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Infrared spectra of single biological cells often exhibit the ‘dispersion artefact’ observed as

a sharp decrease in intensity on the high wavenumber side of absorption bands, in particular the

Amide I band at �1655 cm�1, causing a downward shift of the true peak position. The presence of

this effect makes any biochemical interpretation of the spectra unreliable. Recent theory has shed

light on the origins of the ‘dispersion artefact’ which has been attributed to resonant Mie scattering

(RMieS). In this paper a preliminary algorithm for correcting RMieS is presented and evaluated

using simulated data. Results show that the ‘dispersion artefact’ appears to be removed; however, the

correction is not perfect. An iterative approach was subsequently implemented whereby the reference

spectrum is improved after each iteration, resulting in a more accurate correction. Consequently

the corrected spectra become increasingly more representative of the pure absorbance spectra.

Using this correction method reliable peak positions can be obtained.
1. Introduction

Cytological examination for disease diagnosis is being used more

extensively since the analysis of a few cells to diagnose a disease

state can obviate the need for more invasive intervention, for

example, taking a biopsy. It is still the case, however, that the

analysis of cells by eye under an optical microscope, even by

a highly trained cytopathologist is both a time-consuming and

subjective process. Specific disease recognition tools such as

immunohistochemical stains offer some assistance in the diag-

nosis procedure but these too are not without problems,1 thus

there is a real need to develop more objective methods of anal-

ysis. In recent years, there has been increasing interest in using

infrared micro-spectroscopy to study single biological cells.2–13

Infrared spectroscopy could, in principle, improve the sensitivity

and specificity of such analysis since it is completely objective,
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based upon biochemical changes rather than cellular architec-

ture. Several studies have already shown that FTIR can be used

to detect spectral changes in malignant and pre-malignant

cells14,15 and have shown results that compare very favourably

with visual cytology.16 Measuring an infrared absorbance spec-

trum from a single biological cell, however, is an inherently

flawed process. Given that the diameter of typical human cells

are in the region of �8–30 mm and the size of nuclei and other

organelles ranges from 1–10 mm, it is clear that mid-infrared

radiation with wavelengths of 3–10 mm will scatter strongly from

such samples. This scattering, dominated by Mie scattering, will

significantly distort the measured spectrum such that it appears

significantly different from the pure absorbance spectrum.13,17–24

Under such circumstances, in the absence of some form of

correction, band shape, spectral positioning and intensity of

signature features are unreliable and cannot be used with any

certainty to evaluate cellular biochemistry.13,22 This problem is

compounded in comparative studies of drug–cell interaction

where the action of a drug induces a change in cell morphology

that alters the scattering profile of the cell compared with

a control.12 An increase in scattering is often observed as cells

become more rounded, for example, due to the action of a cyto-

toxic agent. This causes the so-called Amide I band, usually the

strongest band in the spectrum, to exhibit an apparent loss of

intensity and a downward shift of the band centre. This can be

misinterpreted as a change in protein structure induced by the

drug. It is essential therefore that such distortions in IR spectra,

arising from scattering effects, should be removed to facilitate

recovery of the pure absorbance spectrum. Only then can spectra

be reliably compared from one cell to another and the influence

of anticancer agents and other cytotoxins be evaluated. To date,

the most successful method for removing spectral distortions,

including the effects of Mie scattering, has been the application

of the Extended Multiplicative Signal Correction (EMSC)
This journal is ª The Royal Society of Chemistry 2010



algorithm,20 which works well in most cases, particularly where

the Mie scattering is weak and where the spectra do not show

strong distortion (dispersion artefact) of the Amide I band.12

Where the dispersion artefact is strong, however, conventional

EMSC struggles to correct this important region of the spectrum.

Bassan et al. have recently shown that the principal origin of the

dispersion artefact is a process termed resonant Mie scattering

(RMieS)22 in both FTIR transmission and transflection mode

measurements. Briefly, this relates to the fact that the Mie scattering

efficiency is dependent upon the refractive index of the sample and

this changes on passing through an absorption resonance.22

Measurements in transflection mode are subject to further distor-

tion when the cellular reflection is comparable to the (doubly)

transmitted intensity.23 In Part A of this paper we illustrate the

problem of spectral distortions with infrared data collected from

prostate cancer cells, known to give rise to a strong Mie scattering/

dispersion artefact, and show that the spectral distortions can be

corrected for using a modified version of EMSC (RMieS-EMSC).

However, as with all correction algorithms it is important to know

‘how well has the distorted spectrum been corrected’? To this end, in

Part B of the paper, simulated data are artificially distorted and then

corrected using the new correction algorithm. Since the simulated

pure absorption spectrum is known, the effectiveness of the

correction procedure can be evaluated.

Part A
Fig. 1 (a) Optical image of a PC-3 cells (i) and an IR spectrum of the

smaller cell (ii). (b) Corrected IR spectrum using an existing Mie scat-

tering-EMSC algorithm. (c) Corrected spectrum using new RMieS-

EMSC algorithm.

† All absorbances quoted in this paper are decadic, i.e. �log10(I/I0).
2. Experimental

2.1 Cell culture

Cultures of PC-3 cells, a human prostate cancer cell line, were

grown on 70% v/v ethanol-sterilised, CaF2 plates (Crystran Pool,

UK) using standard protocols.7,26 The cells were cultured in

Ham’s F12 with 7% FCS and 2 mM L-glutamine at 37 �C in

a humidified atmosphere of 5% CO2. Reagents were purchased

from Sigma-Aldrich (Poole, UK) and tissue culture media were

obtained from Invitrogen (Paisley, UK). Once the cells were 70%

confluent the CaF2 plates were removed from the growth

medium and fixed in 4% formalin in phosphate-buffered saline

(PBS) for 20 min at room temperature, washed in distilled water

to remove residual PBS from their surface, dried under ambient

conditions and stored in a desiccator prior to analysis.

2.2 Infrared microscopy

The synchrotron FTIR micro-spectroscopy data were recorded

at the synchrotron SOLEIL on the SMIS beamline, details of

which can be found elsewhere.26 The spectra were obtained using

a Nicolet Continuum XL microscope equipped with a 50 mm

MCT detector. Spectra were recorded at 4 cm�1 resolution. The

size of the aperture was adjusted to match the diameter of the cell

such that it was fully illuminated.

3. Infrared results and data analysis

3.1 Raw infrared spectrum

Fig. 1a(i), shows an optical image of two PC-3 cells. The cell on

the right is typical of this cell line, being slightly flattened and
This journal is ª The Royal Society of Chemistry 2010
having a diameter of �26 mm. The cell on the left is smaller,

�13 mm, more rounded with very little cytoplasm and is optically

denser. Although very much in the minority, these morphologi-

cally smaller cells are often observed in PC-3 cultures and are

believed to be cells that have divided just prior to fixation. PC-3

cells are unusual in that they often divide perpendicularly to the

substrate and the unattached daughter cell is often washed away

during the fixation process. The infrared spectrum of the small

rounded cell is shown in Fig. 1a(ii). The spectrum looks highly

distorted compared to a pure absorbance† spectrum, showing

a broad hump in the baseline between 2000 and 4000 cm�1, part

of the broad oscillation of the baseline, associated with classic

(non-resonant) Mie scattering, as well as the dispersion artefact;
Analyst, 2010, 135, 268–277 | 269



the pronounced dip in absorbance at 1750 cm�1 is predominantly

due to RMieS. This profile is typical of many small single-cell

infrared spectra and supports the assumption that scattering in

cells is primarily from the cell nucleus.22,23 In Fig. 1a(ii) we

observe that the position of the Amide I band is at 1641 cm�1,

which if interpreted as a signal with no scattering artefact would

be indicative of a predominance of b-sheet and random coil

secondary protein structure within the cell.27
3.2 EMSC correction

An explanation of the EMSC will be given fully in Part B of this

paper. However, the Mie scattering-EMSC20,25 has been applied

to the raw spectrum in Fig. 1a, to produce the corrected spectrum

shown in Fig. 1b. As can be seen, the large baseline oscillation

has been removed but the dispersion artefact indicated by the

reduced intensity on the higher wavenumber side of the Amide I

band is still present. The peak of the Amide I band has up-shifted

by 9 cm�1 to 1650 cm�1. This is significant since, again taken at

face value, it would imply predominance of random coil plus

turns and bends and rather less b-sheet protein secondary

structure. However, from our previous work on PMMA micro-

spheres the presence of the dispersion artefact is likely to

significantly influence both the shape and position of the Amide I

band.22
3.3 Resonant Mie scattering (RMieS)/EMSC correction

In order to correct for the dispersion artefact caused by RMieS

we have developed a new modified version of EMSC which is

also discussed in further detail in Part B. This correction

algorithm has been applied to the data in Fig. 1a to produce

the spectrum in Fig. 1c. As can be seen, the spectrum now

resembles a conventional FTIR absorbance spectrum with

a relatively flat baseline and no apparent dispersion artefact. In

addition, the Amide I band has shifted further to 1654 cm�1,

which suggests that the secondary structure present is largely

a-helix.

At this point it is reasonable to assume that the RMieS cor-

rected spectrum closely represents the pure absorbance spectrum

that would have been measured in the absence of any scattering.

Thus for the first time it would appear that the band positions

can be interpreted in terms of the real biochemistry present in the

cell. However, since we can never know for sure the ‘correct’

absorbance spectrum of an inherently strong scattering sample,

we cannot test the above assumption using real biological cells.

We have, therefore attempted to evaluate the accuracy of the

correction algorithm using simulated data.
Part B
4. Evaluating the algorithm

It is important for the understanding of this paper to briefly

outline the various processes performed by the correction

algorithms. Since the RMieS-EMSC algorithm builds on the

standard EMSC algorithm it is useful to start our discussion at

this point.
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4.1 Extended Multiplicative Signal Correction (EMSC)

The EMSC is a model-based multivariate data pre-processing

method and based on linear statistical regression modelling.25

However, it can also be extended to handle non-linear effects, e.g.

physical effects such as Mie scattering, that otherwise require

non-linear mathematical modelling. This is done by representing

the non-linear mathematical modelling by a low-rank multivar-

iate bi-linear model.20 Offsets and baseline slopes are removed

effectively, whilst the multiplicative part of the algorithm

compensates for optical path length differences, essentially nor-

malising the spectra. This is done by taking a reference spectrum

which can be the mean spectrum of the sample data set or

a spectrum with similar spectral features, hereafter referred to as

ZRef. The algorithm takes the reference spectrum and attempts to

recreate the raw spectrum to be corrected (ZRaw) by adding an

offset, a slope and amplifying the reference by multiplication.

This can be summarised algebraically, where symbols with

arrows above represent vectors, i.e. a column of spectral intensity

values

~ZRaw ¼ cþm~~vþ h~ZRef þ ~E (1)

where ZRaw ¼ the raw spectrum, ZRef ¼ reference spectrum, c ¼
constant value for spectrum offset, m ¼ gradient of the sloping

baseline, ~n ¼ wavenumber (reciprocal wavelength, i.e. l�1), h ¼
multiplicative scaling factor, and ~E ¼ un-modelled residual

information.

By finding the values of c, m and h using a least squares linear

regression method, the spectrum can be corrected. An extension to

this was published by Kohler et al.20 where oscillating baseline

variations due to Mie scattering, obtained by a linear sub-space

model of Mie scattering effects as described in the following

section, were corrected for by adding an additional term to eqn (1).
4.2 Non-resonant Mie scattering EMSC

In 1957, van de Hulst28 published an approximation equation

for the Mie scattering efficiency, Q, which is a simpler and less

computationally intensive version of the original theory

published in 1908 by Mie.29 The Mie approximation, eqn (2),

explained further in eqns (3)–(5) is given as

Q ¼ 2� 4

r
sin rþ 4

r2
ð1� cos rÞ (2)

where

r ¼ 2pdðn� 1Þ
l

(3)

and where, n and d denote the ratio of the real refractive indices

of particle and surrounding medium, and the diameter of the

scattering particle respectively. In this case, the medium is air for

which the real refractive index is essentially 1, hence n simplifies

to the real refractive index of the scattering particle. For

convenience, the r term was simplified to

r ¼ a

l
(4)

so

a ¼ 2pd(n � 1) (5)
This journal is ª The Royal Society of Chemistry 2010



The introduction of this a parameter enabled a single variable to

describe the product of the refractive index and particle diameter.

The model of the expected Mie contribution in eqn (2) is a non-

linear function of r which in turn is a non-linear function of ~v and

a in eqn (4). If these non-linear functions were to be implemented

directly into the pre-processing, a non-linear and complicated

parameter estimation problem would have to be solved. Instead,

the non-linear function can be approximated by a multivariate

bi-linear model and incorporated into the linear EMSC model;20

thereby, the parameter estimation is done by a simple one-step

multivariate linear regression. To this purpose, 200 different

a values were chosen to cover the range of parameter values for

d and n considered relevant for the present application:

d: 2 to 20 mm

n: 1.1 to 1.5

This resulted in 200 output spectra as a function of ~v. The

200 ‘Q curves’ are decomposed using a non-mean-centred prin-

cipal component analysis (PCA) to find the principal compo-

nents of the data matrix. The first six loadings, p1/p6,

summarised 99.99% of the sum-of-squares in the 200 simulated

spectra. They were thus considered to be an adequate bi-linear

approximation of the non-linear Mie model under the present

conditions. These loadings are used to produce a new correction

algorithm, summarised algebraically below:

~ZRaw ¼ cþm~~vþ h~ZRef þ
X6

i¼1

~gipiþ~E (6)

The fourth term in the equation (containing the summation) is

where the variations from Mie scattering are covered. A precise

weighting for each of the six loadings is added, controlled by the

parameters ‘gi’ which are calculated during the least squares

linear regression. Since the loading vectors are orthogonal, the

parameter estimation by least squares regression is very stable.

The vector ~E represents the un-modelled residual variance which

could not be described by the EMSC model. Ideally, the residual

should be zero, indicating that the model described all features;

however, this is rarely the case in practice; in fact, all the inter-

esting chemical variations remain in the residual spectra, unless

they have been modelled explicitly by including, for example,

analyte spectra in the EMSC model (not used in this paper). The

described algorithm is successful at removing the smooth oscil-

lations due to Mie scattering; however, the dispersion artefact

often remains.
4.3 Resonant Mie scattering (RMieS)/EMSC correction

algorithm

Recently, the origins of the so-called dispersion artefact have

been understood and linked to resonant Mie scattering (RMieS),

connecting the broad oscillations and the sharp decrease in

apparent absorbance on the higher wavenumber side of

absorption bands.22 Knowledge of the origin of the phenomenon

enables a new correction algorithm to be constructed, presented

in this paper that removes both broad oscillations in the baseline

and the dispersion artefact, both of which derive from resonant

Mie scattering (RMieS).

Bassan et al. documented that the dispersion artefact is

predominantly due to resonant Mie scattering (RMieS) caused
This journal is ª The Royal Society of Chemistry 2010
by a changing real refractive index near an absorption band.22

This causes some degree of index matching meaning that the

efficiency with which the photons are scattered at this wave-

number is reduced to almost zero, visually interpreted as a sharp

decrease in absorbance.

The algorithm by Kohler et al.20 therefore needs modification

to correct for resonant Mie scattering. The spectrum of the real

refractive index of a material can be calculated from its absor-

bance spectrum, which is proportional to the imaginary refrac-

tive index (k):

n
�
~v
�
¼ hni þ 2

p
P

ðN

0

s� kð~vÞ
s2 � ~v 2

ds (7)

where hni is the average real refractive index, and P denotes the

Cauchy principal of improper integrals, needed in this case when

s ¼ ~v as a division by zero occurs creating a singularity. The

solution to this is to perform two integrations either side of the

singularity.

The output from the Kramers–Kronig transform30,31 is the

refractive index spectrum minus the average real refractive index,

hereafter referred to as nKK.

nKK ¼ n
�
~v
�
� hni ¼ 2

p
P

ðN

0

s� kð~vÞ
s2 � ~v 2

ds (8)

The k term can be replaced by the reference spectrum as they are

nearly proportional:

ZRef(~v) f kZRef
(~v) (9)

The 2/p factor can also been omitted as we are only interested in

the proportional relationship of nKK and the Kramers–Kronig

transform of ZRef:

nKK

�
~v
�
fP

ðN

0

s� kð~vÞ
s2 � ~v 2

ds (10)

The average refractive index of each sample is again unknown, as

is the imaginary refractive index. The nKK spectrum is arbitrarily

normalised so that its minimum value is�1, the reason for this is

explained later. To construct a refractive index for insertion into

eqn (11), two terms a and b need to be defined as the average

refractive index and an amplification factor for nKK respectively:

n ¼ a + bnKK (11)

The parameter b is required as the ZRef used is not the correct

input for the Kramers–Kronig transform. It is, however, directly

proportional and so a scaling parameter can be used to

compensate. The refractive index cannot go below a value of 1,

and this is ensured by carefully controlling the value of b. If an

average refractive index a ¼ 1.3 is used (typical for a biological

sample), then b can range from 0 to 0.3, resulting in the minimum

value being 1. The particle diameter d is the last parameter which

needs to be varied to cover many scattering possibilities giving

a total of three parameters: a, b and d.

For each parameter, 10 equidistant values were used between

the ranges:
Analyst, 2010, 135, 268–277 | 271



Fig. 2 (a) All 50 simulated ‘pure absorbance’ spectra shown on one plot.

(b) The corresponding PCA scores plot of the data.
a: 1.1 to 1.5

b: 0 to (a � 1)

d: 4 to 40 mm

This results in 1000 permutations. This equivalence data set is

compressed by PCA and approximated by a small number of

loadings (seven in this case, explaining 99.9% of the total sum-of-

squares in the 103 simulated spectra). The total number of

‘descriptive vectors’ in the linear EMSC model is now ten, con-

sisting of seven loadings, the reference spectrum, plus the

constant and sloping baselines. All the model parameters are

estimated simultaneously by multiple linear regression solved by

least squares estimation. As in the Mie scattering-EMSC,22 the

parameter estimation is stable due to the orthogonality of the

loadings.

The remainder of the algorithm is exactly the same as the

previously published Mie scattering-EMSC,20 except that seven

loadings are now used from the data matrix of 103 RMieS Q

curves:

~ZRaw ¼ cþm~~vþ h~ZRef þ
X7

i¼1

~gipiþ~E (12)

5. Evaluating the RMieS algorithm

5.1 Evaluation methodology

The new algorithm subtracts a curve which is the sum of

a constant value offset, c, a sloping baseline, m~v and the RMieS

curve, Q which is described by the summation term in eqn (12). If

the pure absorbance spectra of some of the major and most

strongly varying chemical constituents in the samples correlate

(overlaps) with some of the spectra in the EMSC model, the

EMSC algorithm potentially can remove chemical information

from the pure absorbance spectrum of the sample which is

undesirable as results may be distorted and unreliable. This

problem can be alleviated by including important constituent

spectra in the EMSC model. However, for single-cell spectra

these are presently considered unknown. Hence, to validate the

algorithm, a simulated data set where all constituent effects are

known was created. The set was simulated to form two groups

(clusters) of data, each with 25 spectra. These spectra were

created by adding together a number of Gaussian curves with

various peak positions, heights and widths. The spectra were

created so that they visually appeared to be similar to the

fingerprint region of typical biomedical IR spectra; however, no

two spectra were identical. A spectrum of a thin layer of Matrigel

(an artificial basement membrane consisting mainly of protein32)

was used as a ‘template’ to acquire peak parameters. A random

number generator was used to vary the positions (�1 cm�1),

heights (�20%) and widths (�2.5%) of peaks within each spec-

trum. The second data set was subject to the same random

variation as the first but was intentionally given a higher absor-

bance by 0.1 at the 1300 cm�1 and 1740 cm�1 peaks so that the

two groups of data would appear different when analysed using

PCA. These simulated data and the corresponding score plot for

the first two PCA components are shown in Fig. 2. As expected,

two distinct clusters of spectra can be observed. This two-

component model accounted for 81.9% of the variance in these

‘ideal’ data.
272 | Analyst, 2010, 135, 268–277
To create a data set affected by RMieS from multiple scat-

tering particles, each spectrum from the pure absorbance spectra

data set was taken and 10 unique scattering curves, Q, were

added to each one. The refractive index used was the correct one

corresponding to each spectrum, and a random number gener-

ator was used to create different scattering particle diameters

ranging from 4 to 10 mm and an average refractive index varying

between 1.3 and 1.4.

The resultant spectra are shown in Fig. 3a and closely resemble

the type of data typically observed for single cells. Fig. 3b shows

that, despite the fact that the original pure spectra consist of two

distinct groups, the spectra no longer separate using PCA even

when the 2nd derivative of the data is used. This is because the

spectral distortions induced by scattering are generally signifi-

cantly larger than real spectral differences associated with subtle

differences in biochemistry. This data set of scattered spectra and

the corresponding pure absorbance are subsequently used to test

the algorithm.
This journal is ª The Royal Society of Chemistry 2010



Fig. 3 (a) The 50 simulated ‘pure absorbance’ spectra from Fig. 2a, after

the superposition of 10 unique artificial Mie scattering curves. (b) PCA

scores plot for the total data set of the 2nd derivative of raw spectra and

EMSC normalisation.

Fig. 4 (a) The artificial spectra corrected using original Mie scattering-

EMSC algorithm. (b) The corresponding PCA scores plot of the

corrected spectra.
5.2 Correction results

5.2.1 Correction results using existing Mie scattering-EMSC.

Fig. 4a shows the resulting spectra after the Mie scattering-

EMSC correction algorithm is applied. As can be seen the

baseline oscillations have been removed but the dispersion arte-

fact is still very prominent in many of the spectra. The two data

sets still cannot be distinguished using PCA, Fig. 4b, because the

variation associated with the dispersion artefact that still remains

is still larger than the known true spectral differences.

5.2.2 Correction using RMieS model

5.2.2.1 Ideal correction. The reference spectrum used to

correct each scattered spectrum was the pure absorbance spec-

trum of each sample, giving the algorithm the most ideal

conditions. The resulting corrected spectra look almost identical

to those in Fig. 2a, as expected, and hence they are not shown.

The PCA scores plot for these corrected spectra is also practically

identical to that of the pure absorbance spectra in Fig. 2b. By

subtracting the corrected spectra from the pure absorbance

spectra it was observed that the differences were four orders of

magnitude smaller than the pure absorbance spectra, hence

negligibly different.
This journal is ª The Royal Society of Chemistry 2010
This result is non-trivial as it demonstrates that a scattered

spectrum can be corrected using our method if the reference

spectrum used is a perfect match, even though 10 scattering

curves of unknown scattering particle diameter were added. The

mathematics of the algorithm have been verified and the concept

of using PCA to describe the majority of variance within 1000 Q

curves into 7 loading spectra has proved a success.

5.2.2.2 Using an imperfect reference spectrum. Although the

previous section shows that correcting a spectrum with an ideal

reference spectrum will give the correct result, it is clear that the

perfect reference spectrum will almost never be available in

practice. Thus a compromise has to be made. One option is to use

the mean spectrum of the whole data set under investigation. The

mean spectrum was used for the correction of each spectrum

meaning that none of the spectra has the perfect conditions for

correction.

The resultant PCA scores plot shown in Fig. 5a is independent

of the pure absorbance scores plot in Fig. 2b, making a direct

comparison difficult; however, projecting the corrected spectra

onto the loadings from the pure absorbance spectra produces

a directly comparable scores plot.

Such a plot is shown in Fig. 5b where the scores of the cor-

rected spectra are shown in the same ‘sub-space’ as those of the

pure absorbance spectra, achieved by projecting the corrected

spectra on the loadings from the pure absorbance spectra. This
Analyst, 2010, 135, 268–277 | 273



essentially means that they are being viewed from the same point

of view, mathematically speaking, making a direct comparison of

positions possible. Fig. 5c shows the scores plot on the same scale

with the arrows indicating the movement of each point from its

ideally corrected position. The main observation here is that the

corrected spectra separate into two separate groups, so from

a pragmatic classification point of view, the pre-processing has

been successful. However, since we also want to interpret the

spectral details of the pre-processed spectra, it is a problem that
Fig. 5 (a) PCA scores plot of the corrected spectra. (b) Scores plot of the

non-ideal corrected data projected onto the loadings from the pure

absorbance spectra PCA. (c) A plot showing the shift of the non-ideal

reference corrected spectra from their correct pure absorbance positions.
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the pre-processed spectra are not in their expected positions.

Firstly, they have moved somewhat towards the reference spec-

trum, which is the mean spectrum located at the origin.

Secondly, this result shows that using a non-ideal reference

spectrum to some extent does affect the quality of the corrected

spectra; they exhibit greater similarity to the reference spectrum.

Although the spectra have not been corrected perfectly the

results do still show that there are two clear groups of data which

may be sufficient for certain applications.

5.2.2.3 Iterative correction method. In order to improve the

spectral correction process even further, the model spectra going

into the EMSC model may be optimized for the given purpose.

This is achieved here by iteratively improving the reference

spectrum, by letting the original, non-ideal reference spectrum

(the mean of the input spectra) be replaced by the corrected

spectrum from the previous iteration for each corresponding

spectrum. The algorithm is run once more correcting the

raw spectrum again using the new reference. This iterative

approach is depicted schematically in Fig. 6.

Fig. 7 shows the effect of increasing iterations on the accuracy

of the correction, calculated by projecting the corrected spectra

onto the loadings from the pure absorbance spectra. Using this

iterative approach, the corrected spectra move towards their pure

absorbance spectra in score space with increasing number of

iterations, indicating an improvement in the quality of the

correction. For this particular data set, convergence of the

algorithm is reached after 8 iterations before the corrected

spectra have moved to their pure absorbance positions; however,

there is a significant improvement upon the first iteration. This is

illustrated further in Fig. 8 which shows the sum of Pythagorean

distances of the PCA scores plot of the corrected spectra, pro-

jected onto the original pure absorbance spectra sub-space, as

a function of iteration. For comparison, the data point for the

previous Mie Scattering-EMSC is also shown. As can be seen,

using the RMieS-EMSC algorithm produced a significant

improvement which continues with each iteration, in this case up

to 8 iterations. The number of iterations required will of course
Fig. 6 Flow chart illustrating the iterative procedure implemented to use

the corrected spectrum as the new reference spectrum and running the

algorithm once more.
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Fig. 7 Scores plot showing the scores shift of the iteratively corrected spectra from iteration 1 to 2, 2 to 3, 3 to 4 and 4 to 10. Arrows show that each

spectrum is moving towards its true absorbance spectrum position. All spectra were projected onto the loadings from the pure absorbance spectra.
depend on the data set but further work, to be published else-

where, suggests that 10 iterations should be sufficient in most

cases.33

Although the sum of the Pythagorean distances give

a measure of how well the correction algorithm works, it is
Fig. 8 Plot of sum of the Pythagorean distance of PCA scores away

from the score positions for the pure absorbance spectra (measured on

a common sub-space) vs. iteration. The first point on the plot is for the

Mie Scattering-EMSC algorithm.

This journal is ª The Royal Society of Chemistry 2010
useful to consider other qualitative measures. Fig. 9a shows the

Amide I band for the original uncorrected simulated data. The

original position of the peak was set to 1655 � 1 cm�1 indicated

by the leftmost vertical line. The actual peak positions of the

simulated scattering data range from 1635.9 to 1647.0 cm�1 with

a mean of 1642.3 cm�1. Thus it is clear that the significant shift

in peak wavenumber is induced by the RMieS. The hitherto

existing Mie scattering-EMSC correction significantly improves

the overall data and brings down the sum of the Pythagorean

distances (from the pure absorbance spectra) from a value of 95

to 22 but has little impact on the Amide I peak position Fig. 9b.

The peak position of the EMSC corrected spectra range from

1636.8 to 1647.1 cm�1 with a mean of 1642.7 cm�1. It is only

when the RMieS-EMSC correction is performed that a band

position close to the correct wavenumber value is obtained.

Fig. 9c shows that the Amide I bands are now closely aligned,

ranging from 1653.0 to 1656.4 cm�1 with a mean of

1654.5 cm�1. This is a potent illustration of the fact that

although the Mie Scattering-EMSC may successfully enable

data to be separated into groups (which is often the aim of the

experiment), any biological interpretation of the data, particu-

larly with respect to the Amide I band and associated protein

structure, cannot be made unless the RMieS-EMSC correction

is applied.
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Fig. 9 The Amide I band shown for (a) the uncorrected, (b) Mie Scat-

tering-EMSC corrected and (c) RMieS-EMSC corrected spectra.
6. Conclusion

In this work we have presented a model for the dynamics of

Mie scattering in single-cell spectra, and a correction method

based on those dynamics. We have shown that using the true

absorbance spectrum as the reference spectrum for each

correction, every scattered spectrum can be corrected essentially

perfectly. This result is non-trivial as it illustrates the concept of

compressing 1000 scattering Mie curves into a small number of

principal component loading spectra and using these in

a least squares fitting algorithm to estimate the scattering

contributions.
276 | Analyst, 2010, 135, 268–277
The second and more interesting test was the correction of the

spectra using a non-ideal reference spectrum which was non-

ideally suited to any spectrum as would be the case in real life as

the true spectrum is unknown. This method yielded corrected

spectra that still separated the test data set into two groups as

they should when analysed with PCA.

Using an iterative correction process whereby the corrected

spectrum becomes the new reference spectrum it has been shown

that the new corrected spectrum resembles its true pure absor-

bance spectrum even further. The limitation of this method is

that convergence is reached before each spectrum is corrected

perfectly; however, each corrected spectrum is a significantly

better representation of its true spectrum compared with that

before the correction.

Most importantly, we have shown that the true position of the

biologically significant Amide I band can only be obtained with

the RMieS-EMSC algorithm. It follows therefore that interpre-

tation of previously uncorrected single-cell infrared spectra, in

terms of protein secondary structure, must be viewed with

extreme caution.

Further work is underway to improve on the incorporation of

the theory of the scattering process into the algorithm, and new

ways to provoke a stronger convergence during the iterative

correction procedure. This will be the subject of a paper in the

near future.
Acknowledgements

We acknowledge the EPSRC-RSC Analytical Science Student-

ship scheme for support for P. B., and the EU-Special support

action (DASIM project) for facilitation of meetings. We also

acknowledge the EU for funding travel to SOLEIL and we thank

all the staff at SOLEIL particularly those associated with the

SMIS beamline. A. K. and H. M. acknowledge support from the

Norwegian Agricultural Food Research Foundation.
References

1 L. J. Fowler and W. A. Lachar, Arch. Pathol. Lab. Med., 2008, 132(3),
373–383.

2 N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud,
L. G. Carr and G. P. Williams, Proc. Natl. Acad. Sci. U. S. A.,
1998, 95, 4837–4840.

3 P. Lasch, A. Pacifico and M. Diem, Biopolymers, 2002, 67, 335–338.
4 P. Lasch, M. Boese, A. Pacifico and M. Diem, Vib. Spectrosc., 2002,

28, 147–157.
5 P. Dumas and L. Miller, Vib. Spectrosc., 2003, 32, 3–21.
6 P. Dumas, N. Jamin, J. L. Teillaud, L. M. Miller and B. Beccard,

Faraday Discuss., 2004, 126, 289–302.
7 E. Gazi, J. Dwyer, N. P. Lockyer, P. Gardner, J. Miyan, C. A. Hart,

M. D. Brown, J. H. Shanks and N. W. Clarke, Biopolymers, 2005, 77,
18–30.

8 E. Gazi, J. Dwyer, N. P. Lockyer, J. Miyan, P. Gardner,
C. A. Hart, M. D. Brown and N. W. Clarke, Vib. Spectrosc.,
2005, 38, 193–201.

9 E. Gazi, P. Gardner, N. P. Lockyer, C. A. Hart, N. W. Clarke and
M. D. Brown, J. Lipid Res., 2007, 48, 1846–1856.

10 D. A. Moss, M. Keese and R. Pepperkok, Vib. Spectrosc., 2005, 38,
185–191.

11 M. J. German, A. Hammiche, N. Ragavan, M. J. Tobin, L. J. Cooper,
N. J. Fullwood, S. S. Matenhelia, A. C. Hindley, C. M. Nicholson,
N. J. Fullwood, H. M. Pollock and F. L. Martin, Biophys. J., 2006,
90, 3783–3795.
This journal is ª The Royal Society of Chemistry 2010



12 J. Sul�e-Suso, D. Skingsley, G. D. Sockalingum, A. Kohler,
G. Kegelaer, M. Manfait and A. J. El Haj, Vib. Spectrosc., 2005,
38, 179–184.

13 M. Romeo, B. Mohlenhoff and M. Diem, Vib. Spectrosc., 2006, 42,
9–14.

14 B. R. Wood, L. Chiriboga, H. Yee, M. A. Quinn, D. McNaughton
and M. Diem, Gynecol. Oncol., 2004, 93, 59.

15 M. Romeo, C. Matthaus, M. Miljkovic and M. Diem, Biopolymers,
2004, 74, 168.

16 B. Bird, M. J. Romeo, M. Diem, K. Bedrossian, N. Laver and
S. Naber, Vib. Spectrosc., 2008, 48, 101–106.

17 B. Mohlenhoff, M. Romeo, M. Diem and B. R. Wood, Biophys. J.,
2005, 88, 3635–3640.

18 S. Boydston-White, T. Gopen, T. Houser, J. Bargonetti and M. Diem,
Biospectroscopy, 1999, 5, 219–227.

19 M. Romeo and M. Diem, Vib. Spectrosc., 2005, 38, 129–132.
20 A. Kohler, J. Sul�e-Suso, G. D. Sockalingum, M. Tobin, F. Bahrami,

Y. Yang, J. Pijanka, P. Dumas, M. Cotte, D. G. van Pettius,
G. Parkes and H. Martens, Appl. Spectrosc., 2008, 62, 259–266.

21 J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke and
P. Gardner, Analyst, 2007, 132, 750–755.

22 P. Bassan, H. J. Byrne, F. Bonnier, J. Lee, P. Dumas and P. Gardner,
Analyst, 2009, 134, 1586–1593.
This journal is ª The Royal Society of Chemistry 2010
23 P. Bassan, H. J Byrne, J. Lee, F. Bonnier, C. Clarke, P. Dumas,
E. Gazi, M. D. Brown, N. W. Clarke and P. Gardner, Analyst,
2009, 134, 1171–1175.

24 J. K. Pijanka, A. Kohler, Y. Yang, P. Dumas, S. Chio-Srichan,
M. Manfait, G. D. Sockalingum and J. Sul�e-Suso, Analyst, 2009,
134, 1176–1181.

25 H. Martens, J. P. Nielsen and S. B. Engelsen, Anal. Chem., 2003, 75,
394–404.

26 P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. L. Giorgetta and
S. Lefrancois, Infrared Phys. Technol., 2006, 49, 152–160.

27 B. Stuart, Biological Applications of Infrared Spectroscopy, John
Wiley and Sons Ltd, Chichester, UK, 1997.

28 H. C. van de Hulst, Light scattering by small particles, Dover
Publications, Mineola, NY, 1981.

29 G. Mie, Beitr€age zur Optik tr€uber Medien, speziell kolloidaler
Metall€osungen, Ann. Phys., 1908, 330, 377–445.

30 R. de L. Kronig, J. Opt. Soc. Am., 1926, 12, 547–557.
31 H. A. Kramer, Atti Congr. Intern. Fisica Como, 1927, 2, 545–557.
32 H. K. Kleinman, M. L. McGarvey, J. R. Hassell, V. L. Star,

F. B. Cannon, G. W. Laurie and G. R. Martin, Biochemistry, 1986,
25, 312–318.

33 P. Bassan, A. Kohler, H. Martens, J. Lee and P. Gardner, to be
published.
Analyst, 2010, 135, 268–277 | 277


	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples

	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples

	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples

	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples

	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples
	Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples




