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The relationship between the Moran model and stochastic Lotka-Volterra competition (SLVC) model is
explored via time scale separation arguments. For neutral systems the two are found to be equivalent at long
times. For systems with selective pressure, their behavior differs. It is argued that the SLVC is preferable to
the Moran model since in the SLVC population size is regulated by competition, rather than arbitrarily fixed
as in the Moran model. As a consequence, ambiguities found in the Moran model associated with the
introduction of more complex processes, such as selection, are avoided.
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The modeling of genetic drift—the mechanism by which
the genetic makeup of a population can change due to
random fluctuations—is frequently viewed in a different
way to the other key genetic processes, such as mutation,
migration, and selection, since it requires an inherently
stochastic approach. Although genetic drift was first
illustrated using the Wright-Fisher model [1,2], many
authors now use the more tractable Moran model [3].
This has the same long-time behavior as the Wright-Fisher
model [4], and the same assumption that the size of the
population, N, is fixed. This assumption, which serves as a
proxy for the biological processes not included in these
models which control the population size, is therefore made
for both historical reasons as well as mathematical ones.
The artificial nature of this assumption is of course
recognized, for example Moran in his book prefaced the
description of his model with a discussion of its possible
relation to more realistic situations [5]. Others introduce an
effective population size to replace variations in population
size, for instance, by an average [6,7]. Yet in these cases,
the effect is still to retain the fixed size of the population.
Certainly the assumption that N is fixed is hardly ever

questioned in the many papers describing the extensive use
to which the Moran model has been put in the last decade or
so (see, for instance, [8–10]). However, the assumption
results in a single rate parameter encompassing birth and
death, making it impossible to tease apart effects resulting
from the various processes. The ambiguities inherent in this
approach are particularly apparent when trying to include
the effects of selection in the model.
In this Letter we will advocate a different starting point

which allows us to address some of these questions. We
adopt a more ecologically oriented approach and begin
from a population of n1 haploid individuals which carry
allele A1 and n2 haploid individuals which carry allele A2.
They will reproduce at rates b1 and b2, respectively, and die
at rates d1 and d2. We will also allow for competition
between individuals of type Ai and Aj, at a rate cij. This
will tend to regulate the population size, without imposing

the condition n1 þ n2 ¼ N. The model will be formulated
as an individual based model (IBM), since the stochastic
aspects are central to the discussion.
Although it is quite easy to sketch out this idea, showing

how precisely this model relates to conventional models in
population genetics, such as the Moran model, is not so
straightforward, and we are aware of only a few studies
which touch on this issue. In Ref. [11], an exact mapping
between the two models was sought via the introduction of
unconventional fitness weightings, while Refs. [12–14]
were concerned with significant deviations from Moran
phenomenology. To provide a systematic understanding of
the relationship between the two approaches, we will apply
an approximation procedure which we recently developed
based on the elimination of fast modes [15,16].
The system wewill investigate will be well mixed, and so

its state will be completely specified by n ¼ ðn1; n2Þ. This
state will be able to change because of births, deaths, or
competition between individuals, defined by the rules given
in Fig. 1. To define a dynamics we need to specify the rates
at which the allowed changes in Fig. 1 take place. We
assume mass action for the competitive interactions leading
to transition rates given by

T1ðn1þ1;n2jn1;n2Þ¼ b1
n1
V
;

T2ðn1;n2þ1jn1;n2Þ¼ b2
n2
V
;

T3ðn1−1;n2jn1;n2Þ¼ d1
n1
V
þc11

n1
V
n1
V
þc12

n2
V
n1
V
;

T4ðn1;n2−1jn1;n2Þ¼ d2
n2
V
þc22

n2
V
n2
V
þc21

n1
V
n2
V
: ð1Þ

The parameter V is not the total number of individuals in
the system, which is free to vary. Rather it is ameasure of the
size of the system. Typically it would be an area or a volume,
but its precise value or even its dimensions can be left
unspecified, as they can be absorbed into the rates bi; di, and
cij. The probability of finding the system in state n at time t,
PnðtÞ, may be found from the master equation [17]
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dPnðtÞ
dt

¼
X4
μ¼1

½Tμðnjn − νμÞPn−νμðtÞ

− Tμðnþ νμjnÞPnðtÞ�; ð2Þ

where νμ describes how many individuals of one type
are transformed during the reaction μ ¼ 1;…; 4. So,
ν1 ¼ ð1; 0Þ, ν2 ¼ ð0; 1Þ, ν3 ¼ ð−1; 0Þ and ν4 ¼ ð0;−1Þ.
Equations (1) and (2), together with an initial condition
for Pn, allow us in principle to find PnðtÞ for all t.
In practice, the master equation is intractable. To make

progress the diffusion approximation is made, that is V is
assumed sufficiently large that xi ≡ ni=V is approximately
continuous [18]. We can then expand the master equation
as a power series in V−1 to obtain the Fokker-Planck
equation (FPE) [19]

∂Pðx; τÞ
∂τ ¼ −

X2
i¼1

∂
∂xi ½AiðxÞPðx; τÞ�

þ 1

2V

X2
i;j¼1

∂2

∂xi∂xj ½BijðxÞPðx; τÞ�; ð3Þ

where τ ¼ t=V is a rescaled time and where we have
neglected higher order terms in V−1. The functions Ai
and Bij can be expressed in terms of the νi;μ and functions
fμ as [20]

AiðxÞ¼
X4
μ¼1

νi;μfμðxÞ; BijðxÞ¼
X4
μ¼1

νi;μνj;μfμðxÞ; ð4Þ

where i; j ¼ 1; 2 and where the functions fμðxÞ are equal
to TμðVxþ νμjVxÞ. The diffusion approximation, made
popular by Kimura and others in the context of population
genetics [18], is usually expressed in the form of a FPE
such as Eq. (3); however, for our purposes it is preferable to
work with the entirely equivalent Itō stochastic differential
equations (SDEs) [19]

dxi
dτ

¼ AiðxÞ þ
1ffiffiffiffi
V

p ηiðτÞ; ð5Þ

where ηiðτÞ is a Gaussian noise with

hηiðτÞi ¼ 0; hηiðτÞηjðτ0Þi ¼ BijðxÞδðτ − τ0Þ: ð6Þ

The precise form of the functions AiðxÞ and BijðxÞ for the
system of interest to us can be read off from Eq. (4) using
Eq. (1) and the νi;μ given earlier. One finds

A1ðxÞ ¼ ðb1 − d1Þx1 − c11x21 − c12x1x2;

A2ðxÞ ¼ ðb2 − d2Þx2 − c21x1x2 − c22x22;

B11ðxÞ ¼ ðb1 þ d1Þx1 þ c11x21 þ c12x1x2;

B22ðxÞ ¼ ðb2 þ d2Þx2 þ c21x1x2 þ c22x22; ð7Þ
andBij ¼ 0, for i ≠ j. In the limitV → ∞, Eq. (5) reduces to
the two deterministic differential equations dxi=dτ¼AiðxÞ,
with AiðxÞ given by Eq. (7), which are the familiar Lotka-
Volterra equations for two competing species [21,22].
We begin the analysis by assuming that individuals of

type A1 and A2 have equal fitness. Thus the theory is
neutral, and A1 and A2 have equal birth, death, and
competition rates: bi ≡ b0, di ≡ d0, cij ≡ c0. Simulations
of the original IBM defined by Fig. 1 and Eq. (1) are shown
in Fig. 2, where it is seen that the trajectories quickly
collapse onto a line in the x1-x2 plane. This can be
understood by first considering the deterministic trajecto-
ries (shown in gray in Fig. 2). We begin by looking for fixed
points of the dynamics by setting AiðxÞ ¼ 0; i ¼ 1; 2.
Taking the combinations A1 � A2 we find that the fixed
points are solutions of the two equations

FIG. 1 (color online). Reactions specifying the SLVC model.

FIG. 2 (color online). A stochastic simulation of the model
specified in Fig. 1 is plotted in red, along with the mean
deterministic behavior [given by AiðxÞ in Eqs. (7)] in gray.
Parameters used here are for the neutral model, with b0 ¼ 2,
d0 ¼ 1, c0 ¼ 0.6 and V ¼ 300. The stochastic system follows an
approximately deterministic trajectory until it reaches the center
manifold (CM), plotted in blue and given by Eq. (9).
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½ðb0 − d0Þ − c0ðx1 þ x2Þ�ðx1 � x2Þ ¼ 0: ð8Þ

We see that, apart from the trivial fixed point x1 ¼ x2 ¼ 0,
there is a line of fixed points given by

x1 þ x2 ¼ ðb0 − d0Þc−10 : ð9Þ

This is the equation of the blue line shown in Fig. 2. Further
insight can be gained by calculating the Jacobian at points
on Eq. (9). One finds that it has eigenvalues λð1Þ ¼ 0 and
λð2Þ ¼ −ðb0 − d0Þ, with corresponding eigenvectors

uð1Þ ¼ c0
ðb0 − d0Þ

�
x2
−x1

�
; vð1Þ ¼

�
1

−1

�
; ð10Þ

and

uð2Þ ¼
�
1

1

�
; vð2Þ ¼ c0

ðb0 − d0Þ
�
x1
x2

�
; ð11Þ

where uðiÞ and vðiÞ are, respectively, the left and right
eigenvectors corresponding to the eigenvalue λðiÞ (normal-

ized such that
P

2
k¼1 u

ðiÞ
k vðjÞk ¼ δij), and x2 is given by

Eq. (9). This shows that Eq. (9) defines a CM to which
the deterministic system quickly collapses; there is then
no further motion along this line. The time scale for
the collapse of this fast mode is given by jλð2Þj−1 ¼
ðb0 − d0Þ−1.
The stochastic dynamics (shown in red in Fig. 2) are

dominated by the deterministic dynamics far from the CM,
and there is a rapid collapse to its vicinity. Fluctuations
taking the system too far away from the CM are similarly
countered by the deterministic dynamics dragging the
system back. The net result is a drift along the CM until
either of the axes are reached and fixation of one of the
types is achieved. This effect has also been noted and
exploited in Refs. [23,24] under the investigation of the
evolution of dispersion. To encapsulate this behavior in a
mathematical form we apply a methodology which we have
recently used to reduce stochastic metapopulation models
to effective models involving only one island [15,16]. The
essential idea is to restrict the system to the CM, and to
obtain the effective stochastic dynamics along the manifold
by applying the projection operator

Pij ¼ vð1Þi uð1Þj ð12Þ

to the SDEs (5) to eliminate the fast mode, keeping the slow
mode intact.
To carry out this program, we first rescale the xi and time

in order to eliminate various constants from the calculation.
Writing y1 ¼ c0x1=ðb0 − d0Þ, y2 ¼ c0x2=ðb0 − d0Þ and
~τ ¼ ðb0 − d0Þτ, the equation of the CM becomes y2 ¼
1 − y1 and the nonzero eigenvalue of the Jacobian is now

equal to −1. Applying the condition y2 ¼ 1 − y1, gives
A ¼ 0, confirming that there is no deterministic dynamics
along the CM.We denote the coordinate along the CM as z,
and choose this to be equal to y1, although many other
choices are possible. Since _y2 ¼ −_y1 on y2 ¼ 1 − y1,
application of the projection operator to the left-hand
side of Eq. (5) and to the noise term on the right-hand
side gives _z¼ζð~τÞ= ffiffiffiffi

V
p

, where ζð~τÞ¼P11η1ð~τÞþP12η2ð~τÞ.
It should be noted that since the projection operator
depends on y1, the direction of the dominant noise
component changes, as can be seen from Fig. 2. From
the properties of ηi, we see that the effective noise ζ is
Gaussian with zero mean and with correlator

hζð~τÞζð~τ0Þi ¼ ½P2
11B11ðyÞ þ P2

12B22ðyÞ�δð~τ − ~τ0Þ; ð13Þ

with the Bij being evaluated on y2 ¼ 1 − y1. A calculation
of the term in square brackets in Eq. (13), allows us to
arrive at the following form for the SDE describing the
dynamics after the fast-mode elimination:

dz
d~τ

¼ ĀðzÞ þ 1ffiffiffiffi
V

p ζð~τÞ; ð14Þ

where ĀðzÞ ¼ 0 and where ζð~τÞ is a Gaussian noise with
zero mean and correlator

hζð~τÞζð~τ0Þi ¼ B̄ðzÞδð~τ − ~τ0Þ;

B̄ðzÞ ¼ 2
b0c0

ðb0 − d0Þ2
zð1 − zÞ: ð15Þ

If we define N ¼ ðb0 − d0ÞV=c0 [the size of the population
on the CM, Eq. (9)] then Eqs. (14) and (15) are exactly the
Moran model in rescaled time τ̄ ¼ ½b0=ðb0 − d0Þ�~τ, where z
is the fraction of type A1 alleles and N the total population
size [4]. We therefore conclude that the neutral form of the
stochastic Lotka-Volterra competition (SLVC) model
reduces to precisely the Moran model, under the fast-mode
elimination procedure described in Refs. [15,16].
It is now natural to ask what model is obtained by the

elimination of the fast modes of the non-neutral SLVC
model. As usual in population genetics, we work to linear
order in the selection strength, and so begin by writing

bi ¼ b0ð1þ ϵβiÞ; di ¼ d0ð1þ ϵδiÞ;
cij ¼ c0ð1þ ϵγijÞ; ð16Þ

where ϵ is a small parameter which will later be related to
the selection strength in the Moran model. The constants
βi; δi, and γij are assumed to be of order one. Although for
ϵ ≠ 0, there will not be a CM, we still expect there to be
separation of time scales which will allow us to identify fast
and slow variables. We pick out the slow subspace, and so
eliminate the fast deterministic dynamics, by setting the
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product uð2Þ · AðxÞ equal to zero [15]. This leads to an
equation of the form y2 ¼ 1 − y1 þ ϵfðy1Þ þOðϵ2Þ, where
fðy1Þ is quadratic in y1. In order to make a comparison
to the Moran model, we ask that this line passes through the
points y ¼ ð1; 0Þ and y ¼ ð0; 1Þ, which implies that fð0Þ ¼
0 and fð1Þ ¼ 0, which leads to the two conditions

βi ¼
γiiðb0 − d0Þ þ d0δi

b0
; i ¼ 1; 2: ð17Þ

With this choice of the birth rates, the slow subspace takes
the form

y2 ¼ ð1 − y1Þ½1þ ϵΓy1 þOðϵ2Þ�; ð18Þ
where Γ≡ γ11 þ γ22 − γ12 − γ21. It is interesting to note
that the conditions in Eq. (17) have also eliminated any
reference to the death rates δi, and that as long as the
competition rates do not satisfy Γ ¼ 0, the slow subspace
will be curved. Simulations show that to an excellent
approximation, the deterministic system collapses down
to a line given by Eq. (18), as shown in Fig. 3. The
agreement persists even if we do not impose the conditions
(17), so that the line does not pass directly through the
points y ¼ ð1; 0Þ and y ¼ ð0; 1Þ.
The effective stochastic dynamics on the slow subspace

is found by applying the same arguments as in the neutral
case. A key aspect of the approximation is that the same
form of the projection operator will be used when ϵ ≠ 0 as
was used when ϵ ¼ 0. In previous applications [15,16] this
was found to be a very good approximation, and wewill see
that a similar conclusion applies in the current case.
Therefore, applying Pij given by Eq. (12) to Eq. (5) gives
Eq. (14), but now with

ĀðzÞ ¼ ϵzð1 − zÞ½ðγ11 − γ12Þ − ΓzþOðϵÞ�: ð19Þ

To test the validity of the fast-mode elimination pro-
cedure we compare the results for the probability of fixation
and the time to fixation found from the reduced model to
Gillespie simulations of the original IBM [25]. Both of
these quantities can be found, either analytically or numeri-
cally, from the backward FPE corresponding to the reduced
SDE (14) [26]. Figure 4 shows the reduced model captures
the properties of the full model extremely well.
The form of the reduced drift coefficient in the SLVC

model given by Eq. (19) can give very different results to
that of the Moran model, which has AðzÞ ¼ szð1 − zÞ, for
selection strength s. Only if Γ ¼ 0 is the reduced SLVC
(in terms of the time variable τ̄) equivalent to the Moran
model, with selection strength s¼ðb0−d0Þðγ11−γ12Þϵ=b0.
If Γ ≠ 0, the deterministic dynamics will have a fixed
point at z� ¼ ϕ1=Γ, where ϕ1 ≡ γ11 − γ12. This fixed point
is in the range 0 < z < 1 only if (i) ϕ1;ϕ2 > 0, or
(ii) ϕ1;ϕ2 < 0, where ϕ2 ≡ γ22 − γ21. In case (i) the fixed
point is stable; in case (ii) it is unstable. On general
biological grounds, we would expect intraspecific compe-
tition to be stronger than interspecific competition [27],
which would imply that both ϕ1 and ϕ2 are positive, and so
point to the existence of a stable fixed point of the reduced

x2

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

x1

FIG. 3 (color online). Deterministic trajectories of Eq. (5) for a
non-neutral system. A histogram of stochastic trajectories is
given in red. The black dashed line is the slow subspace Eq. (18).
The blue dashed line is the CM from neutral theory.
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FIG. 4 (color online). Probability of fixation, Qðz0Þ and mean
unconditional time to fixation Tðz0Þ, where z0 is the initial value
of z on the CM. Continuous lines are obtained from reduced
theory and markers from Gillespie simulation. Green circles are
obtained from a neutral system with parameters V ¼ 150,
b0 ¼ 3.1, d0 ¼ 1.1 and c0 ¼ 0.4. Blue square markers with
parameters V ¼ 300, ϵ ¼ 0.01, b0 ¼ 2, d0 ¼ 1, c0 ¼ 0.2,
γ11 ¼ 1, γ12 ¼ 2, γ21 ¼ 0, Γ ¼ 0. Red triangles with V ¼ 500,
ϵ ¼ 0.015, b0 ¼ 2, d0 ¼ 1, c0 ¼ 0.8, γ11 ¼ γ22 ¼ 1,
γ12 ¼ γ21 ¼ −1. The red dashed line is the prediction of the
standard Moran model with the same parameters as the SLVC
model with the red solid line.
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SLVC model dynamics. In Fig. 4 we show how the
existence of such a stable fixed point ensures that the
reduced SLVC model gives qualitatively different results to
that of the Moran model with the same value of s.
In this Letter we have taken a more ecologically

motivated view of genetic drift, by basing it on the
SLVC model, instead of starting from a fixed-size pop-
ulation model, such as the Moran model. By applying a
well-defined, and remarkably accurate, approximation
scheme to the SLVC, we showed that the reduced
model could in general only be identified as a Moran
model if the theory was neutral. If selection was present, the
resulting model had additional features not present in the
simple Moran model, such as the possibility of a fixed point
away from the boundaries. We expect this to remain true in
more complex situations, and hope to report on this
elsewhere.
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