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I. INTRODUCTION

Bosonic quantum field theories in a Hilbert space can be mapped into classical
field theories of complex functions in a particular normed space, the Bargmann Hilbert
space.!) Since the theory of complex classical fields is well understood from complex
analysis, the approach often affords an intuitively appealing alternative to the more
usual canonical or path integral formulations. In the present paper we shall combine
this approach with another well-known method of field theory, the coupled cluster
method (CCM) of Coester and Kiimmel.?>» The CCM focuses on the many-body
correlations in a quantum system, and introduces a set of linked-cluster amplitudes,
{S.}, parametrizing the correlated many-body ground state.®

It has been pointed out?) that the CCM equations for the ground state can
be obtained from a dynamical variational principle, which can be used to extend
the theory into a complete dynamical description of the system, including the CCM
average-value functional for arbitrary operators as a central concept. It turned out
that in this approach the set of variables, {2}, dynamically conjugate to the ampli-
tudes {S,}, are not represented by linked diagrams in the ground state. In another
formulation of CCM, the extended CCM (ECCM),*® a new set of conjugate vari-
ables, {oy,0,}, was introduced for the parametrization of the quantum system and
shown to be represented by linked diagrams only.

The importance of the linked-cluster properties are naturally related to the prob-
lem of size-extensivity and size-consistency (i.e. full separability) of the description
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of the many-body system.®") If we consider a local field theory or a many-body sys-
tem with (sufficiently) short range interactions, the ECCM amplitudes {opn,5,} in
the ground state are quasilocal,®®) and can be regarded as multilocal coordinates
in a classical symplectic complex phase space, the ECCM phase space. The original
quantum problem thus becomes mapped into a classical Hamiltonian theory in an
appropriate phase space.

Indeed, considering the locality properties of the basic conjugate variables, we
may divide the conventional algebraic many-body methods into 3 main categories,
in each of which the dynamical equations of motion are obtained from the generic
canonical equations

itia«'_n_afl[w,y]

&~ By,
Gy __ 0H[z,y]
dt 8z,

The canonically conjugate operators {z,y} have suitable configuration-space para-
metrizations in terms of c-number amplitudes {z,,yn } ,_respectively, and the para-
metrizations of the ket and bra ground states |¢) and (3| in these cases are

() {29} ={F,F}Y; ) =Flg); (d]=(4|F;
() {z,9} = {59 [¥).=€°l¢); (] = ($IQe5;
(I {z,y} = {8} ) =elg); (Bl =(ple% e 5,

where |¢) is some suitable reference state or cyclic vector. The cases are identified
as (I) the configuration interaction (CI) method, (II) the normal CCM (NCCM), and
(II1) the ECCM. In the last case & = §" and Z|@) = Qe S|¢), where Q = I—|4)(¢|.
The classical phase space in each of the above cases is in principle equally complicated,
but the full locality and separability feature in the ECCM should lead to an effective
compactification of the phase space,’® allowing the physically important region to
be described in terms of an effective mean field theory of reduced dimensionality.

To learn more about the basic mathematical aspects of the various coupled-
cluster methods we undertake here a study of two very simple but nontrivial problems:
the linear anharmonic oscillator (AO for short) with an z* anharmonicity, and an
anharmonic spin system which is introduced as a finite-dimensional model to the
anharmonic oscillator with an infinite-dimensional Hilbert space. The anharmonic
oscillator is a system for which perturbation theory fails to converge, and the structure
of the excitation spectrum changes drastically.®~2%) As an interacting field theory the
AOQ is rather strange and singular because it is not a local field theory; rather, the
interaction is maximally non-local. Therefore it is expected to pose an exceptionally
hard test for a method such as the ECCM which — with its linked cluster properties
— is tailored for systems with normal locality and separability properties.

II. ANHARMONIC MODEL SYSTEMS

II. 1. Anharmonic oscillator

In terms of the canonical creation and annihilation operators the Hamiltonian

___12 12 A4
H—2p +5z g (2.1)
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of the anharmeonic oscillator becomes
H=alat 2 +—(a + a)*. (2:2)

In numerical computation we usually start from the Bogoliubov-transformed opti-
mized form?+1?)

H =

3 1
gt 8w2] (2.3)

P _w— —)\ = 0, and the colons denote

in which w is the positive root of equation w
normal ordering.
In the Bargmann representation we replace ¢ — Ed; , al — z, and the ket state,

such as

[#) = F(at)|0), (24)

where |0) is the vacuum state defined by a|0) = 0, will be represented by functions
F(z) of the complex variable.’® In the SUB N truncation of the CI method the
exact infinite-order holomorphic function F(z) = Yoo, Fn2z™ is approximated by a
polynomial of order N. Similarly, in CCM the SUB N approximation to the exact
function $(z) = Y o>, Sn2z™ defined through F(z) = exp 5(z), is a polynomial of
order N. We observe that the scalar product in the Bargmann representation can be
given in any of the following forms, %)

(Olg(a)F(aNi0) = o) (2)| _,
-+ [ #= @) (2:5)
= nlghfn.

Using the Hamiltonian H (at,a) - H (z,diiz-) we may write down the energy
functional in each of the three methods:

B(CI) = F()H (s, o )F(z)l JFCOFG)| s (2.6)
H(CC’M):Q(E)e‘S(z)H(z, d—z)es(z) . (2.7)
H(ECCM) = 5" (&) e 5@ f (2, Ed;)es@ Y (2.8)

The exact values of the amplitudes (Fn,ﬁ‘n, 51,8, S)) are found in each case from
the condition that H is required to be stationary against variations of the respective
free variables.

After a lengthy but straightforward calculation the ground-state energy func-
tional in the NCCM and ECCM cases is obtained in the form -

A= i 10, H,[9], (2.9)
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where the coefficients are (here g = ﬁ%g), 5

_ 3 1
Hn[S]/w = 6n,0(§ + gz‘) + nSn

+ g{bas + 4(n — 2)Sn_s + bn(n — 1)S,
+4(n+2)(n+1)nSpp2+ (n+4)(m+ 3)(n + 2)(n + 1)Sntsa

46 Zm(n —m)SmSn—m

+12) m(m—1)(n+2—m)SnSntz-m
i (2.10)

+Y mm-1)(n+4—m)(m+3n+1)SnSnis-m

+ 42 mk(n+2 —m — k)SmSeSnt2—m—k

mk
+6Y mk(n+4—m—k)(n+3—m—k)SmnSkSnta-m—k
mk
+ Y mkl(n+4—m—k—1)SnS:S1Sns4-m—k—1}-
mkl

Equations (2.9)-(2.10) give the energy functional H explicitely in terms of the NCCM
canonical variables {5,,f,}. However, in the ECCM SUB N approximation we do
not express H explicitely in terms of the canonical variables {o,,5,}, but instead use
the variables {S,,S;} for convenience. This corresponds to a one-to-one change of
variables within the limits of computational accuracy. The ECCM canonical variables
{on} are given by

m!
On=3 — SmQm—n, (2.11)

where the upper limit of summation is N in a SUB N approximation and infinity in
the exact definition.

Above, in equation (2.9) the upper limit of summation is M = N in the NCCM
SUB N, and M = 4N —4 in the ECCM SUB N approximation. In the latter case
the amplitudes 2, of Q(z) = exp S"(z) must be given in terms of the coefficients
{Si|n=1,...,N}. To calculate Q, as functions of {5,,} and vice versa, we use the
recursion formulae

min(N,n)
Q=Y mSpQnem, n=1L...,M. (2.12)

m=1

In practice, for the symmetric AO only the even coefficients are nonzero.

It should be stressed that the CI SUB N approximation simply corresponds to
the Sturm-Liouville expansion of the eigenstates of the anharmonic oscillator; i.e. to
the diagonalization of H in the subspace spanned by the N + 1 lowest eigenstates
of the linear harmonic oscillator. Therefore, the sequence of CI SUB N results are
expected to smoothly converge to the exact limit corresponding to the AO.
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II. 2. Anharmonic spin model

The Hilbert space of the AQ is infinite-dimensional. Therefore the summationsin
many of the exact untruncated mathematical expressions are infinite, and the question
of convergence of such summations naturally arises (see section V). We have attempted
to gain more understanding on these problems by constructing a finite-dimensional
analog to the AO using spin algebra.

We consider the (2J 4 1)-dimensional spin space corresponding to spin quantum
number J, and define the operators

jO = J + Jz,
.1 7 (2.13)
]:E E \/ﬁ +-
In the limit of large J, the commutation relations of j, j+ and j_ are the same as
those of ata, a' and a up to order O (<a;“)) . In the limit J — oo the Hamiltonian

, R T s £E
Hj =jo+ 3 + 16(J+ +35-) (2.14)

should therefore go smoothly into the Hamiltonian (2.2) of the AQ, in the sense that
any energy eigenvalue F, with fixed n converges to the corresponding AO energy.

The CI, NCCM and ECCM amplitudes can be defined in the same way as in the
AO case. In particular, the expressions for the amplitudes ¢, of & = ), 0,j7 are
now finite sums,

1, .
~ 2J Kms 0 (2.15)
—d — Kn m m—n)y
where \(27)
n! !
K,= ———*" ! .
"TRT -2 dme (2.16)

III. NUMERICAL RESULTS

The NCCM equations for the anharmonic oscillator have been previously solved
numerically,111214) but no ECCM solutions have been published so far. In order to
compare the convergence and accuracy, we solved numerically the AO using all three
methods. The ECCM and NCCM equations were solved by Newton’s iteration, and
the CI ground state by inverse iteration. We used VAX FORTRAN with quadruple
. precision for the ground state, and double precision NAG routines for the excitation
energies (FO2AFF for NCCM and ECCM, and F02AAF for CI). In each case the
excited-state energies were calculated by using the dynamical matrix obtained from
the second-order derivatives of the energy functional, as explained in an accompanying
paper in this volume. )

In Fig. 1 we show the results for the first six eigenvalues correspondmg to even-
parity eigenstates at A = 0.05. The accuracy is indicated by —lg|l — | plotted
as function of the truncation index N. Thus the ordinate represents (iu'ectly the

s
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Fig. 1. Accuracy of the energies of the six lowest even eigenstates of the anharmonic
oscillator with A = 0.05 as functions of truncation index N. The excited-state
results are given up to the point where full double-precision accuracy is reached.
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Fig. 1. Continued.
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Fig. 2. Amplitudes for the anharmonic spin model as functions of J at A = 1. Only
even-indexed amplitudes up to n < N = 2J exist.
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number of correct significant digits. It can be seen that for a small A ECCM is
competitive in accuracy with the other methods, and the increase of accuracy with
increasing N is remarkably smooth. For larger A ECCM gives results clearly inferior
to the other methods, and we did not succeed to find convergence for N larger than
12 or 14.

We have not yet been able to establish whether these problems are caused by
a real disappearence of the solution or by some instability of the computation. One
possible cause of instability is the recursion formula (2.12). We have found out nu-
merically, and in section IV shall demonstrate analytically that the calculation of
{S} from {Q,} is essentially irreversible. The reverse calculation is needed in the
ECCM equations, which could be one of the causes of the problems. It can be stated,
however, that the reasons must be more complicated than just due to accumulation of
rounding errors, since a calculation using only the G_ FLOATING double precision did
not give essentially worse results. We also examined the disappearence of the solution
by letting A increase with constant IV and using the results from the previous step as
input for the next. We found out that the disappearence was preceded by the largest
exitation energy becoming absurdly large and the two next largest coalescing and
becoming complex conjugates signifying a dynamical instability. The ground state
energy from the ECCM always seemed to be an upper limit, unlike in the case of the
NCCM.) Also, the excited-state energies of the stable ECCM solution were found to
be upper limits to the exact ones, whereas the excited NCCM energies did not have
this property. This explains partly the smooth improvement of the ECCM results
seen in Fig. 1. Finally, we note that we found no evidence for the non-uniqueness of
solutions, as in the NCCM !114) ; we either found one solution or none.

The anharmonic spin system is solvable by ordinary matrix methods, like the
ones used for the AQ in the CI case, and it therefore allows us to find the exact values
of all the CI, NCCM and ECCM amplitudes. In Fig. 2 we plot typical results for all
the amplitudes F,,Qy, S, Sy = 6, and o, for a range of dimensions J up to 60, for
a fixed interaction strength A =1 (the results for all A were qualitatively similar).

It is found out that the amplitudes F,, and Q,, always behave qualitatively in a
fairly identical way. In particular, their convergence to the limits at J — oo is often
very slow as the dimension J increases. In contrast, the convergence of the coupled-
cluster amplitudes S, and S, is very quick. This shows that these amplitudes provide
a very stable and characteristic set of parameters for the description of the ground
state. The stability of the calculation of S] gives us also a clue concerning the
instability of the reverse calculation, which could explain the problems mentioned
above. In fact, as will be proven in the next section, the values of S for large n
decrease only as a geometric series, whereas the amplitudes §2,, decrease much faster.
In the limit of large n the exact amplitudes §2,, become negligible in comparison
with S), and the recursion formula (2.12) cannot be used to calculate Q, from the
set {S;}. The stabilized values of F,,,,S, and S} in the limit J — co obviously
provide also the exact solution of the AO problem. The exact S, amplitudes for the
AO problem have been evaluated and compared with their NCCM approximations in
Ref. 12. .

The amplitudes o, are found to behave in a different way. Their values do not
seem to stabilize as J — oo, up to the limit which was possible to reach with our
numerical accuracy. Also, it was found that the higher terms in the sum (2.15) yield
significant contributions to o, at high J. Thus it seems that the exact o,-amplitudes
of the AQ case cannot be calculated from this particular finite-dimensional model in
its infinite-dimensional limit.
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IV. ANALYTIC CONSIDERATIONS

The holomorphic state function F(z) is known, on general grounds, to be an
entire function of order < 2. Specifically, in our case it has the precise expression 1%

F(z)= rie~ 1 / dmeﬁ'“’_%’zz/’(a:), (4.1)

—o0

where ¥(z) is the suitably normalized (i.e. (0|$)) = 1) coordinate-space wave func-
tion. It is proven elsewhere®) that the function F(z) corresponding to the ground
state of the AO must have infinitely many distinct zeroes {z,} which, asymptotically
far from the origin, are located at the points +iy,, where

A\ # [3rm) 3
Ym = (5) (——2 ) . (4.2)

The function 3= F(z) is an entire function of order  and, on using its Hadamard
decomposition, it is straightforward to show that the exact CCM amplitude S(z) of

the AO must be of the form
1, z z
S(Z) = —52 + Em [1n(1 - ;:;) + Z] . (43)

It is now evident that the state S(a')|0) is not normalizable, and therefore the CCM
operator S(a!) cannot be qualitatively considered as a ‘small’ correlation operator.,
Also, the coefficients S, for high n are determined by the zero closest to the ori-
gin. The sequence nS, must, indeed, be asymptotically a geometric series such that
lim, . 3/n|S,| = p~?, where p is the distance of the nearest zero.

The function £(z) can be given in terms of the wave function ¥(z) as the
integral *%)

Qz) = N'ze_":' /—°° da:e%'zﬁ*(m)'gb(z - %), (4.4)

where N? = [dz|i(z)|?>. For the ground state of the AO this function is also an
entire function.

We now calculate the coefficients o, of the ground-state amplitude X(z) =
> 0nz™ from the definition (cf. section I and equation 2.11)

1 4

Op = ——
" nldzn

Q(‘—id;)S(z) o n>1 (4.5)

Using Eq. (4.3) for S(z) one can proceed either by a Fourier integral or by a Borel
summation method. Whichever method is chosen, the calculations are rather involved,
and the details are given elsewhere.'®) We first define an odd function R(z) by

R(z) = 6'(z) — %sgn(:c) 3 oo (4.6)

for ¢ € R. Here §(z) is the Dirac delta, and R(z) is obviously a distribution.
The infinite sum over the zeroes of F(z) is formally divergent and must be properly
interpreted. Indeed, the sum must first be partitioned into terms which are analytic
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in either the upper or the lower x-halfplanes. The boundary values of these analytic
functions then enter in R(z). Using this definition we find the NCCM and ECCM
amplitudes in the form

S5'(z) = ‘/;0" dzR(z) sinh(zz), (4.7)

E{z) = ‘/_°° dzp(z) sinh(zz), (4.8)

where p(z) = R(z)Q(z). The amplitudes S, and o, are thus given by the moments
of the distributions R(z) and p(z), respectively.

Using the above representations it is possible to formulate a generating function
for the expectation values of arbitrary normal-ordered operators. We define

A(u,v) = (e**' e°%)

4.9
— (OleS”(a)e—S(af)eua' evaeS(a')IO). ( )

Using this function the average value of e.g. the normal-ordered Hamiltonian H(al,a)
is

A=H (6811, 3‘1) A, 'v)‘ (4.10)
.The results derived are
A(u,v) = 2_: H { f d; R(z;) < ]Q(u+ml 4ot zy) (4.11)
for NCCM and
e¥%i _ 1
Als,0) = n_o e U deipled) —; ] (4.12)
X exp[E(u +z14+--+ wn) == 2(331) et 2(311)]

for ECCM. In each case the function gives expressions in closed form for the averages
in terms of the pertinent free variables; the amplitudes S, or ¢, appear through
the moments of the functions R(z) or p(z), respectively. When formally expanded,
these expressions represent the particular linking and connectivity properties of the
corresponding NCCM or ECCM diagrams and their vertices. Precise parallels can
clearly be drawn with the well known linked (L) or double-linked (DL) expansions for
an average value of an arbitrary operator @, given in the operator forms3~%

l,(om{os"}nt»

(4.13)
0|e>'3{o>3n}L|0)DL

§|r—t

for the NCCM and ECCM, respectively.
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V. DISCUSSION

It is evident that the SUB N truncations in the coupled cluster methods are
potentla.lly hazardous because the asymptotic analytic forms of the functions e*5 or

become severely distorted from their exact behaviour. E.g., the states €5|0) are
not normalizable in the SUB N approximations with N > 3. Thus the SUB N
approximations imply excursions into more general linear spaces outside the Hilbert
space of normalizable functions. For this purpose the Bargmann representation in
terms of functions of complex variable is very well suited. The exact function F = €%,
which in our case is an entire function of order 2, may nevertheless be very well
represented by an approximate SUB N function exp S(V) |, where S(V) is a polynomial
of degree IV, in a part of the complex plane around the origin, although far away the
asymptotic behaviour is seriously wrong. For instance, the NCCM method focuses
attention on the behaviour of the function e"SHe’ just around the origin, requiring
it to be constant up to the derivatives of order N at z = 0. This feature allows us to
understand the practical success of the method in spite of the incorrect asymptotic
behaviour. The normalizability problem of the NCCM SUB N approximation has
been discussed also in Refs. 11-12. In the case of ECCM, the stationarity condition is
slightly more complicated, and obviously more sensitive to the asymptotic behaviour,
making the SUB N truncations even more risky.

The exact amplitudes S, and S| for the AO problem can be easily computed
either from the anharmonic spin analog or from the CI solution of the AQ problem
itself. However, it is doubtful whether they can be found from the SUB N solutions in
the limit N — oo (see also Ref. 12). This fact is rather significant and indicates that
the sequence of SUB N truncations may not ultimately converge for either NCCM
or ECCM. We interprete this to emphasize that ‘particle number’, or the number of
correlated fields in a ‘multilocal’ amplitude, is not a good concept in a field theory
with no particle number conservation. So far we have not tried to evaluate the exact
ECCM amplitudes o,. They cannot be obtained (at least to our numerical accuracy)
from the finite-dimensional spin analog. Nevertheless, they can be computed from the
exact analytic expressions given above. This would obviously be a very challenging
numerical enterprise.

On the basis of our numerical evaluations, the various coupled-cluster methods
at low and intermediate truncation indices N up to SUB 6...12 provide a very good
approximation for the energies of the ground state and the lowest excited states for all
values of the coupling constant A. In particular, for small values of the coupling con-
stant the accuracy typically increases in the order CI— NCCM — ECCM, whereas the
order is opposite for large coupling constants. However, for high SUB N (N — o)
the accuracy continues to improve indefinitely only in CI, whereas the NCCM stag-
nates to lower accuracy. In the ECCM the accuracy ceases to improve at an even
lower truncation level (for small A), or the solution is not even found for N 2 14 (for
higher ). Although the numerical difficulties in the limit N — co prevent us from
very decisive conclusions, it seems obvious that the SUB N approximations are com-
pletely safe and convergent only in the CI case. At fixed A, therefore, the convergence
with respect to the limit N — oo improves in the order ECCM — NCCM — CI.

Although the SUB N approximations are analytically somewhat questionable for
the coupled-cluster methods, we have been able to show that the NCCM and ECCM
methods perform rather satisfactorily even in the difficult case of the anharmonic
oscillator, which has no attributes of locality, separability, or size-extensivity. We have
not been able to demonstrate that the SUB N sequence of approximations ultimately
converges for NCCM and ECCM; on the contrary, we were unable to find convergent
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solutions to ECCM for large N in the case of higher A. Nevertheless, the ECCM
results for all the eigenenergies E, were, quite remarkably, found to be upper limits
to the exact values. This is by no means an expected result, because the ECCM (as
well as NCCM) is manifestly a non-Hermitian formulation of the many-body problem.
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