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Abstract2

We consider the influence of uncertainty in crystallization kinetics (i.e., in the nu-3

cleation and growth rates) in the context of process design. Specifically, we model con-4

tinuous and batch crystallization processes using population balance equation models5

and investigate how the inherent uncertainty in kinetic parameters propagates through6

the crystallization processes and how it ultimately affects the distribution of process7

outcomes (yield and mean particle size). We incorporate the effect of uncertainty into8

the concept of attainable regions, i.e., we exhaustively investigate which combinations9

of particle size and total residence time (or batch time) can be attained with a certain10

probability. Avoiding regions of low probability allows the design of robust crystal-11

lization processes that can deliver a product with desired specifications even when the12

original process was designed using inadequately characterized crystallization kinetics.13

The concepts presented in this article are illustrated by a case study on the cooling14

crystallization of paracetamol grown from ethanol as a solvent.15
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1 Introduction16

Crystallization is widely applied in the manufacturing of particulate products with desired17

properties. Its popularity stems from the fact that it enables purification and a way to18

isolate the product in solid form. Crucially, crystallization also allows to tune physical19

product properties, such as the particle size distribution, which in turn affects downstream20

processes such as filtration and drying and determines the powder flowability of the product.21

Furthermore, the particle size distribution is often also a key factor in the performance of the22

product. One finds a plethora of examples for this observation, including such diverse areas as23

the manufacturing and lifetime of tungsten filaments in light bulbs, the color and brilliance24

of pigments1 and the dissolution rate2, bioavailability3 and even the biocompatibility4 of25

pharmaceutical products.26

It is thus important to control or design crystallization processes to not only deliver the27

right purity, yield and crystal form, but also to produce crystals with a desired particle size28

distribution. Consequently, the design and control of crystallization processes have received29

considerable attention by the scientific community (see Nagy and Braatz 5 for a recent re-30

view). These studies can roughly be assigned to two classes: the calculation of optimal oper-31

ating recipes6–11 and feedback control strategies using various measurement tools to provide32

an estimate on the state of the process12–15. However, with a few notable exceptions16–21,33

most studies have neglected uncertainties in the model structure, the crystallization kinetics34

and the operating recipe and have assumed that process disturbances are absent, thus failing35

to provide the necessary robustness. The influence of such uncertainties on the quality of36

the product crystals is well documented and can be considerable22. While it can be argued37

that process disturbances can be prevented or at least minimized, crystallization kinetics38

estimated from experimental data will always exhibit some degree of uncertainty23, which39

can only be reduced when rather laborous characterization efforts are conducted. Clearly, a40

balance needs to be struck between an accurate characterization of crystallization kinetics41

and an acceptable level of uncertainty. However, to arrive at such a balance the uncertainty42
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needs to be either investigated experimentally or evaluated through appropriate models.43

In this article we approach the problem of quantifying the effects of uncertainty from a44

process design perspective. Specifically, we investigate how uncertainty in the growth and nu-45

cleation rate parameters affects the outcome of optimal operating policies of continuous and46

(semi-)batch crystallizers that have been calculated using experimentally estimated parame-47

ter values, which are, however, only known within certain confidence intervals. Furthermore,48

we show that the attainable region approach, which we recently adapted to continuous and49

batch crystallization processes24, can be used to design robust crystallization processes and50

to select crystallizer configurations that allow obtaining desired product characteristics with51

a high likelihood. The current trend towards continuous manufacturing processes in the52

pharmaceutical industry, which is likely to result in more “fit for purpose” crystallization53

process equipment in the future, is likely to increase the importance of such robust design54

strategies.55

In the following, the process flowsheets and models considered in this article are presented56

in Section 2. In Section 3 we present an overview of possible sources of uncertainty in57

a crystallization process and introduce the Monte Carlo technique that will be used to58

sample the uncertainty contained in the crystallization kinetics. In Section 4 we extend the59

attainable region methodology to account for parameter uncertainty. Finally, in Section 5 we60

apply the presented techniques in a case study on the cooling crystalliztion of paracetamol61

grown from ethanol as the solvent.62

2 Process flowsheets and models63

In this article we consider three different types of crystallizers: cascades of mixed suspen-64

sion mixed product removal crystallizers (MSMPRCs), semi-batch crystallizers and plug flow65

crystallizers (PFCs). The flowsheets and models are briefly introduced in this section. Addi-66

tional considerations pertaining to the physical operation, advantages, pitfalls (and possible67
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remedies) of each processing strategy are provided in Sections 1 and 2 of our recent paper24.68

In the pharmaceutical industry crystallization processes are still mostly run as seeded69

or unseeded batch crystallizations. While a “seeding effect” could be achieved in continu-70

ous processes by recycling small particles from the product stream to the beginning of the71

PFC or the MSMPRC cascade, the use of recycle streams is currently not customary in the72

continuous production of APIs in the pharmaceutical industry. Hence, in order to enable a73

fair comparison between the process alternatives, we will exclude the possibility of introduc-74

ing seed crystals to the semi-batch crystallizer and will only consider one pass MSMPRC75

cascades and one pass PFCs (i.e., no recycle). However, we point out that extending the76

presented process models and methodologies to seeded batch processes and continuous pro-77

cesses involving recycles could be accomplished if desired. We will also neglect the start-up78

behavior of the continuous processes, i.e., we only consider their performance once they have79

reached steady state. However, in all three cases we will allow the introduction of anti-solvent80

and cooling in order to create supersaturation and therefore induce crystallization. These81

process configurations can be described using the flowsheets shown in Figure 1, where the82

main variables describing the state of the process are the particle size distribution (n), the83

solute concentration (c), the temperature (T ) and the anti-solvent weight fraction (a). The84

feed and product streams of the PFC and each MSMPRC are characterized by their volu-85

metric flow rate (Q), their temperature and their solute and anti-solvent concentrations, as86

well as the particle size distribution they contain. The anti-solvent weight fraction in the ith87

MSMPRC in a cascade is adjusted using the stream Fi, where Fi signifies a volumetric flow88

rate. Likewise, F (t) signifies the anti-solvent addition stream to the semi-batch crystallizer.89

In the PFC the same kind of flexibility could be obtained through a differential sidestream90

f(z), i.e., f(z) signifies a volumetric flow rate per unit length. In practice however, the91

anti-solvent would be added to the PFC at specific points along its length coordinate. In the92

semi-batch this would be equivalent to instantaneoulsy adding a defined quantity of anti-93

solvent to the reactor at a specified time. Note that an MSMPRC cascade with an infinite94
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number of crystallizers is equivalent to a PFC when equivalent temperature and anti-solvent95

profiles are established and that the semi-batch crystallizer in time is equivalent to the PFC96

when batch time is converted to residence time in the PFC, just as in the case of chemical97

reactors (see for example Levenspiel 25).98
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Figure 1: Flowsheet alternatives considered in this work: mixed suspension mixed product
removal crystallizer (MSMPRC) cascade consisting of m MSMPRCs (top), plug flow crys-
tallizer (PFC) with anti-solvent addition through a differential side stream (bottom left) and
a semi-batch crystallizer with anti-solvent addition (bottom right).

In order to model these crystallization processes the population balance equation (PBE)99

framework26,27 is used. In the following, we will assume that a number of ideality conditions100

applies to the crystallizers presented in Figure 1, which makes the model equations reasonably101

simple and fast to solve, thus enabling the developments presented later in this article. For102

the MSMPRC cascade, we assume that every MSMPRC103

• is well-mixed,104
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• that all properties of the outflowing stream are identical to the conditions inside the105

respective MSMPRC,106

• and that the mixture of solute, solvent and anti-solvent behaves as an ideal mixture.107

We will further assume that nucleation and growth are the dominating mechanisms in the108

crystallization process, i.e., we will assume that all secondary processes (e.g., breakage and109

agglomeration of crystals) can be neglected and that the growth rate is independent of the110

crystal size. With these assumptions the PBE for the ith MSMPRC in a cascade becomes111

0 = −Gdni
dL

+
Qi−1ni−1 −Qini

Vi
(1)

where ni(L) is the number density distribution of the crystals so that nidL represents the112

number of crystals per suspension volume with sizes between L and L+ dL, G is the overall113

growth rate of the crystals, Qi is the volumetric flow rate of the ith stream and Vi is the114

volume of suspension. The boundary and regularity conditions for Eq. (1) are expressed as:115

ni(L = 0) =
J

G
(2)

116

ni(L =∞) = 0 (3)

where J is the nucleation rate. The growth and nucleation rate are dependent on the chemical117

potential difference between the crystalline and the liquid phase, which can be approximated118

by the supersaturation S = c/c?, where c is the solute concentration in the liquid phase and119

c?(T, a) is the equilibrium solublity. Therefore, Eq. (1) is coupled with a mass balance (MB)120

for the solute:121

0 = −3kvρcG

∞∫
0

L2ni dL+
Qi−1ci−1 −Qici

Vi
(4)

where kv is the volumetric shape factor and ρc is the crystal density. Note that by (for122

example) specifying an overall production rate, as well as residence times, anti-solvent frac-123
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tions and temperatures for each crystallizer the flowrates of all streams and volumes of all124

crystallizers can be calculated. Similar PBEs and MBs can be derived for the PFC and125

the semi-batch crystallizer; we report these equations and some considerations pertaining to126

them in the Supporting Information (Appendix A).127

In order to evaluate the model Eqs. (1) and (4) need to be solved simultaneously. The128

preferred method for this task depends on the form of the constitutive equations for nucle-129

ation and crystal growth (J and G, respectively). For the case study treated in this article130

the method of moments combined with analytical solutions for the steady state particle size131

distribution provide a computationally efficient option (see supporting material of Vetter132

et al. 24 for derivations).133

3 Uncertainty analysis134

3.1 Sources of uncertainty135

Crystallization processes and the models describing them are subject to different kind of136

uncertainties, which will be categorized in the following way in this article:137

• Structural uncertainty138

• Measurement errors139

• Parameter uncertainty140

• Variability in operating conditions141

Structural uncertainty is sometimes referred to as model bias, model inadequacy or model142

discrepancy and essentially stems from a lack of understanding of the underlying physics of143

a process, i.e., it is present when a model is chosen that does not fully describe the real pro-144

cess. For rather complicated processes such as crystallization, that we cannot (yet) entirely145

describe on a first principles basis, this type of uncertainty is always present. However, one146
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can formulate models with parameters that can be estimated by minimizing the difference of147

model outputs and experimental data (e.g., concentration profiles, particle size distributions,148

etc.), where the difference between model outputs and experimental data is quantified using149

an appropriate objective function. In the following, Φ is the objective function, k the vector150

of model parameters (containing Nk parameter values) and k are the values of the model pa-151

rameters at which Φ attains a minimum. The selection of an adequate model, i.e., a model152

that describes the experimental data well (low value of Φ), is often referred to as model153

identification and is discussed in detail elsewhere28–30. Due to the presence of unavoidable154

(random) measurement errors on the experimental data (i.e., white noise) one would expect155

Φ(k) > 0 even for a perfect model. The parameter uncertainty refers to the precision with156

which k can be estimated. It depends on the total amount of experimental data, the op-157

erating conditions at which the data were obtained and the amount of measurement noise.158

Assuming that the experimental data are of the same quality at all operating conditions, the159

parameter uncertainty can be reduced by providing more data in a large range of operating160

conditions or by reducing the amount of noise through the use of measurement techniques161

with higher precision and accuracy. Different ways to approximate the parameter uncer-162

tainty for the nonlinear models presented in Section 2 are reported in Bard 31 , Caracotsios163

and Stewart 32 , Donaldson and Schnabel 33 . Lastly, uncertainty can stem from variabilities164

in the operating conditions that are not accounted for in the model. For the crystallization165

processes and models in Section 2 fluctuations in any of the flow rates, in the composition166

of the feed stream or in any of the crystallizer temperatures are examples for this type of167

uncertainty.168

In this article we focus exclusively on the effect of parameter uncertainty on product char-169

acteristics and will assume that structural uncertainty and variability in operating conditions170

are absent. Specifically, we will only consider uncertainty present in kinetic parameters (i.e.,171

the parameters in the growth rate G and the nucleation rate J) and will assume that the172

thermodynamics of the system under investigation are well understood and known precisely,173
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which is a reasonable assumption since the relative uncertainty on kinetic parameters is174

typically orders of magnitude larger than for solubility measurements.175

3.2 Description of parameter uncertainty176

Once the parmeter uncertainty has been quantified, a hyperellipsoidal confidence region17
177

can be established, which can be expressed as178

C =
{

k ∈ RNk |
(
k− k

)T
Vk

(
k− k

)
≤ χ2

Nk
(α)
}

(5)

where Vk is the parameter covariance matrix, χ2
Nk

is the chi-squared distribution function179

with Nk degrees of freedom and α is the confidence level. The probability density distribution180

of the parameters is then a multivariate normal distribution:181

g(k) =
1

(2π)Nk/2 |Vk|1/2
exp

(
−1

2

(
k− k

)T
V−1k

(
k− k

))
(6)

where |Vk|1/2 is the square root of the determinant of the positive semi-definite matrix Vk.182

It follows from this description that g(k) is the maximum of this function for any covariance183

matrix Vk and if the parameters were perfectly known g(k) becomes a Dirac delta distribu-184

tion, i.e., g(k) = δ(k− k). Note that reporting high-dimensional (when Nk > 2) confidence185

regions succinctly is difficult, so that confidence intervals on individual parameters are often186

the preferred method to describe parameter uncertainty. Conservative estimates of confi-187

dence intervals can be obtained by finding the box that circumscribes the hyperellipsoidal188

confidence region (Bard 31 describes several ways to accomplish this). It is often chosen to189

align the box in the parameter space, such that each of the sides is parallel to one of the190

parameter axes. Conservative confidence intervals can then be obtained as the lengths of191

the sides of this box, cf. Figure 2. Note that reporting confidence intervals in this way is192

equivalent to assuming that none of the parameters are correlated, which leads to a diagonal193
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covariance matrix Vk. The elements on the diagonal of the matrix are then194

(Vk)ii =

(
δi

2tα,ν

)2

(7)

where tα,ν is the quantile of Student’s t-distribution with confidence level α and ν degrees195

of freedom.196

k1 – k1 

k2 – k2 

δ1

δ2

Figure 2: Conceptual depiction of the confidence region on mean centered parameter axes
for a model with two parameters (solid line). Conservative confidence intervals can be
obtained as the length and width of the box circumscribing the confidence region (dashed
line). The width of the confidence interval for parameter ki is shown as δi. Figure adapted
from Rawlings et al. 23 .

3.3 Quantifying output uncertainties197

An intuitive way to sample the parameter uncertainty distribution is to perform Monte198

Carlo simulations, i.e., by taking Ns random samples from g(k), leading to a (Ns × Nk)199

matrix of parameters. In our case we have taken the random samples from g(k) using the200
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randn function available in MatLAB2014b. In order to evaluate how the parameter uncer-201

tainty propagates through the process, the crystallization process is simulated for each row202

of parameters, which leads to a distribution of process outcomes that can be subsequently203

evaluated. Hence, this analysis can provide a probability distribution for any process char-204

acteristic (yield, particle size distribution, etc.). In this article, we will assume that the two205

process and product characteristics we are interested in are the yield, Y , and the volume-206

weighted mean particle size, L, at the end of the crystallization process, i.e., in the mth
207

MSMPRC of a cascade. The yield is defined as208

Y =
Q0c0 −Qmcm
Q0c0 −Qfc?,f

(8)

where c?,f (Tf , af ) is the solubility at the temperature and anti-solvent fraction at the end209

point of the crystallization process and Qf is the flow rate that needs to be maintained in210

order to reach these conditions. The volume-weighted mean particle size is defined as211

L =
µ4

µ3

(9)

where µj is the jth moment of the particle size distribution in the last crystallizer of the212

cascade, defined as213

µj =

∞∫
0

Ljnm dL (10)

While we have written Eqs. (8) to (10) with a cascade of m MSMPRCs in mind, they are214

easily adapted to the PFC or semi-batch crystallizer. The distribution of the yield and the215

mean particle size due to parameter uncertainty can be described through the corresponding216

probability density functions pY and pL. A crystallization process is typically designed to217

reach at least a desired yield Yd. However, we appreciate the presence of uncertainty and218

therefore specify a tolerance εY on the yield specification. One would then consider all219

process outcomes giving a yield of at least Yd − εY to be within the specifications. The220
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fraction of process outcomes that fulfill the yield specifications, PY , is therefore expressed as221

PY =

1∫
Yd−εY

pY dY (11)

The design specification for the mean particle size on the other hand is typically given as an222

interval around a desired mean particle size Ld. Defining the lower tolerance and the upper223

tolerance on the desired particle size as εL,` and εL,h, respectively, the fraction of process224

outcomes that fulfills the size specification, PL, can be calculated as225

PL =

Ld+εL,h∫
Ld−εL,`

pL dL (12)

Note that PY and PL not only depend on the parameter uncertainty, but also on the specific226

operating policy that was implemented to reach the yield and mean particle size specifications227

in a given crystallizer configuration. While it is straightforward to say that the fraction of228

process outcomes that fulfill the specifications will increase when the uncertainty in all kinetic229

parameters is decreased, one cannot predict a priori which operating policy is affected more230

by uncertainty in specific kinetic parameters. In fact, for some operating policies PY and PL231

might depend more strongly on the uncertainty in the nucleation rate parameters than on232

the uncertainty in the growth rate parameters, while for other operating policies the reverse233

behavior could be observed. These interdependencies are investigated for the case of the234

cooling crystallization of paracetamol grown from ethanol for selected operating policies and235

equipment configurations in Section 5.2.236

Note that there are also methods that are computationally more efficient (but less intu-237

itive) than the Monte Carlo technique mentioned above, such as power series and polynomial238

chaos expansions34. These methods should be employed if the complexity (and therefore the239

computational burden) of the process model is high and/or if process outcomes with a low240

probability need to be characterized accurately. For the purposes of this article, we deemed241
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the performance of the Monte Carlo technique satisfactory.242

4 Attainable regions for crystallization processes243

In a seminal paper Horn 35 introduced the notion of attainable regions to the process design244

of chemical reactors. The attainable regions defined by Horn consisted of all possible out-245

come states of a system of chemical reactors including mixing of streams before and after246

reactors (i.e., all possible vectors of chemical composition at the end of a chemical reaction247

process) with the only knowledge required to find such regions being the chemical reaction248

network, the kinetics involved in it and the feed composition. After this initial contribution249

Glasser et al. 36 and Hildebrandt et al. 37 used geometric considerations to show that attain-250

able regions for systems of ideal reactors and mixers are always convex. The approach was251

subsequently also applied to systems of reactors, mixers and separators38,39. The methodol-252

ogy and its limitations have been summarized by Feinberg 40 and Tang and Feinberg 41 .253

A modified attainable region approach can also be applied to particulate processes,42254

e.g., Raikar 43 has applied the approach to droplet size distributions in emulsions. We have255

recently shown that the attainable region concept can also be applied to process and product256

characteristics of continuous and batch crystallization processes24. In that paper we success-257

fully identified two-dimensional attainable regions in a plane of mean crystal size versus total258

residence time for the three crystallizer configurations shown in Figure 1. Such attainable259

regions provide a convenient way to analyze the tradeoff between the ability to achieve a260

desired particle size, the overall productivity of the process (in terms of mass of product261

per unit time per process volume) and the capital cost required for a certain crystallizer262

configuration (provided equipment costing information is available).263

However, to the best of our knowledge, attainable regions were never established for264

cases where significant parameter uncertainty is present, i.e., in the above studies the kinetic265

parameters were assumed to be precisely known (which is not possible for real systems,266
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cf. Section 3). In this article, we try to remedy this by introducing uncertainty-adjusted267

attainable regions: these regions allow us to judge with what confidence we are able to reach268

a certain point in a plane of mean particle size vs. total residence time, given that the kinetic269

parameters are only known to lie within certain confidence intervals. The methodology270

to obtain attainable regions for crystallization processes with known parameters will be271

summarized briefly in the following (Section 4.1) and will then be extended to cases where272

parameter uncertainty is present (Section 4.2).273

4.1 Attainable regions for known parameters274

In the following, we describe the methodology to find attainable regions in a plane of mean275

particle size versus total residence time for a given crystallizer configuration, i.e., for an276

MSMPRC cascade (with varying number of crystallizers), a PFC or a semi-batch crystal-277

lizer. In order to obtain economically meaningful processes a yield constraint Y ≥ Yd (with278

Y defined as in Eq. (8)) is enforced. Enforcing a stringent constraint on the desired yield279

entails that process configurations at a given crystallizer volume result in production rates280

between YdP and P , where P is a specified production rate (in mass per time). Clearly, the281

more stringent the yield constraint, the narrower the interval of obtained production rates.282

However, the size of the product particles, L, resulting from these process configurations283

might be completely different due to different temperatures and anti-solvent fractions in the284

crystallizers and a different distribution of residence times along the cascade. It is therefore285

instructive to explore attainable regions in the plane of mean particle size versus total res-286

idence time. We have shown in Vetter et al. 24 that the boundaries of such an attainable287

region for a cascade of m MSMPRCs can be found by solving optimization problems that288

strive to minimize or maximize the mean particle size for a given total residence time by289

varying the residence times (τi), temperatures (Ti) and anti-solvent fractions (ai) in each290
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crystallizer:291

minimize/maximize
Ti,ai,τi

L

subject to
m∑
i=1

τi = τ

Ti ≤ Ti−1,

ai ≥ ai−1,

Ti ≥ Tf ,

ai ≤ af ,

Y ≥ Yd.

(13)

where i = 1, . . . ,m, τi = Qi/Vi is the residence time in the ith crystallizer and τ is the sum292

of all residence times in the crystallizer, i.e., the total residence time in the crystallization293

process. We have also placed additional constraints on Eq. (13). Constraint 2 and 3 ensure294

that the temperature along the MSMPRC cascade decreases monotonically and that the295

anti-solvent fraction increases monotonically. Hence, cycles of growth and dissolution are not296

considered in this article. Constraints 4 and 5 represent a lower bound for the temperature297

and an upper bound for the anti-solvent fraction that are typically given by limitations on298

the cooling utilities and by considerations based on the phase diagram of the system (such as299

impurity rejection and solubility). Finding a direct analytical expression for the boundary300

of the attainable region is challenging since the underlying model equations (cf. Section 2)301

are nonlinear, however, by solving the optimization problems in Eq. (13) for different total302

residence times one is able to find smooth boundaries for the attainable region. Note that303

we could consider a different product characteristic than the mean particle size for the304

optimization target or add additional ones.44). Furthermore, equivalent versions of Eq. (13)305

can be written for the PFC and the semi-batch crystallizer by adjusting the definitions of306

Y , L and τ .307

Knowing the boundaries of the attainable region, it is possible to find operating policies308

for points that give a desired mean particle size Ld by considering combinations of (τ , L)309
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that lie within the attainable region. To this end, we formulate an optimization problem310

that minimizes the squared distance between the desired mean particle size Ld and the mean311

particle size that is obtained from a given operating policy, i.e., we write:312

minimize
Ti,ai,τi

(
L− Ld

)2
subject to

m∑
i=1

τi = τ

Ti ≤ Ti−1,

ai ≥ ai−1,

Ti ≥ Tf ,

ai ≤ af ,

Y ≥ Yd.

(14)

In the cases that we considered in Vetter et al. 24 we found that the objective function313 (
L− Ld

)2
can typically be minimized to values of the order of 10−6µm2, i.e., for all practical314

purposes the desired particle size can be reached accurately and the attainable regions can315

be fully traversed.316

4.2 Attainable regions in the presence of parameter uncertainty317

The attainable region approach described above does not contain any information about318

parameter uncertainty; it predicts that all the points in the attainable region can be reached319

with full confidence. Unfortunately, kinetic parameters can only be estimated to a finite320

precision. It is instructive to know how strongly the attainable region depends on the in-321

herently present parameter uncertainty. In order to quantify this effect the Monte Carlo322

approach described in Section 3.3 is used. We calculate the boundaries of attainable regions323

for all Ns parameter sets that have been sampled from the probability density function g(k)324

(cf. Eq. (6)). The number of attainable regions that contain the point (Ld, τ) divided by325
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Ns then gives the uncertainty-adjusted probability p(L, τ) that this point can be reached.326

By calculating this probability for all points in the (L, τ) plane, we get the uncertainty-327

adjusted attainable region for a given crystallizer configuration. If the kinetic parameters328

are precisley known to be k (i.e., the widths of all parameter confidence intervals are zero:329

δi = 0 ∀ i), the uncertainty-adjusted attainable region is simply the original attainable region330

in which all points can be reached. Conversely, the larger the parameter uncertainty, the331

more diffuse the uncertainty-adjusted attainable region is expected to be. Furthermore, we332

expect the sensitivity of the attainable regions on parameter uncertainty to be different for333

different crystallizer configurations. The uncertainty-adjusted attainable regions for MSM-334

PRC cascades with different numbers of crystallizers, semi-batch crystallizers and PFCs are335

considered in Section 5.4. The influence the widths of the parameter confidence intervals336

have on the size of the uncertainty-adjusted attainable region, is also discussed.337

5 Results and discussion338

5.1 Introduction of the case study339

To establish the previously mentioned case study, knowledge of the crystallization kinetics,340

process start and end points, as well as product specifications are necessary. The crystal-341

lization kinetics pertaining to this model system have been investigated in several papers.342

The growth kinetics and solubility have been reported by Mitchell et al. 45 using seeded343

batch desupersaturation experiments. The primary nucleation kinetics were investigated in344

Mitchell et al. 46 using induction time experiments. The secondary nucleation kinetics were345

reported in Frawley et al. 47 using batch desupersaturation experiments at higher stirring346

rates. The kinetic expressions, kinetics parameters, solubility curve and other relevant phys-347

ical constants are reported in Table 1. In the case of the primary and secondary nucleation348

kinetics 95% confidence intervals around the estimated values of the parameters (k4 to k7349

in Table 1) were reported46,47. Unfortunately, the confidence intervals for the growth rate350
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parameters (k1 to k3 in Table 1) were not reported in the same fashion. In order to also351

investigate the effect of uncertainty in the growth kinetics, we will assume that the 95%352

confidence intervals of these parameters have a width of 20% of the respective estimated pa-353

rameter values, which is in line with those reported for substances such as S-Mandelic acid354

and the racemate of Ibuprofen where the growth kinetics have been characterized exten-355

sively48,49. Consequently, the analysis that follows should be seen as a proof of methodology356

using reported kinetic parameters for the paracetamol/ethanol system with estimates for un-357

certainty around these parameters, where such estimates were provided and supplemented358

by realistic guesses (originating from other substances) for the parameters where informa-359

tion on parameter uncertainty was not provided in the original experimental papers on the360

paracetamol/ethanol system. Note that full parameter covariance matrices cannot be recon-361

structed from the reported confidence intervals alone, so that the covariance matrix Vk in362

Eq. (6) becomes a diagonal matrix, whose elements can be calculated from the confidence363

intervals using Eq. (7). Note that this is equivalent to say that the parameters were assumed364

to be uncorrelated in the experimental papers45–47.365

The start point of a crystallization process is typically given by the end point of the366

previous unit operation and is therefore fixed. The end point of the crystallization process367

on the other hand is rather flexible and is typically chosen to maximize the fraction of re-368

covered solute, which depends on the phase diagram of the system. However, additional369

considerations, such as minimum and maximum allowable suspension density in the crys-370

tallizer and equipment capabilities, as well as the need for impurity rejection, additionally371

limit the choice of the end point. For the case study presented here, we have chosen start372

and end points that we considered to be reasonable, as detailed in Table 2. For the sake373

of example, we will consider two different mean size specifications for the product particles;374

Ld = 200 µm (case I) and Ld = 400 µm (case II) for the product particles. In both cases we375

will set a tolerance of 5% on the mean particle size (i.e., εL,` = εL,h = 10 µm for case I and376

εL,` = εL,h = 20 µm for case II) and a yield tolerance of 1% (i.e., εY = 0.01). All process and377
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Table 1: Substance data used in the case study a

crystalization type cooling
solute paracetamol
solvent ethanol
solubility b c? = 0.2331 exp (0.02179T )

crystal growth c

G = k1 exp
(
−k2

T

) (
c−c?
M

)k3
k1 9.979± 0.998 m−3k3+1 s−1 kmolk3

k2 (4.878± 0.488)× 103 K
k3 1.602± 0.160

primary nucleation d
Jprim = k4

(
c−c?
ρs

)k5
k4 (2.662± 1.678)× 108 m−3 s−1

k5 2.276± 1.694

secondary nucleation e

Jsec = k6 (c− c?)k7 µ2

k6 (2.656± 0.102)× 107 m−2 s−1

k7 2.232± 0.086
shape factor, kv 0.866
crystal density, ρc 1332 kg m−3

a All expressions made consistent with the nomenclature in this paper, such
that the same kinetic rates as in the original papers result; conversion
factors introduced where necessary (M = 151.17 kg kmol−1, ρs = 789 kg
m−3); note that J = Jprim + Jsec.

b Solubility data taken from Mitchell et al. 45 .
c Parameters taken from Mitchell et al. 45 . The width of the confidence in-

tervals on the growth rate parameters were assumed to be 20% of the
respective parameter values.

d Parameters and confidence intervals taken from Mitchell et al. 46 .
e Parameters and confidence intervals taken from Frawley et al. 47 .
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product specifications are summarized in Table 2.378

For the above-mentioned case study, we have reported attainable regions for cascades379

consisting of different numbers of MSMPRCs, as well as for batch and plug flow crystalliz-380

ers24. These attainable regions were calculated with the mean parameter values k reported381

in Table 1. For example, we report the attainable regions for a cascade of three MSMPRCs382

and for the batch/plug flow crystallizers in Figure 3 as the solid green and solid blue line,383

respectively. The size specifications are drawn in this figure as horizontal dashed lines at 200384

and 400 µm. For total residence times for which these lines lie within the attainable region385

of the MSMPRC cascade or the batch/PFC, an operating policy can be found that fulfills386

all constraints detailed in Eq. (14) and reaches the specified mean product particle sizes387

of 200 or 400 µm. In order to consider a specific example and investigate how parameter388

uncertainty affects process outcomes, we select a total residence time τ = 2.75 h. As can389

be seen from Figure 3, both operating points (marked by a circle and diamond symbol) lie390

within the attainable region of the cascade consisting of three MSMPRCs as well as in the391

attainable region of the batch/PFC. The specific operating policies are discussed in detail in392

Appendix B in the Supporting Information.393

Table 2: Process and product specifications

start temperature, T0 [K] 341
end temperature, Tf [K] 273
start solubility, c?(T0) [kg m−3] 396
end solubility, c?(Tf ) [kg m−3] 89
desired yield, Yd [-] 0.98
yield tolerance, εY [-] 0.01
desired mean product particle size (case I), Ld [µm] 200
upper and lower size tolerance (case I), εL,`, εL,h [µm] 10

desired mean product particle size (case II), Ld [µm] 400
upper and lower size tolerance (case II), εL,`, εL,h [µm] 20
total residence time, τ [hours] 2.75
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Figure 3: Attainable regions, specifications and selected operating points for a cascade of 3
MSMPRCs, as well as for the batch/PFC case. The solid lines represent the attainable re-
gions, the dashed lines the particle size specifications and the symbols the selected operating
points for the two particle size specifications.
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5.2 Distribution of process outcomes394

The propagation of uncertainty through the crystallization process is investigated using395

the Monte Carlo approach described in Section 3.3. We implement the operating policies396

calculated for the case studies in Table 2 for all Ns parameter sets that we sampled from the397

probability density distribution g(k). For the purpose of this analysis we used Ns = 5, 000398

samples in order to obtain smooth distributions for pY and pL. The results are shown in399

Figure 4 where the upper two figures (Figures 4a and 4b) show the results for the MSMPRC400

cascade with three crystallizers and the bottom two subfigures (Figures 4c and 4d) show the401

results for the batch/PFC case. In these figures the red solid lines represent the probability402

density distributions pY and pL for the operating policies designed to yield particles of403

mean size 200 µm, while the black solid lines represent the equivalent distributions for the404

operating policies designed to yield particles with 400 µm mean size. The dashed and dotted405

lines represent the desired specifications and their tolerances as defined in Table 2. When406

the majority of the distributions pY and pL lie within the dotted lines of the same color, the407

operating policy yields a large fraction of process outcomes that are within the specifications.408

Formally, the fraction of in-spec process outcomes can be calculated using Eqs. (11) and (12).409

Figures 4a and 4c indicate that, due to uncertainty in the kinetic parameters, a large fraction410

of process outcomes lie outside the respective specifications, which suggests that uncertainty411

in the kinetic parameters should not be neglected when designing the crystallization process.412

It is noteworthy that neither the batch/PFC, nor the cascade of three MSMPRCs perform413

satisfactorily, i.e., the type of crystallizer used has only a small influence on the width of the414

distributions of process outcomes, so that improvements can only be achieved with a more415

precise characterization of the crystallization kinetics, i.e., with tighter confidence intervals416

around the kinetic parameters.417
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Figure 4: Distribution of process outcomes for specifications listed in Table 2. (a) and (b):
size and yield for a cascade of three MSMPRCs, (c) and (d): size and yield for batch/PFC
case.
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5.3 Effect of confidence intervals on the distribution of process418

outcomes419

In the following we investigate how much the fraction of “in spec” process outcomes increases420

when the confidence intervals, δi, around the mean parameter values ki are reduced. Recall421

that experimental procedues are typically either designed to provide information about the422

growth kinetics (e.g., using seeded desupersaturation experiments) or to provide information423

about the nucleation kinetics (e.g., using induction time experiments or metastable zone424

width experiments). Clearly, we would like to know which type of experimental procedure425

has the greatest potential to narrow the distribution of process outcomes in the given case426

study. We will try to ellucidate this by assuming that we can shrink the confidence intervals427

of the kinetic parameters in the growth rate (k1–k3) and the nucleation rate (k4–k7) by428

the same factor. We thus define Hg and Hn as the ratio between newly shrunk confidence429

intervals (δnew,i) and original confidence intervals (δoriginal,i):430

Hg =
δnew,1
δoriginal,1

=
δnew,2
δoriginal,2

=
δnew,3
δoriginal,3

(15)

Hn =
δnew,4
δoriginal,4

=
δnew,5
δoriginal,5

=
δnew,6
δoriginal,6

=
δnew,7
δoriginal,7

(16)

Therefore, a value of Hg = 1 and Hn = 1 represents the original confidence intervals re-431

ported in Table 1, while smaller values of Hg and Hn represent tighter confidence intervals.432

We are aware that this represents a simplifying assumption and that in a realistic setting433

(i.e., when additional experimental data is used for parameter estimation), the resulting434

confidence intervals would not all contract by the same factor. However, we believe that this435

simplification provides the merit of a reduction in dimensionality, which in turn enables a436

succinct analysis as shown below.437

In Figure 5 we report how the “in spec” fraction of process outcomes, PY for the yield438
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and PL for the mean particle size, changes for various values of Hg and Hn. Note that in439

these figures the top right corner corresponds to the original (wide) confidence intervals and440

therefore consequently reports a low fraction of “in spec” process outcomes in all cases, which441

agrees with the observations made in Figure 4. Considering Figures 5a and 5b (Ld = 200µm,442

case I) in more detail, we see that shrinking the confidence intervals of the growth rate443

parameters (i.e., moving towards lower Hg) results in a considerable increase of PY and PL,444

while shrinking the confidence intervals of the nucleation rate parameters does not noticeably445

affect the fraction of “in spec” process outcomes. A similar situation can be identified in446

Figures 5c and 5d (Ld = 400µm, case II), with the only noticeable difference being that447

Hn exhibits a stronger influence on PL, which can best be seen by the increase of PL when448

moving towards lower Hn values at Hg = 0.1. Focussing now on the batch/PFC case with the449

same operating policies (Figure 6), we see that the batch/PFC case reinforces the previous450

observations, i.e., knowing the growth rate kinetics precisely is more beneficial than shrinking451

the confidence intervals on the nucleation rate parameters. However, the results for PL452

remain unsatisfactory in the batch/PFC case with the exception of the lower left region of453

Figures 6a and 6c, which mirrors the results from the MSMPRC cascade (Figures 5a and 5c).454

For case I the batch/PFC shows a distinct advantage in comparison to the cascade of three455

MSMPRCs in terms of reaching the desired yield (cf. Figure 6b), i.e., the desired yield is456

already reached with a high probability using the original confidence intervals (which can457

also be seen from the red curve in Figure 4d), so that it cannot increase any further when458

tighter confidence intervals are presumed for any parameters. Note that while we have found459

similar behaviors in all cases (case I and II in the MSMRPC cascade and the batch/PFC460

case) when we only consider PL, we cannot claim that these observations will be valid for461

other substance systems since the kinetics will be different. Additionally, it bears mention462

that obtaining tighter confidence intervals on growth rate parameters can experimentally463

often be accomplished with relatively few experiments while a thorough characterization of464

the inherently stochastic phenomenon of nucleation is often laborious.465
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3 MSMPRCs, Ld = 200µm (case I)
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3 MSMPRCs, Ld = 400µm (case II)
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Figure 5: Influence of parameter uncertainty on process outcomes of a cascade of three
MSMPRCs with total residence time τ = 2.75 hours. The confidence intervals of the growth
and nucleation parameters have been shrunk to a fraction of their original size (Hg and
Hn, respectively). In all subfigures the color scale represents the probability that the mean
particle size or the yield obtained are “in spec”.
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Batch/PFC, case I
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Batch/PFC, case II
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Figure 6: Influence of parameter uncertainty on process outcomes of the batch/PFC with
total residence time τ = 2.75 hours. The confidence intervals of the growth and nucleation
parameters have been shrunk to a fraction of their original size (Hg and Hn, respectively).
In all subfigures the color scale represents the probability that the mean particle size or the
yield obtained are “in spec”.
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5.4 Uncertainty-adjusted attainable regions466

Following the methodology presented in Section 4.2 we present uncertainty-adjusted attain-467

able regions for some selected crystallizer configurations. We again sample the probability468

density function g(k) and obtain a set of Ns×Nk kinetic parameters for which we calculate469

the attainable regions by solving Eq. (13) for various total residence times τ . We have chosen470

to sample Ns = 500 times and calculated the attainable region for total residence times τ471

between 1 and 10 hours with 50 discretization points. The resulting uncertainty-adjusted at-472

tainable regions for cascades consisting of two to five MSMPRCs are reported in Figure 7.50473

The colored surface in each subfigure represents the probability p(L, τ) with which a specific474

point (L,τ) can be attained and the black solid line represents the original attainable region475

obtained for the mean parameter values k. Note that for a given desired particle size, the476

points on the boundary of any of our attainable regions represent the process configurations477

with the lowest possible residence time, which in turn (for a given production rate) would478

result in the smallest possible equipment that satisfies the design specifications. However,479

when we consider the case of a cascade of two MSMPRCs (Figure 7a) we immediately notice480

that the points on the boundary of the original attainable region can be reached with a prob-481

ability of less than 50%, which has strong implications on the way a crystallization process482

should be designed. In order to design a process that can reach the specifications with a high483

probability, it is ill-advised to consider process designs on the boundary of the attainable484

region. In fact, in order to design a robust process that fulfills the process specifications with485

a high probability, the uncertainty-adjusted attainable region indicates that higher residence486

times (i.e., larger equipment) should be considered, i.e., there exists a tradeoff between ad-487

ditional residence time (i.e., additional capital cost) and a more robust process design. For488

cascades with additional crystallizers (Figures 7b to 7d) the situation is similar, however,489

the more crystallizers are added to the cascade, the closer an acceptable level of probability490

comes to the boundary of the original attainable region. However, there clearly are dimin-491

ishing returns visible, i.e., the improvement from two to three MSMRPCs in a cascade is492
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considerable, but the improvement from four to five MSMPRCs in the cascade is already493

significantly smaller. Adding crystallizers to the cascade corresponds to higher investment494

costs as well, so that we are facing a similar tradeoff as in the case with adding additional495

residence time to the process. When quantifying this tradeoff, further considerations, such496

as process complexity, automation efforts and an increased probability of equipment failure,497

should be included. Finally, we can investigate the uncertainty-adjusted attainable region498

in the batch/PFC case (Figure 8), which confirms the observations made for the MSMRPC499

cascades: we again see that the boundary of the original attainable region can hardly be500

reached in the case of large particle sizes.501

These qualitative observations can be confirmed by investigating the area of the attainable502

region at a certain probability level. In Figure 9a, we report the area of the attainable region503

at a certain probability level normalized by the area of original attainable region for each of504

the four MSMPRC cascades. In this figure we see that the higher the number of MSMPRCs in505

the cascade the flatter the observed relationship between the relative area of the attainable506

region and the probability level becomes. Hence, this confirms our observation from the507

previous figure, where we have discovered that the effect of parameter uncertainty is less508

impactful for cascades with more MSMPRCs. This conclusion can be rationalized by realizing509

that a higher number of MSMPRCs also results in more process variables (temperatures,510

residence times), which can be used to counteract the effect of parameter uncertainty.511

To quantify the influence of the width of the confidence intervals on this relationship,512

we report in Figure 9b the case of a cascade of three MSMPRCs where the confidence513

intervals are 50% and 25% of their original size (i.e., Hg = Hn = 0.5 and Hg = Hn =514

0.25, respectively). The narrower the confidence interval, the flatter the curve becomes for515

intermediate probabilities. The observed behavior is consistent with the fact that perfectly516

known kinetics without any confidence intervals on them would result in a degenerated517

curve that is a point at (1,1) in this graph. The practical aspect of this observation is518

that an additional characterization of kinetics, which should result in more precisely known519
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Figure 7: Uncertainty-adjusted attainable regions of particle size for cascades consisting of
two to five MSMPRCs. The black solid line in each subfigure represents the attainable region
obtained for the mean parameter values reported in Table 1.
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Figure 8: Uncertainty-adjusted attainable region for the batch/PFC case. The black solid
line represents the attainable region obtained for the mean parameter values reported in
Table 1.

kinetics, yields better defined attainable regions which can in turn be used to design robust520

crystallization processes that fulfill the design specifications with a high probability.521

In summary, the concept of the uncertainty-adjusted attainable regions allows us to iden-522

tify the tradeoffs between the desire for a robust process, investment costs and experimental523

effort invested in characterizing the crystallization kinetics.524

6 Concluding Remarks525

In this article we have investigated the influence of uncertainty in kinetic parameters on526

process outcomes. For the case study and the crystallizer configurations considered, we527

observed that the uncertainty present in kinetic parameters has significant effects on the528

yield and the mean particle size obtained from these processes, i.e., the distribution of process529

outcomes was rather wide in all cases and a considerable fraction of process outcomes would530

not fulfill the posed yield and size specifications. We have shown that this pertains to both531

batch and continuous crystallizers to a similar extent.532

We then investigated if further characterization efforts should be focussed on improving533

31



0.3 0.4 0.5 0.6 0.7 0.8 0.9 110

0.25

0.5

0.75

1

1.25

1.5

1.75

probability, [−]

re
la

tiv
e 

ar
ea

 o
f a

tta
in

ab
le

 re
gi

on

increasing number
of MSMPRCs

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 110

0.2

0.4

0.6

0.8

1

1.2

1.4

probability, [−]

re
la

tiv
e 

ar
ea

 o
f a

tta
in

ab
le

 re
gi

on
narrower
confidence
interval

(b)

Figure 9: (a) Relative size of the attainable regions for different MSMPRC cascades (2 –
5 MSMPRCs); (b) Relative size of the attainable region for a cascade of 3 MSMPRCs for
different confidence interval widths. Solid line: Original confidence intervals (cf. Table 1);
dashed line: confidence interval width reduced to half for all parameters (Hg = Hn = 0.5);
dotted line: confidence interval width reduced to a quarter for all parameters (Hg = Hn =
0.25).
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the kinetic parameters in the growth rate or the kinetic parameters in the nucleation rate by534

shrinking the confidence interval for these kinetics individually. Hence, this analysis provides535

a fresh take on the age old question “Which is More Important for Achieving the Desired536

PSD: Nucleation Law or Growth Law?”. While we have provided an answer to this question537

for the specific case study considered in this article (i.e., the growth rate is more important),538

we cannot claim that this answer will be generally applicable to all crystallization processes539

as the crystallization kinetics will be different. However, we believe that the presented Monte540

Carlo approach does help to target characterization efforts where they are most useful. This541

in turn should lead to faster development of robust crystallization processes.542

We have shown how uncertainty-adjusted attainable regions can be obtained and how543

they can be used to design more robust processes. Staying away from regions of low probabil-544

ity ensures that the desired specifications can eventually be met when more data is obtained545

about the process. This is in contrast to designing the process in a low probability region546

(e.g., the boundary of the original attainable region), where the specifications can most likely547

not be met. However, the robustness gained in such a manner unfortunately comes at the548

price of higher investment costs associated with longer residence times, larger equipment549

and/or more crystallizers. We believe that the presented methodology could form the basis550

for evaluating and quantifying such tradeoffs and could thus enable an informed decision.551

Supporting Information Available552

We provide the model equations for the plug flow and semi-batch crystallizers, discuss the553

operating policies used in the case study in detail, and provide an example why mixing554

rules employed in attainable regions for chemical reactors might yield undesired results in555

particulate processes. This material is available free of charge via the Internet at http:556

//pubs.acs.org/.557
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Notation563

Roman letters
a weight fraction (solute free basis) of anti-solvent [-]
c solute concentration (solute free basis) [kg m−3]
c?(T, a) solubility [kg m−3]
C parameter confidence region [varies]
f(z) volumetric flow rate differential anti-solvent differential side stream

to PFC
[m2 s−1]

Fi volumetric flow rate of anti-solvent stream to ith MSMPRC [m3 s−1]
F (t) volumetric flow rate of anti-solvent stream to semi-batch crystallizer [m3 s−1]
g(k) probability density function of the parameters [varies]
G crystal growth rate [m s−1]
Hg fraction of original confidence intervals of growth rate parameters [-]
Hn fraction of original confidence intervals of nucleation rate parameters [-]
J nucleation rate [m−3 s−1]
kv volumetric shape factor [-]
ki kinetic parameters [varies]
k vector of kinetic parameters [varies]

k vector of mean parameter values [varies]
L crystal size [m]
L volume weighted mean particle size, µ4/µ3 [m]
Ld desired volume weighted mean particle size [m]
m number of MSMPRCs in the cascade [-]
n number density distribution [m−4]
Nk number of kinetic parameters [-]
Ns number of samples used in the Monte Carlo procedure [-]
pY probability density function of process yield [-]
pL probability density function of volume-weighted mean particle size

at the end of the process
[m−1]

p(τ, L) probability that particles of mean size L is attainable at total resi-
dence time τ

[-]

P production rate [kg s−1]
PY fraction of process outcomes within yield tolerance [-]
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PL fraction of process outcomes with mean sizes within tolerance [-]
Q volumetric flow rate [m3s−1]
R length of PFC [m]
S supersaturation [-]
t time [s]
tα,ν quantile of Student’s t distribution with confidence level α and de-

grees of freedom ν
[-]

T temperature [K]
V volume of suspension [m3]
Vk parameter covariance matrix [varies]
Y fraction of attainable yield [-]
Yd desired yield [-]
z length coordinate along PFC [m]
Z length of PFC [m]

Greek letters
α confidence level [-]
δi confidence interval of parameter i with confidence level α [varies]

δ
(
k− k

)
Dirac delta distribution [varies]

εY yield tolerance [-]
εL,` tolerance on lower size limit [m]
εL,h tolerance on upper size limit [m]
τ total residence time in MSMPRC cascade, PFC or semi-batch crys-

tallizer
[s]

τi residence time in ith MSMPRC [s]
ρc crystal density [kg m−3]
µj jth moment of number density distribution [kg mj−3]
ν degrees of freedom of Student’s t distribution [-]
Φ objective function in parameter estimation procedure [varies]
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