 (27)
." R. 1 2q->v R.

Combining Eq. (27) with our previous Eqs. (18a.b). with all three evalu-
ated in the one-state approximation, yields the further results,

w(q) __ hcq; S (q) _ -1 + 'h9. (28)q~O 2 q+O mc
Equation (28) shows how even this very simple approximation leads to the
universal existence of a phonon spectrum in the 10ng-wave1ength limit.
Furthermore substituti on of Eq. (28) into the Bose equati on for S2 (q)
in the RPA [obtained from Eq. (6b) by keeping only the first two out of
the total of five terms on the left-hand side of Eq. (6b)J also yields
precisely the well-known relationship for the first sound velocity,

c " [NV(O)/mJ! , (29)
in the RPA. We note also that the static structure function can be
similarly evaluated within the one-state approximation and the RPA from
Eqs. (20a) and (18a) as,

T(q) '" [1 + S2(q)J / [l - S2(q)J • (30)
Finally, a comparison of Eqs. (24) and (30) also yields the well-known
Bij1-Feynman relation,

T{q)w(q) '" 'h2q2/(2m) (31)
We note with interest that the only approximation involved in the

derivation of Eq. (24) was the one-state approximation, whereas Eqs.
(30) and (31) also require the RPA. However, we also note that making
only the one-state approximation in Eq. (20b), which we have not yet
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used, as well as in Eq. (20a) also immediately yields Eq. (31) directly,
but now without use of the RPA. Thus an evaluation of T(q) in an appro-
ximation other than RPA will clearly not be wholly compatible with the
one-state approximation [at least as expressed by Eq. (31)]. Finally it
is worth remarking that while the one-state approximation is wholly com-
patible with the RPA at the level of Eqs. (lBa,b) and (20a,b) it is cer-
tainly not exact. When higher (m > 2) n = 1 sub-sum-rules are
considered, inconsistencies start to arise. (It is interesting to note
however that Eq. (lBc), for example, is also still compatible in the
same one-state approximation with a long-wavelength phonon branch to the
excitation spectrum, although now with a different expression for the
velocity.)

4. CONCLUSIONS AND FINAL REMARKS
We have seen how to derive a set of exact sum rules within the CCF"

which connect properties of the excitation spectrum (characterised by
I~i> and S~i» with ground-state correlations (characterised by I~>
and Sn). This new double manifold (in moment index m and cluster-
size index n) of sub-sum-rules (16) comprises a cluster decomposition
(in index n) of each of the usual single manifold of sum rules for the
~ moments of the energy-weighted dynamic structure function, and
hence can provide much more detailed information about many-body systems
than the latter. The new formalism, s.uitably modified to deal with
Fermi systems should be of particular use in the nuclear many-body prob-
lem, and where as a first step one might employ it to determine the g.s.
correlation functions Sn{q) for small clusters n ~ 2, from experi-
mental data on the excitation spectra. One could in this way try to use
the wealth of information available on the excited states, to learn
about the g.s. nuclear correlations which have otherwise proven so diffi-
cult to unravel. It is also quite likely, particularly within the con-
text of the nuclear many-body problem, that our new sub-sum-rules will
enable the CCF and the alternative moment methods15) for nuclear many-
body systems, to reinforce and illuminate one another, and perhaps to
widen and strengthen their mutual field-of applicability.
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We have seen how even the simplest (one-state) approximation for
the evaluation of our new sub-sum-rules leads to the important result

-of a phonon spectrum in the long-wavelength limit and also to the impor-
tant Bijl-Feynman rclation under the additional assumption of the RPA.
We note that these results were derived using the (m,n) sub-sum-rules
for the n = 1 clusters only. This is not too surprising since phonons
may be quite accurately regarded as (collective) coherent superpositions
of one-particle/one-hole excitations within the e.s. CCF. We also simi-
larly expect that the same sub-sum-rules should be of value in the nuc-
lear context in describing the "g-iant" collective resonances.
Extensions of their use to the case n > 1 is also likely to be of some
interest here.

An open question, of some considerable importance, remains how to
improve upon the one-state approximation. However, the additional possi-
ble constraints of requiring arbitrarily many of the. (m,n) sub-sum-rules
to be compatible with each other (and perhaps with the corresponding sum
rules for the dynamic structure function) should be of great value in
the construction of improved approximations.

Finally, I would like to express the hope that the sum rule forma-
lism developed here, may usher in a new round of applications of the CCF,
which has hitherto largely been confined to (approximate solutions of)
the g.s. and e.s. Schrodinger equation for a given many-body hamiltonian.
At the very least, I am sure that the new formalism will prove useful in
investigating the compatibility between the otherwise disconnected appro-
ximations used in the essentially distinct g.s. and e.s. CCF methods.
On the wider front, I also believe that all nuclear systems to which the
g.s. and e.s. CCF has already very successfully been app1ied,7) might
now profitably be subjected to further analysis with the tools of the
sum rule formalism presented here.
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