
Potentials of stable processes

A. E. Kyprianou and A. R. Watson

Abstract For a stable process, we give an explicit formula for the potential measure
of the process killed outside a bounded interval and the joint law of the overshoot,
undershoot and undershoot from the maximum at exit from a bounded interval. We
obtain the equivalent quantities for a stable process reflected in its infimum. The
results are obtained by exploiting a simple connection with the Lamperti represen-
tation and exit problems of stable processes.

1 Introduction and results

For a Lévy process X , the measure

UA(x,dy) = Ex

∫ ∞

0
1[Xt ∈ dy]1[∀s ≤ t : Xs ∈ A] dt,

called the potential (or resolvent) measure of X killed outside A, is a quantity of
great interest, and is related to exit problems.

The main cases where the potential measure can be computed explicitly are as
follows. If X is a Lévy process with known Wiener–Hopf factors, it can be obtained
when A is half-line or R; see [2, Theorem VI.20]. When X is a totally asymmetric
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Lévy process with known scale functions, it can be obtained for A a bounded inter-
val, a half-line or R; see [10, Section 8.4]. Finally, [1] details a technique to obtain
a potential measure for a reflected Lévy process killed outside a bounded interval
from the same quantity for the unreflected process.

In this note, we consider the case where X is a stable process and A is a bounded
interval. We compute the measure U [0,1], from which UA may be obtained for any
bounded interval A via spatial homogeneity and scaling; and from this we compute
the joint law at first exit of [0,1] of the overshoot, undershoot and undershoot from
the maximum. Furthermore, we give the potential measure and triple law also for
the process reflected in its infimum.

The potential measure has been previously been computed when X is symmet-
ric; see Blumenthal et al. [4, Corollary 4] and references therein, as well as Bau-
rdoux [1]. We extend these results to asymmetric stable processes with jumps on
both sides. The essential observation is that a potential for X with killing outside a
bounded interval may be converted into a potential for the Lamperti transform of X ,
say ξ, with killing outside a half-line. To compute this potential in a half-line, it is
enough to know the killing rate of ξ and the solution of certain exit problems for X .
The results for the reflected process are obtained via the work of Baurdoux [1].

We now give our results. Some facts we will rely on are summarised in section 2,
and proofs are given in section 3.

We work with the (strictly) stable process X with scaling parameter α and positivity
parameter ρ, which is defined as follows. For (α, ρ) in the set

A = {(α, ρ) : α ∈ (0,1), ρ ∈ (0,1)} ∪ {(α, ρ) = (1,1/2)}
∪ {(α, ρ) : α ∈ (1,2), ρ ∈ (1 − 1/α,1/α)},

let X , with probability laws (Px )x∈R, be the Lévy process with characteristic expo-
nent

Ψ(θ) =



c |θ |α (1 − iβ tan πα
2 sgn θ) α ∈ (0,2) \ {1},

c|θ | α = 1,
θ ∈ R,

where c = cos(πα(ρ − 1/2)) and β = tan(πα(ρ − 1/2))/ tan(πα/2). This Lévy
process has absolutely continuous Lévy measure with density

c+x−(α+1)
1[x > 0] + c− |x |−(α+1)

1[x < 0], x ∈ R,

where
c+ =

Γ(α + 1)
Γ(αρ)Γ(1 − αρ)

, c− =
Γ(α + 1)

Γ(αρ̂)Γ(1 − αρ̂)

and ρ̂ = 1 − ρ.
The parameter set A and the characteristic exponent Ψ represent, up a multi-

plicative constant in Ψ, all (strictly) stable processes which jump in both directions,
except for Brownian motion and the symmetric Cauchy processes with non-zero
drift. The normalisation is the same as that in [8], and when X is symmetric, that is
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when ρ = 1/2, the normalisation agrees with that of [4]. We remark that the quan-
tities we are interested in can also be derived in cases of one-sided jumps: either X
is a subordinator, in which case the results are trivial, or X is a spectrally one-sided
Lévy process, in which case the potentials in question may be assembled using the
theory of scale functions; see [10, Theorem 8.7 and Exercise 8.2].

The choice α and ρ as parameters is explained as follows. X satisfies the α-
scaling property, that

under Px , the law of (cXtc−α )t≥0 is Pcx , (1)

for all x ∈ R, c > 0. The second parameter satisfies ρ = P0(Xt > 0).

Having defined the stable process, we proceed to our results. Let

σ[0,1] = inf{t ≥ 0 : Xt < [0,1]},

and define the killed potential measure and potential density

U1(x,dy) := U [0,1](x,dy) = Ex

∫ σ[0,1]

0
1[Xt ∈ dy] dt = u1(x, y) dy,

provided the density u1 exists.

Theorem 1. For 0 < x, y < 1,

u1(x, y) =




1
Γ(αρ)Γ(αρ̂)

(x − y)α−1
∫ y (1−x )

x−y

0
sαρ−1(s + 1)αρ̂−1 ds, y < x,

1
Γ(αρ)Γ(αρ̂)

(y − x)α−1
∫ x (1−y )

y−x

0
sαρ̂−1(s + 1)αρ−1 ds, x < y.

Part of the claim of this theorem is that u1(x, y) exists and is finite on the domain
given; this will also be the case in the coming results, and so we will not remark on
it again. When X is symmetric, the theorem reduces, by spatial homogeneity and
scaling of X and substituting in the integral, to [4, Corollary 4].

With very little extra work, Theorem 1 yields an apparently stronger result. Let

τ−0 = inf{t ≥ 0 : Xt < 0}; X t = sup
s≤t

Xs , t ≥ 0,

and write

Ex

∫ τ−0

0
1[Xt ∈ dy, X t ∈ dz] dt = u(x, y, z) dy dz,

if the right-hand side exists. Then we have the following.

Corollary 2. For x > 0, y ∈ [0, z), z > x,

u(x, y, z) =
1

Γ(αρ)Γ(αρ̂)
xαρ̂ yαρ

(z − x)αρ−1(z − y)αρ̂−1

zα
dy dz. (2)
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Proof. Rescaling, we obtain

Ex

∫ τ−0

0
1[Xt ∈ dy, X t ≤ z] dt = zα−1u1(x/z, y/z),

and the density is found by differentiating the right-hand side in z. ut

From this density, one may recover the following hitting distribution, which orig-
inally appeared in Kyprianou et al. [9, Corollary 15]. Let

τ+
1 = inf{t ≥ 0 : Xt > 1}.

Corollary 3. For u ∈ [0,1 − x), v ∈ (u,1], y ≥ 0,

Px (1 − Xτ+
1 −
∈ du, 1 − Xτ+

1 −
∈ dv, Xτ+

1
− 1 ∈ dy, τ+

1 < τ−0 )

=
Γ(α + 1)

Γ(αρ̂)Γ(1 − αρ)
xαρ̂ (1 − v)αρ (1 − u − x)αρ−1(v − u)αρ̂−1

(1 − u)α (v + y)α+1 du dv dy. (3)

Proof. Following the proof of [2, Proposition III.2], one may show that the left-hand
side of (3) is equal to u(x,1−v,1−u)π(v+ y), where π is the Lévy density of X . ut

Remark 4. The proof of Corollary 3 suggests an alternative derivation of Theorem 1.
Since the identity (3) is known, one may deduce u(x, y, z) from it by following
the proof backwards. The potential u1(x, y) without X may then be obtained via
integration. However, in section 3 we offer instead a self-contained proof based on
well-known hitting distributions for the stable process.

Now let Y denote the stable process X reflected in its infimum, that is,

Yt = Xt − X t , t ≥ 0,

where X t = inf{Xs ,0 ≤ s ≤ t} ∧ 0 for t ≥ 0. Y is a self-similar Markov process.
Let T+

1 = inf{t > 0 : Yt > 1} denote the first passage time of Y above the level 1,
and define

R1(x,dy) = Ex

∫ T+
1

0
1[Yt ∈ dy] dt = r1(x, y) dy,

where the density r1 exists by [1, Theorem 4.1]. Note that, as Y is self-similar, R1
suffices to deduce the potential of Y killed at first passage above any level.

Theorem 5. For 0 < y < 1,

r1(0, y) =
1
Γ(α)

yαρ−1(1 − y)αρ̂ .

Hence, for 0 < x, y < 1,
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r1(x, y) =




1
Γ(αρ)Γ(αρ̂)

[
(x − y)α−1

∫ y (1−x )
x−y

0
sαρ−1(s + 1)αρ̂−1 ds

+ yαρ−1(1 − y)αρ̂
∫ 1−x

0
tαρ−1(1 − t)αρ̂−1 dt

]
, y < x,

1
Γ(αρ)Γ(αρ̂)

[
(y − x)α−1

∫ x (1−y )
y−x

0
sαρ̂−1(s + 1)αρ−1 ds

+ yαρ−1(1 − y)αρ̂
∫ 1−x

0
tαρ−1(1 − t)αρ̂−1 dt

]
, x < y.

Writing

Ex

∫ ∞

0
1[Yt ∈ dy, Y t ∈ dz] dt = r (x, y, z) dy dz,

where Y t is the supremum of Y up to time t, we obtain the following corollary, much
as we had for X .

Corollary 6. For y ∈ (0, z), z ≥ 0,

r (0, y, z) =
αρ̂

Γ(α)
yαρ−1(z − y)αρ̂−1,

and for x > 0, y ∈ (0, z), z ≥ x,

r (x, y, z) =
1

Γ(αρ)Γ(αρ̂)
yαρ−1(z − y)αρ̂−1

[
xαρ̂ (z − x)αρ−1z1−α

+ αρ̂

∫ 1− x
z

0
tαρ−1(1 − t)αρ̂−1 dt

]
.

We also have the following corollary, which is the analogue of Corollary 3.

Corollary 7. For u ∈ (0,1], v ∈ (u,1), y ≥ 0,

P0(1 − YT+
1
∈ du, 1 − YT+

1
∈ dv, YT+

1
− 1 ∈ dy)

=
α · αρ̂

Γ(αρ)Γ(1 − αρ)
(1 − v)αρ−1(v − u)αρ̂−1

(v + y)α+1 du dv dy,

and for x ≥ 0, u ∈ [0,1 − x), v ∈ (u,1), y ≥ 0,

Px (1 − YT+
1
∈ du, 1 − YT+

1
∈ dv, YT+

1
− 1 ∈ dy)

=
Γ(α + 1)

Γ(αρ̂)Γ(1 − αρ)
(1 − v)αρ−1(v − u)αρ̂−1

(v + y)α+1

×

[
xαρ̂ (1 − u − x)αρ−1(1 − u)1−α + αρ̂

∫ 1− x
1−u

0
tαρ−1(1 − t)αρ̂−1 dt

]
du dv dy.

The marginal in dv dy appears in Baurdoux [1, Corollary 3.5] for the case where
X is symmetric and x = 0. The marginal in dy is given in Kyprianou [11] for the
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process reflected in the supremum; this corresponds to swapping ρ and ρ̂. However,
unless x = 0, it appears to be difficult to integrate in Corollary 7 and obtain the
expression found in [11].

Finally, one may integrate in Theorem 5 and obtain the expected first passage
time for the reflected process.

Corollary 8. For x ≥ 0,

Ex [T+
1 ] =

1
Γ(α + 1)

[
xαρ̂ (1 − x)αρ + αρ̂

∫ 1−x

0
tαρ−1(1 − t)αρ̂−1 dt

]
.

In particular,

E0[T+
1 ] =

1
Γ(α)

Γ(αρ)Γ(αρ̂ + 1)
Γ(α + 1)

.

2 The Lamperti representation

We will calculate potentials related to X by appealing to the Lamperti transform
[12, 15]. Recall that a process Y with probability measures (Px )x>0 is a positive
self-similar Markov process (pssMp) if it is a standard Markov process (in the sense
of [3]) with state space [0,∞) which has zero as an absorbing state and satisfies the
scaling property:

under Px , the law of (cYtc−α )t≥0 is Pcx ,

for all x, c > 0.
The Lamperti transform gives a correspondence between pssMps and killed Lévy

processes, as follows. Let S(t) =
∫ t

0 (Yu )−α du; this process is continuous and strictly
increasing until Y reaches zero. Let T be its inverse. Then, the process

ξs = logYT (s) , s ≥ 0

is a Lévy process, possibly killed at an independent exponential time, and termed
the Lamperti transform of Y . Note that ξ0 = log x when Y0 = x, and one may easily
see from the definition of S that eαξS (t ) dS(t) = dt.

A simple example of the Lamperti transform in action is given by considering the
process X . Define

τ−0 = inf{t ≥ 0 : Xt < 0},

and let
P∗x (Xt ∈ ·) = Px (Xt ∈ ·, t < τ−0 ), t ≥ 0, x > 0.

The process X with laws (P∗x )x>0 is a pssMp. Caballero and Chaumont [5] gives
explicitly the generator of its Lamperti transform, whose laws we denote (P∗y )y∈R,
finding in particular that it is killed at rate
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q := c−/α =
Γ(α)

Γ(αρ̂)Γ(1 − αρ̂)
. (4)

3 Proofs

To avoid the proliferation of symbols, we generally distinguish processes only by
the measures associated with them; the exception is that self-similar processes will
be distinguished from processes obtained by Lamperti transform. Thus, the time

τ+
1 = inf{t ≥ 0 : Xt > 0}

always refers to the canonical process of the measure it appears under, and will be
used for self-similar processes; and

S+
0 = inf{s ≥ 0 : ξs > 0}, and S−0 = inf{s ≥ 0 : ξs < 0}

will likewise be used for processes obtained by Lamperti transform.

Proof of Theorem 1. Our proof makes use of the pssMp (X,P∗) and its Lamperti
transform (ξ,P∗), both defined in section 2. Let 0 < x, y < 1. Then

U1(x,dy) = Ex

∫ σ[0,1]

0
1[Xt ∈ dy] dt

= E∗x

∫ τ+
1

0
1[Xt ∈ dy] dt,

using nothing more than the definition of (X,P∗). We now use the Lamperti repre-
sentation to relate this to (ξ,P∗). This process is killed at the rate q given in (4),
and so it may be represented as an unkilled Lévy process (ξ,P) which is sent to
some cemetery state at the independent exponental time eq . The time-changes in
this representation are denoted S and T , and we recall that dt = eαS (t )dS(t). In the
following calculation, we first use the fact that τ+

1 (the first passage of X) under Px

is equal to T (S+
0 ) (the time-change of the first-passage of ξ) under Plog x . The second

line follows by a time substitution in the integral (see, for example, [14, §A4].)

U1(x,dy) = E∗log(x)

∫ T (S+
0 )

0
1

[
eξS (t ) ∈ dy

]
eαξS (t ) dS(t)

= yαElog(x)

∫ S+
0

0
1

[
eξs ∈ dy

]
1
[
eq > s

]
ds

= yαÊlog(1/x)

∫ S−0

0
1
[
ξs ∈ log(1/dy)

]
e−qs ds,

where Ê refers to the dual Lévy process −ξ. Examining the proof of Theorem VI.20
in Bertoin [2] reveals that, for any a > 0,
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Êa

∫ S−0

0
1[ξs ∈ ·] e−qs ds

=
1
q

∫
[0,∞)

P̂0
(
ξeq ∈ dw

) ∫
[0,a]

P̂0
(
−ξ

eq
∈ dz

)
1[a + w − z ∈ ·],

where for each t ≥ 0, ξ t = sup{ξs : s ≤ t} and ξ
t

= inf{ξs : s ≤ t}. Then, provided

that the measures P̂0(ξeq ∈ ·) and P̂0(ξ
eq
∈ ·) possess respective densities gS and

gI (as we will shortly see they do), it follows that for a > 0,

Êa

∫ S−0

0
1[ξs ∈ dv] e−qs ds =

dv
q

∫ a

(a−v)∨0
dz gI (−z)gS (v − a + z).

We may apply this result to our potential measure U1 in order to find its density,
giving

u1(x, y) =
1
q
yα−1

∫ 1
x

y
x ∨1

t−1gI (log t−1)gS (log(t x/y)) dt . (5)

It remains to determine the densities gS and gI of the measures P̂0(ξeq ∈ ·) and
P̂0(ξ

eq
∈ ·). These can be related to functionals of X by the Lamperti transform:

P̂0(ξeq ∈ ·) = P0(−ξ
eq
∈ ·) = P1(− log Xτ−0 −

∈ ·)

P̂0(ξ
eq
∈ ·) = P0(−ξeq ∈ ·) = P1(− log Xτ−0

∈ ·).
(6)

The laws of the rightmost random variables in (6) are available explicitly, as we
now show. For the law of Xτ−0 −

, we transform it into an overshoot problem and make
use of Example 7 in Doney and Kyprianou [6], as follows. We omit the calculation
of the integral, which uses [7, 8.380.1].

P1(Xτ−0 −
∈ dy) = P̂0(1 − Xτ+

1 −
∈ dy)

= K
∫ ∞

y

dv
∫ ∞

0
du (v − y)αρ−1(v + u)−(α+1) (1 − y)αρ̂−1 dy

=
sin(πα ρ̂)

π
y−αρ̂ (1 − y)αρ̂−1 dy, y ∈ [0,1]. (7)

For the law of Xτ−0
, consider the following calculation.

P1(Xτ−0
≥ y) = P1(τ+

y < τ−0 ) = P1/y (τ+
1 < τ−0 ).

This final quantity depends on the solution of the two-sided exit problem for the
stable process; it is computed in Rogozin [13], where it is denoted f1(1/y,∞). Note
that [13] contains a typographical error: in Lemma 3 of that work and the discussion
after it, the roles of q (which is ρ in our notation) and 1 − q should be swapped. In
the corrected form, we have
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P1(Xτ−0
≥ y) =

Γ(α)
Γ(αρ)Γ(αρ̂)

∫ 1/y

0
uαρ̂−1(1 − u)αρ−1 du

=
Γ(α)

Γ(αρ)Γ(αρ̂)

∫ ∞

y

t−α (t − 1)αρ−1 dt, (8)

which gives us the density for y ≥ 1.
Since gS and gI possess densities on their whole support, we may substitute (7)

and (8) into (5) and obtain

u1(x, y) =
1

Γ(αρ)Γ(αρ̂)
xαρ̂−1yαρ

∫ 1
x

y
x ∨1

t−α (t − 1)αρ−1
(
t −

y

x

)αρ̂−1
dt,

for x, y ∈ (0,1). The expression in the statement follows by a short manipulation of
this integral. ut

Proof of Theorem 5. According to Baurdoux [1, Theorem 4.1], since X is regular
upwards, we have the following formula for r1(0, y):

r1(0, y) = lim
z↓0

u1(z, y)
Pz (τ+

1 < τ−0 )
.

We have found u1 above, and as we already mentioned, we have from Rogozin [13]
that

Px (τ+
1 < τ−0 ) =

Γ(α)
Γ(αρ)Γ(αρ̂)

∫ x

0
tαρ̂−1(1 − t)αρ−1 dt .

We may then make the following calculation, using l’Hôpital’s rule on the second
line since the integrals converge,

r1(0, y) =
1
Γ(α)

yα−1 lim
z↓0

∫ z (1−y )
y−z

0
sαρ̂−1(s + 1)αρ−1 ds∫ z

0
tαρ̂−1(1 − t)αρ−1 dt

=
1
Γ(α)

yα−1 lim
z↓0

zαρ̂−1(1 − y)αρ̂−1(y − z)1−αρ̂ ∂
∂z

[ z (1−y)
y−z

]
zαρ̂−1 ∂

∂z

[
z
]

=
1
Γ(α)

yαρ−1(1 − y)αρ̂ .

Finally, the full potential density r1(x, y) follows simply by substituting in the fol-
lowing formula, from the same theorem in [1]:

r1(x, y) = u1(x, y) + Px (τ−0 < τ+
1 )r1(0, y). ut
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