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CouPLED CLUSTER STUDIES OF CHIRAL MESON
FieLD THEORIES: THE NONLINEAR SIGMA
MODEL ON THE LATTICE

R.F. Bishop, N.E. Ligterink, and N.R. Walet
Department of Physics, UMIST
(University of Manchester Institute of Science and Technology)
P.O. Box 88, Manchester M60 1QD, United Kingdom

1. INTRODUCTION

Since quarks are almost massless, the QCD Lagrangian has an approximate
chiral symmetry which, if it were actually realised, would result in all hadrons having
chiral partners of almost equal mass but opposite parity. Since this does not occur
naturally, the chiral symmetry must be spontaneously broken dynamically. The
physical pions are thereby interpreted as the corresponding Goldstone bosons, with
" a mass proportional to both the vacuum quark condensate and the quark mass.

Since pions dominate the low-energy physics of particles interacting via the
strong force, much intrinsic interest focusses on their dynamics. This interest has
also been reinvigorated by the work of Brown and Rho [1], which suggested that the
chiral symmetry could be restored under conditions of high enough temperature or
density, such as might occur in heavy-ion collisions, where the dynamical quark mass
approaches zero. Nevertheless, pion dynamics is difficult to describe in terms of the
original QCD Lagrangian, especially since the pion is a composite particle. For that
reason it is useful to start instead with an effective Lagrangian which is compatible
with the consequences of symmetry breaking, but in which the pion dynamics is still
restricted by such other pertinent (approximate) symmetries as partial conservation
of the axial current. ’

A prototype of such a model is the O(4) nonlinear sigma model, in which the
0(4) symmetry can be broken explicitly, but where the O(3) isospin sub-symmetry
remains intact. In one space and one time dimension, (1 + 1)D, the model is known
to be both infrared and ultraviélet divergent [2]. More generally, the short-distance
behaviour must be regularised, e.g., by latticisation, and it is this latticised version
of the O(4) model that we study here. :

After latticisation we thereby have a model theory which in (d+1)D is expected.
for d > 1, to undergo a chiral phase transition at some finite critical value of the
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lattice spacing. For smaller values the model is essentially one of weakly interacting
(quasi-free) rotors in a disoriented (symmetric) phase which has massive excitations
characterised by the quantum numbers of the free rotors. Conversely, at larger lattice
spacings than the critical value, the model comprises tightly bound rotors in an
aligned (symmetry-broken) phase which has strongly collective excitations with a
Zero mass gap.

Following the early work of Kogut et al. [3], most subsequent work on the latti-
cised nonlinear sigma model has employed the Euclidean (imaginary-time) framework
of the Lagrangian formulation (viz., the statistical-mechanical approach), thereby re-
sulting in a strong correspondence with high-temperature spin models. While one can
readily study the ground state and the physical phase transition within this approach,
its main drawback is that excited states and other properties are more difficult to
describe. Instead, in the present work, we will treat the model in the Minkowskian
(real-time) framework of the Hamiltonian formulation (viz., the quantum many-body
theory, QMBT, approach), with the aim of studying both ground and excited states,
as well as the phase transition. Especially in view of its considerable recent successes
in dealing both with spin-lattice models of interest in (antiferro)magnetism [4] and
with lattice gauge theories [5], we employ here the coupled cluster method (CCM) of
QMBT. For a survey of the method and its wide array of applications, the interested
reader is referred to Ref. [6]. For a fuller version of the present work the reader is
also referred to Ref. [7].

2. THE LATTICISED 0O(4) NONLINEAR SIGMA MODEL

The original continuum version of the O(4) nonhnea.r 31gma model is defined in
(3 + 1)D by the Lagrangian density,

2
fo Im T gal
L= T (0,U"U") , 1)

where fr (= 92MeV) is the pion decay constant, and U = U(z,,) is an SU(2) matrix-
valued field of 2 x 2 unitary matrices,

U = exp(—i -1/ fx) | ()

embodying the pion field IT = fI(z,,), in terms of the usual Pauli (isospin) matrices,
7= (r%,7%,7%). The field U may also be expressed in the form,

U=nd+i7- , (3)

and the unitarity condition, UTU = 1, is tﬁen equivalent ‘to the constraint that
n? + 7% = 1, namely that & = A(z,) = (fi,n4) is a 4D unit vector. The Lagrangian
is thereby equivalently expressed in (d + 1)D as
- s [107 82 5. =. ,
= == e —==-Va-Va=T-V , 4
L 2he T 25t ot nevn : “
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where f, has dimensions (energy) x (length)®-9/2,

The d spatial dimensions are now discretised onto the lattice sites of an N¢
cube (with N — c0), with lattice spacing a. The fundamental field 7(Z,t) is thus
d_iscretized to 7(Z;,t) on lattice sites i at positions Z;. The “kinetic energy” term,
T, in Eq. (4) thus simply becomes

dri; dn,
T= 2 n c3 Z . (5)

Apart from the unitarity constraint, Eq. (5) simply represents a sum of single-particle
energies of the form ;m(dz/dt)?, with z — #; a 4D “position” vector and m —
f2a%/hc3 the “mass”. Without the constraint this would immediately yield the usual
quantised form p2/2m, with p, = —ihd/0z. Imposition of the constraint simply
implies that the motion is restricted to the surface of the unit sphere in 4D. The radial
part of the subsequent 4D Laplacian operator is thereby constrained to disappear,

resulting in the final form
8 - h3 3
T = 2a = Z I? (6)

in terms of the 4D angular momentum operator / I2.
Similarly, in the “potential energy” term, V, in Eq. (5) the latticisation replaces
the spatial derivatives by finite differences, '

e | Sy & ;e
Vi - Vifiy — E [n(z',- + aek) - n(zi)]z

where € is a unit lattice vector in the & th direction.
We thus arrive at the final form,

2d—

— > -y (®)
i .

where the sum on (ij) runs over all nearest-neighbour pairs, counting each pair {or
lattice link) once only.
The resulting latticised O(4) nonlinear sigma model Hamiltonian is thus

7 (fhzt;d [ ZIZ (fwa,(d-l)/?) Z(l_n, n_,):l 5 (9)

(i)

which is just the Hamiltonian of a system of 4D symmetric tops (or quantum rotors)
with a nearest-neighbour interaction tending to align them. Henceforth, we drop the
overall energy scale factor, (fic)®/f2a¢, and study the dimensionless Hamiltonian

H==x ZI2+,\Z(1—n, A5) (10)

(ij)
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in terms of the dimensionless coupling constant, A = (fra(¢~1/ 2/7'zc)4. We shall
study this Hamiltonian in d = 1,2, and 3 spatial dimensions. In each case we consider
varying the lattice spacing a, and hence consider A a free parameter, even though in
the (singular) case d = 1 the parameter A is independent of a.

Finally, we note that our definition of the angular momentum operators in Eq.
(10) employs the convention related to the O(4) symmetry. The reader should beware
that an alternative convention related to the SU(2) isospin symmetry introduces
additional factors of one-half into the definition of the components of I. Thus, in
our own convention, for the more general O(N) theory, the Gegenbauer polynomials
cN-2/ %(cos@) are eigenfunctions of I2 with corresponding eigenvalues given by
n(n+N —2). Thus, for the N = 4 case studied here, the eigenvalues of the operator
I? are n(n+ 2) = 4j(j + 1) when n = 2j, and where j is the usual integral or
half-integral SU(2) quantum number.

The O(4) unit vectors #; may be parametrised in terms of spherical coordinates
as

#i = (sin A sin ¢ sin x, sin @ sin ¢ cos x, sin 8 cos ¢, cos ) , (11)

with0<f<w 0<¢ <, and 0 < x < 2n. The kinetic energy operator %fz may
be derived from the generalised angular momentum operators,

Lkl = —i(nka,., = nza,,k) , (12)

where k,l =1,2,---, N for the general O(N) case, with N > 2. Specifically, it may
be related to the O(N ) Casimir invariant,

= ZLiz : (13)

k<l

For many purposes we need only the f-dependent part of I 2, in which case we have
F? —5 —3% — (N = 2) cot0 8p = — g5 (sin™ 203
ey 3"’( Lz )cotG 9-———;i—n‘N—_2§ g(SlIl g)

= —(1—cos?0)82.g+ (N — 1) c050 Dcosp - (14)

In particular, in two-body approximations of the CCM SUB2 type discussed below,
we need only those parts of the Hamiltonian H in Eq. (10) which depend on the
relative variables 6;; = cos™! (#; - A4;). In such cases,

H— % - 69 sm ea,,,, + A (Z; (1 —cos8y) , (15)
ij 1A

where the sum on [ij] now runs over all pairs of lattice sites i and j, counting each
pair once. We note that the factor of one-half in the kinetic energy term in Eq.
(10) is-missing from Egq. (15), since the operator  ; I; [2 acts twice on each relative
coordinate 6;;, once from each lattice site.
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3. THE CCM FOR CLASSICAL SPIN MODELS

The standard operatorial formulation of the CCM [6] is widely acknowledged to
be one of the most widely applicable, most powerful, and numerically most accurate
at attainable levels of implementation, of all microscopic QMBT methods. Although
it has also been applied by us [7] to the latticised nonlinear sigma model, we report
here only on results obtained via an alternative functional formulation which was

earlier applied to lattice gauge theories [5].

The key ingredient in the functional formulation is the parametrisation of the
many-body ground-state ket and bra wave functions in the respective forms,

(1Y) = exp[S({rY)] (16a)

(Bl{r}) = [1 + 8(r)] exp[-5({r})] , (16b)

where |{r}) is some suitably chosen complete and normalised set of many-body wave
functions, such that

[atrrimir=1 . an)
This approach is naturally suited to lattice Hamiltonians, where |{r}) can simply

be chosen as a direct product of complete states at each lattice site. Thus, for our
present O(4) model application, we choose

| |{T})—‘+l{ﬁ})=ﬂlﬁi) , : (18)

where the state |7;) is the standard 4D spherical-coordinate representation specified
in Eq. (11), at lattice site i. We now introduce a (bi-)variational energy functional,

(#1219 = 715, 3] = [ afr) / d{r'} [1 + 5({r})] exp[-S({r})]
x({r}HI{r'}) exp[S{})] - (19)

The ground-state wave functions and energy are then obtained from the (bi-)variational
principle §J = 0, subject to the normalisation constraint,

@y =1 = [ar}SEn=o. (20)

Approximations in this functional form of the CCM are now made by restricting
the class of trial many-body lattice functions S({7}) and S({#}). For example,
the simplest (so-called LSUB2) approximation massively restricts S and S to include
only nearest-neighbour pairwise correlations,

Sesus2({A}) = D 8(8y);  Susuma({n}) =Y, 5(6y), (21)
(i) (i3)



264 RF. Bishop, N.E. Ligterink, and N.R. Walet

where cos 8;; = 7; - 73, as before. By making use of Eq. (15), the LSUB2 variational
functional takes the form

- 2 % ~
Jisumz[S, S] = N~ / dé sin® 6[1+S(6)][~S" ~2cot 8 8’ — S+ A(1—cos8)] , (22)
0 .

where N; is the number of (nearest-neighbour) links on the lattice.

The more general SUB2 approximation, results from which we cite in Sec. 4,
restricts S and S to include all pairwise correlations,

Ssu2({A}) = ) Sxis(0); Ssume({A}) = Sy_;(6) » (23)
RLU] [ij]

where the integer irrep suffix x;—; labels each distinct member of each independent
set of pairwise correlation functions, after taking into account functions which are
identical under the lattice symmetries (i.e., translations, rotations, and reflections).
The evaluation of the kinetic energy part of the SUB2 energy functional of Eq. (19)
is more difficult than in the LSUB2 case, since the two differentiations can now also
link two correlation functions S on different pairs of sites (i,j). Nevertheless, one
can also fairly readily derive the SUB2 analogue of its LSUB2 counterpart in Eq.
(22). Full details are given elsewhere [7].

In view of this added complexity of the SUB2 case, the resulting variational equa-
tions are best obtained and solved by expanding the sets {S,,_;(6)} and {S,,_;(6)}
in an appropriate set of complete functions of the variable # (or cos#). Since in
the weak-coupling limit (A — 0) the eigenstates of H are simply the Gegenbauer
polynomials, this is a particularly appealing set, and the one we choose for our nu-
merical results. Furthermore, we note that the normalisation constraint of Eq. (20)
is then also trivial to impose in terms of such an expansion. In practice the SUB2
approximation is implemented as a SUB2-n—m sequence in which we truncate both
on the number n of distinct pairwise correlations retained from the otherwise infinite
set, and on the number m of (Gegenbauer polynomial) basis functions in which each
is expanded. In practice we find extremely rapid convergence in the index m, with all
pairwise correlation functions typically being very well approximated with just three
basis functions. We comment further in Sec. 4 on the dependence of the results on
the truncation index n.

Finally, we may also study the collective excitations within the functional form
of the CCM by employing a small-luctuation RPA-type expansion around the above
(approximated) stationary ground state resulting from §J = 0. After allowing the
many-body correlations to be time-dependent we define an action functional,

/ " 4t (91(68% — H)|T) = ALS, 3]
(1]

T . ) T N
=i /0 dt / d{r} S({a}, S (A}, ) ~ /0 dt 78,5 . (24)

An expansion of the SUB2-n-m correlations functions in terms of m Gegenbauer
polynomials yields an action functional of standard canonical form. The variational
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principle, 64 = 0, thereby results in (classical) canonical forms of the equations of
motion in terms of an energy functional Jsugz_n_m[S,S']. By expanding around
the stationary ground-state solution (from dJsyB2—n—m = 0), and retaining second-
order terms, the resulting small-amplitude limit gives the collective excitations as the
normal modes. In particular, we are interested in the lowest excitation energy, which
is simply the smallest eigenvalue of the resulting dynamic matrix.

4. RESULTS

In Figs. 1 and 2 we show, respectively, the ground-state energy per link, E/N,
and the lowest excitation energy, E., as functions of the coupling constant, for the
latticised O(4) nonlinear sigma model Hamiltonian of Eq. (10) in d = 1,2, and 3
space dimensions. The results are obtained in the SUB2-n-m approximation to the
functional form of the CCM described in Sec. 3. In all cases shown, the values
of the truncation indices n and m are large enough for convergence to have been
demonstrably obtained on the scale of the figures. In practice, convergence (in the
index n) of the number of distinct pairwise correlations retained is tested by retaining,
at each step, all correlations between pairs up to a given distance L apart on the
lattice, and examining the behaviour of the results as functions of L.

The most striking feature of Fig. 1 is the presence of a critical point, )., beyond
which (i.e., for A > A;) no ground-state solution is found. More precisely, for a
given truncation level n (and m), the ground-state solutions are double-valued for
A < A, with the two branches coinciding at A = A.. As the truncation index n is
increased, the two. branches lie closer and closer to one another, and in Fig. 1 are
indistinguishable from each other. In all cases one of the two branches is “unphysical”
in the sense that it does not connect directly with the known perturbative “physical”
branch at small values of A\. We interpret the appearance of the critical points, A, as
possible indicators of a quantum phase transition beyond which our solutions break
down. We also note that near )\, convergence in n (or, equivalently, L) is slowest, as
might be expected near a phase transition at which the correlation length diverges to
infinity. The actual value of the critical point, A;(L), for truncation at a given range
L is found heuristically to be accurately fitted by a form, A.(L) = Ac(o0) + ¢/L2.
The corresponding SUB2 values of the critical point are at A.(c0) =~ 1.927, 0.827, and
0.536, respectively for the model in (1+1), (2+1), and (3+1) dimensions. Since no
physical phase transition can actually occur in (1+1)D [8], and since our observed
value of X is so high in this case, we expect that the existence of our (1+1)D critical
point is not robust against the inclusion of the many-body correlations missing from
our SUB2 calculations. Although the stability of the critical points in (2+1)D and
(3+1)D is presently unknown, we expect them to survive to higher orders.

That the critical point at A, represents a phase transition is lent considerable
credence by the fact that the lowest excitation energy .(or mass gap), Ez, approaches
zero at this point, as is clearly seen to be the case from Fig. 2. Thus, a collective
mode becomes soft as A = A.. In accordance with the discussion in Sec. 1 we imagine
that in the chirally symmetric mode, which exists for A < A., we get a macroscopic
occupation of this collective mode as A — A.; and for A > A; we expect that the zero
mass gap is retained in the (aligned) phase in which chiral symmetry is broken.
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Figure 1. The ground-state energy per link for the latticised O(4) nonlinear sigma
model in (d+ 1)D, using the SUB2-n-m approximation to the functional form of the
CCM. Termination points are denoted by the solid squares. The results in (2+1)D
and (3 + 1)D are shown vertically offset by the addition of 0.1 and 0.2, respectively,
for ease of display.
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Figure 2. The lowest excitation energy of the latticised O(4) nonlinear sigma model
in (d + 1)D, using the RPA method based on the SUB2-n—m approximation to the
functional form of the CCM.
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5. SUMMARY AND CONCLUSIONS

We have shown that latticised chiral meson field theories may profitably be stud-
ied in the Hamiltonian QMBT formulation, where they are essentially “classical” spin
models. In particular, we have shown that for the O(4) nonlinear sigma model, the
functional form of the CCM readily yields clear evidence of a chiral phase transition
at some critical value, A., of the coupling constant, near which a collective mode
becomes soft. We note too that similar calculations have also been performed by us
[7] in the operatorial form of the CCM, with numerically very similar results.

Our calculations to date have been done at the SUB2 level in which only two-
body correlations are included. In principle, we could extend the SUB2 scheme to its
SUB#n counterpart in which all many-body correlations between the O(4) quantum
rotors on up to n sites at a time are retained. However, since many-body orthogonal
polynomials are not so simple to define, we have not yet extended the functional
formulation of the CCM to SUB#n schemes with n > 2. Doubtless, however, it will
be of considerable interest to do so, particularly so as to examine how robust are our
SUB2 results against the inclusion of n-body correlations with n > 2. It will also be
of great interest to attempt to extend our results into the region A > A, where chiral
symmetry is broken.
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