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ABSTRACT 

 

To address the influence of biaxial stress effects on fracture, experimental work has been reported in the 

literature on cruciform specimens containing defects. For example, some large-scale tests were carried out 

for the US Nuclear Regulatory Commission at the Oak Ridge National Laboratory in the 1990s, 

concluding that biaxial loading in the form of an additional out-of-plane stress component has the effect 

of reducing the fracture toughness.  More recently, Hohe et al. (2011) showed that these results could be 

reproduced using small-scale specimens.  Both these studies limited the biaxial stress ratio to between 0.6 

and 1. 

 

This paper focuses on experimental data from tests on large-scale cruciform specimens carried out by the 

Bhabha Atomic Research Centre (BARC) in India, with biaxial stress ratios of 0, 1 and 2. The 

experimental results show that the biaxial loading does have an effect on the failure load.  However, such 

biaxial effects can arise from both an influence of stress biaxiality, or constraint, on fracture toughness 

and an influence on crack driving force.  Both these effects are discussed in this paper.  The latter effect is 

demonstrated and reflected through an influence on the limit load when the results of the BARC tests are 

presented on the R6 Failure Assessment Diagram. 

 

INTRODUCTION 

 

There is little advice in fitness-for-service codes on dealing with the effects of biaxial loading on fracture 

behaviour. There has been historic research examining the effect of biaxial loading on failure parameters 

such as limit load and J solutions, (O’Dowd et al., 1999), (Wang, 2006), and more recent research by Lei 

and Budden (2014) and Meek and Ainsworth (2014) but there remains a paucity of experimental research 

to establish the effect of biaxial loading on fracture toughness.   

 

Tests on plates were carried out by Wright et al., (1994) who found that a biaxial loading of 

approximately 0.5 times the uniaxial loading increased the fracture toughness; tests on pipes by Østby and 

Hellesvik (2008) found that a biaxial load increased the crack driving force. Cruciform tests enable 

biaxial loading to be well controlled but are rare due to the large amount of material required and 

expensive testing equipment. However, some large-scale tests were carried out for the US Nuclear 

Regulatory Commission (NRC) at the Oak Ridge National Laboratory, (McAfee, et al., 1995), (Bass et 

al., 1999), where it was found that biaxial loading in the form of an additional out-of-plane stress 

component had the effect of reducing the fracture toughness.  

 

This paper focuses on the cruciform tests carried out more recently by the Bhabha Atomic Research 

Centre (BARC) in Mumbai.  The results from the experimental and finite element (FE) data are compared 

to examine how biaxial loading influences fracture by plotting predicted failure loads on an R6 (EDF 

Energy Nuclear Generation Ltd, 2015) Option 1 failure assessment diagram (FAD). The influence of 

biaxial loading on fracture and on one aspect of the FAD, the limit load, where the effect is better 
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understood, and recent research and results on these effects (Meek and Ainsworth, 2014), are described in 

the subsequent section. 

 

EXPERIMENTAL DATA 

 

The data analysed in this paper come from experimental and FE analysis by BARC and reported in a 

paper on the effect of biaxiality on fracture behaviour (Pawar et al., 2011).   The tests were performed in 

bending on six part-through cracked 20MnMoNi55 cruciform specimens, two at room temperature 

(CRRT10 and CRRT11) and the remaining four at −70°C (CRSZ10, CRSZ11,CRSZ21-A and CRSZ21-

B).  Changing the dimensions and support locations in the cruciform specimens led to differing biaxial 

load ratios.  Two had a biaxial load ratio B = 0, CRRT10 and CRSZ10, two were equibiaxial B = 1, 

CRRT11 and CRSZ11, and two had B = 2, CRSZ21-A and CRSZ21-B (see Figure 1).  The normalised 

crack depths, a/W, were approximately 0.15 for the uniaxial specimens (B = 0) and 0.26 for the biaxial 

specimens (B = 1, 2). 

 

Material properties were established using tensile tests on pipes and small-scale three point bend tests.  

These may be summarised as: Young’s modulus E = 210 000 MPa, Poisson’s ratio ν = 0.3; room 

temperature yield strength σy = 490 MPa, yield strength at −70°C σy = 490 MPa; elastic-plastic initiation 

fracture toughness at room temperature JIC = 250 kJ/m
2
 and at −70°C, JIC = 100 kJ/m

2
. 

 

Each cruciform specimen was loaded in bending to a maximum experimental load then unloaded and the 

extent of any crack growth from the pre-existing defect was measured.  Further details of the geometry 

and experimental methods are given in Pawar et al (2011).   

 

FAD INTERPRETATION OF EXPERIMENTS 

 

Interpretation of Finite Element Analysis Results 

 

In order to examine the effects of biaxial loading on fracture, the cruciform tests are analysed using the 

R6 (EDF Energy Nuclear Generation Ltd, 2015) Option 1 failure assessment diagram (FAD) (Figure 2) 

whose curve is given in Equation 1.  

Figure 1: Schematics of cruciform specimens, (a) CRRT10 and (b) CRSZ21B 

(a) (b) 
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Kr=[1+0.5Lr
2]

-1
2⁄ [0.3+0.7e(-0.6Lr

6)] 
(1) 

where Kr is the proximity to linear elastic fracture, defined by 

 

Kr=
K

Kmat

=√(
Je

J
) 

(2) 

where K is the stress intensity factor, Kmat is the elastic material fracture toughness, J is the J-integral and 

Je is the elastic component of the J-integral; and Lr is the proximity to plastic collapse defined by 

 

Lr=
F

F0

 (3) 

where F is the applied load and F0 is a reference or limit load. 

 
In the absence of stress intensity factor and limit load solutions, a method proposed by Zerbst et al. (2012) 

has been adapted in order to provide these inputs from FE analyses given in Pawar et al (2011) and hence 

enable failure assessment diagram assessments of failure load to be made. 

 

First, the figures of J versus load in Pawar et al (2011) have been digitised. The elastic Je has then been 

found by fitting a quadratic function, Je = constant * load
2
, to the lower load part of the graph.  This then 

defines the stress intensity factor for each specimen.  It was found that the solutions were very close to 

those obtained from application of the equations of Hohe et al. (2011), although the geometries 

considered here are strictly outside the range of application of these equations. 

 

Having deduced Je, values of J/Je were obtained from the J-integral versus load curves for the FE models 

of the six cruciform specimens given in Pawar et al. (2011). The method of Zerbst et al. (2012) proposes 

that since the reference load F0 is the load for which Lr = 1, i.e., from Equation 1, the load for which 

Kr = 0.559,  it is the load for which J/Je = 3.2 (Equation 2).  However, the values of J/Je found from the FE 

analyses in Pawar et al. (2011) do not exceed 3.05 and thus it is not possible to apply the method of 

Figure 2: R6 Option 1 Failure Assessment Diagram (FAD) 
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Zerbst et al. (2012) directly.  Instead, the reference load F0 is found by calculating, for the maximum FE 

load for each specimen, the value of Kr from Equation 2 using the calculated value of J/Je and hence the 

corresponding value of Lr using Equation 1.  The maximum FE load is then divided by this value of Lr to 

give the load for which Lr = 1, i.e. the limit load or reference load, F0, for each specimen; these are listed 

in Table 1. 

 

It should be recognised that the limit load F0 obtained by this method is subject to some uncertainty when 

the value of Kr is close to unity, since Equation 1 is then only weakly dependent on Lr.  This is why 

Zerbst et al. (2012) proposed to use a high value of J/Je, i.e. a lower value of Kr.  Although, in the absence 

of results at higher J/Je it has not been possible to apply the method of Zerbst et al. (2012) directly, it is 

noted that at low Kr the FAD assessments of the tests are not sensitive to the deduced values of F0.  

Therefore, in particular, although the estimate of F0 for test CRSZ21-B appears high, this has little 

influence on the corresponding estimate of initiation load. 

 
FAD assessments for the different values of B have then been performed by plotting the Kr vs Lr locus for 

each specimen on an R6 Option 1 FAD (Figure 3) using the initiation fracture toughness values given 

above. The predicted initiation loads, i.e. the loads at which the plotted Kr vs Lr loci meet the R6 Option 1 

FAD, are plotted against biaxial ratio B in Figure 4.  These results are discussed below and compared to 

the experimental data. 

 
Table 1: Results of FE analysis on cruciform specimens 

Specimen 

Max FE 

Load 

(kN) 

J/Je at 

Max FE 

Load 

Kr 

at Max 

FE Load 

Lr 

at Max FE 

Load 

Reference 

Load, F0 

(kN) 

CRRT10 2560 3.05 0.572 0.99 2586 

CRSZ10 2493 1.37 0.856 0.70 3575 

CRRT11 3576 2.23 0.670 0.91 3926 

CRSZ11 3801 1.53 0.808 0.77 4955 

CRSZ21-A 3011 1.24 0.898 0.61 4927 

CRSZ21-B 3099 1.10 0.952 0.44 7016 

 

 

Figure 3: R6 Option 1 FAD, all specimens  
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Experimental Results 

 

The experimental results of the tests on cruciform specimens are presented in Table 2 and compared to 

the predicted initiation loads using the FAD approach above, and also the predicted initiation loads 

obtained by Pawar et al. (2011) as the loads for which the FE values of J were equal to the initiation 

fracture toughness.  The two prediction approaches are similar, not surprisingly since the FAD inputs 

have been based on the FE data.   

 

For the uniaxial specimens, the initiation loads predicted by the FAD assessments in Table 2 are below 

the experimentally applied loads and hence some crack growth would be predicted in the experiments.  

The observed crack growth is however small and so the FAD assessments appear to be conservative. The 

equibiaxial specimens did not show any crack growth, even though for the low temperature specimen the 

test maximum load 3007 kN exceeds that predicted for initiation by the FAD assessment using uniaxial 

bend specimen fracture toughness. It can be seen from the Table 2 that the values of crack growth for the 

two biaxial specimens with B = 2 differ significantly, although they are almost identical in geometry and 

loading.  The applied loads are well in excess of the predicted initiation loads suggesting that the FAD 

and FE assessments are overly conservative in this case. 

  

Table 2: Results of experiments on cruciform specimens 

Specimen 
Max Load 

(kN) 

Maximum 

Crack Growth 

(mm) 

FE Predicted 

Crack Growth 

Initiation Load 

(kN) 

FAD Predicted 

Crack Growth 

Initiation Load 

(kN) 

CRRT10 2715 0.7 2300 2250 

CRSZ10 2730 0.1 1730 1646 

CRRT11 3037 0.0 3380 3245 

CRSZ11 3007 0.0 2675 2623 

CRSZ21-A 2766 1.2 1638 1656 

CRSZ21-B 2805 0.2 1742 1757 

 

Figure 4: Failure load vs biaxial ratio 

(a) (b) 
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GENERAL EFFECTS OF BIAXIALITY ON FAD ASSESSMENT 

 

It can be seen from both the experimental loads in Table 2 and the predicted initiation loads in Figure 

4(b), that there is not a monotonic effect of biaxiality on fracture load.  The fracture loads for B = 0 and 

B = 2 are similar, while those for B = 1 are higher.  These effects are discussed in this section in terms of 

the general effects of biaxiality on fracture.  

 

Theoretical and numerical FE analyses have been used by the authors to determine the effect of biaxial 

loading on the limit load for a number of plate geometries in plane strain and the trends with biaxiality are 

exemplified by those for centre cracked plates (Meek and Ainsworth, 2014).  For a range of crack sizes, 

upper and lower bound limit loads. as well as estimates from FE analysis, have been determined and these  

show (see Figure 5) that as the biaxial ratio increases, the limit load increases until the biaxial load ratio B 

reaches approximately 1 (equibiaxial loading); thereafter the limit load decreases.  

 

The non-monotonic trends in Figure 5 are consistent with those in Figure 4(b).  In general, negative and 

high positive values of B lead to a reduction in the limit load relative to that for uniaxial loading (B = 0), 

whereas loadings close to equibiaxiality (B = 1) lead to increases in the limit load.  Thus, negative and 

high positive values of B lead to increased plasticity and hence increased crack driving force for a given 

load normal to the defect, relative to the uniaxial case, whereas B = 1 leads to a reduced crack driving 

force.  Therefore, the non-monotonic variations with B for the experimental and predicted initiation loads 

for the cruciform specimens are consistent with the general trends of crack driving force with biaxiality.   

 

For predicting fracture behaviour, however, not only the crack driving force but also the material 

resistance to fracture is important.  Thus, the behaviour described above is complicated by the influence 

of biaxiality on fracture toughness.   

 

In R6 (EDF Energy Nuclear Generation Ltd, 2015), the constraint dependent fracture toughness, 



Kmat
c , is 

related to the high constraint fracture toughness, 



Kmat, by 

 

Kmat
c = Kmat[1+∝(-βLr)

m] (4) 

where 



 is a normalised measure of constraint discussed below and 



 , m are material and temperature 

dependent constants with α = 0 for high constraint, 



0 .  In the ductile regime, α and m are, 

additionally, functions of ductile crack growth.  Forms other than Equation 4 have been used in the 

Figure 5: Limit loads for centre cracked plates, H/W = 2 

(a) (b) 
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literature but the discussion of this section is not affected by any particular relationship between 



Kmat
c

 and 



Kmat. 

 

The constraint parameter 



 is here considered to be defined by the elastic T-stress as  

β=
T

Lrσy

 (5) 

 

A number of observations may be made: 

 

A. Firstly, the behaviour depends on material and fracture mode.  For cleavage fracture and toughness 

after significant ductile crack growth, there can be a significant elevation in 



Kmat
c  above Kmat, 

whereas for ductile initiation the effects tend to be rather smaller. 

B. Secondly, the constraint effect depends on the extent of plasticity, as represented by the value of Lr 

in Equation 4.  Thus, at low Lr, constraint effects are smaller whereas at high Lr they can be much 

greater. 

C. Thirdly, the constraint effects depend on the magnitude of the T-stress, which is proportional to 

load so that 



 is independent of load.  For deeply cracked bend specimens used for fracture 

toughness testing, constraint is high (



 > 0), whereas for shallow cracks in uniaxial tension, 

constraint can be low (T < 0).  Positive biaxial loads increase the T-stress whereas negative B 

reduces T. 

 

For the cruciform tests at low temperature, the fracture toughness is relatively low and fracture initiation 

occurs at low values of Lr (< 0.77).  Therefore, in view of (A) and (B), constraint effects would not be 

expected to be large and the effects of biaxial loading would be expected to be dominated by the effects 

on crack driving force via the effects on F0.  The maximum experimental loads for B = 0 and B = 2 are 

within 3% of each other whereas for B = 1, the loads are 10% higher.  While this is consistent with the 

trends in Figure 5, it should be recognised that for a given load, the stress intensity factor in the cruciform 

specimen with B = 2 is higher than for the uniaxial case and this leads to a reduction in predicted 

initiation load, below that observed experimentally. 

 

For the two cruciform tests at room temperature, a significant effect of biaxiality on limit load and 

predicted initiation load is predicted (45%), without any effect of constraint.  The observed increase 

(12%) in maximum experimental load is rather smaller but no ductile crack growth was observed in the 

specimen with B = 1.  Therefore, the results are not inconsistent with the predictions or with generally 

expected trends.  

 

CONCLUSIONS 

 

1. A method proposed by Zerbst et al. (2012) has been adapted to estimate the limit load for cruciform 

bend specimens from finite element J solutions. 

2. The estimates of limit load have been used to perform FAD assessments of 6 cruciform bend 

specimens with a range of biaxial load ratios.  The assessments lead to predictions of initiation load 

which are similar for B = 0 and B = 2 but higher for B = 1, broadly in line with the experimental 

results. 

3. The predictions above are consistent with the effects of biaxiality on limit load deduced from the 

finite element J solutions and with generally expected trends.  Thus, the influence of biaxiality in 
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these tests appears to be dominated by the effects on crack driving force, through the effect on limit 

load, rather than as a result of constraint effects on fracture toughness. 
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NOMENCLATURE 

 

a Crack size in cruciform specimen, half crack size in centre cracked plate  

B  Biaxial load ratio  

E Young’s modulus 

F Load applied during cruciform testing 

F0 Reference load 

H Half plate height 

J J-integral, elastic-plastic crack tip characterizing parameter 

Je Elastic component of J-integral 

JIC Elastic-plastic fracture toughness 

K Stress intensity factor 

Kmat Material fracture toughness 



Kmat
c  Constraint dependent fracture toughness  

Kr Proximity to LEFM failure = K/Kmat 

Lr Proximity to plastic collapse  

m Constant describing influence of constraint on fracture toughness 

T Elastic T-stress 

W Width in cruciform specimen, half plate width in centre cracked plate 



  Constant describing influence of constraint on fracture toughness 



 Normalised constraint parameter 

σy Yield stress 
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