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Abstract: Two approaches to the problem of calculating the binding energy BA of a
A-particle in nuclear matter are discussed. The first method is via the Bethe-
Goldstone equation for the problem in the independent-pair approximation. The
second method is a Green-function formulation which sums the ladder diagrams
for the self-energy of the A-particle. Using an S-wave separable potential fitted
to the AN scattering data, exact analytic expressions for BA are found for both
methods and compared. The relation between the two approaches is discussed
and it is shown how to extend the Green-function formulation to include the effect
of the higher-order cluster diagrams, contributing to the A-particle self-energy,
in a consistent manner. It is pointed out that this approach provides a more sys-
tematic formulation than the usual extended Bethe-Goldstone approach. The
model AN hard core problem is also investigated in the Green function approach
in an appendix: the ground-state energy is rederived and expressions are found
for the effective mass and damping of the A-quasi-particle up through terms of
order (kFa)z.

1. INTRODUCTION

The purpose of this paper is to compare two methods for computing the
binding energy for a A-particle in nuclear matter; where the A-particle
thus plays the role of an impurity. Since it is distinct from the nucleons, it
will be at rest in the ground state, as the exclusion principle applies only
to the nucleons. Nuclear matter is considered to consist of equal numbers
2A of protons and neutrons interacting via purely nuclear forces, i.e. the
electromagnetic interaction is assumed to be 'switched off'. The binding
energy Bp is defined by -Bp = lim (E4:p - E4), where E4 is the ground

A—
state energy of a self-bound quantity of nuclear matter, and E4, A is the
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energy of the self-bound system formed by adding a A-particle. Since the
nuclear matter is assumed to be in equilibrium before the A-particle is
added (i.e. 3E/2V = 0), we calculate B, by assuming the addition occurs at
constant volume.

There are two possible reasons for considering this problem. The first
is to test our theories of nuclear matter, by assuming that the AN interac-
tion is known and comparing the theoretical value of By with the experi-
mental value [1-4]. Alternatively, we may consider that our theories of nu-
clear matter are sufficiently precise to use the known value of By as a
means of learning about the AN interaction. Whilst this second reason is
propably the more valid, and provides the philosophy behind most recent
work on the subject, in the present paper we take the first view.

Since the exact many-body problem is so complicated, one has to resort
to approximate calculations. The philosophy behind this paper is that it is
of interest to compare two such approaches.

The first method we shall consider is via the Bethe-Goldstone equation
in the independent-pair approximation [1,5-7]. Essentially this method
seeks to solve the two-particle Schridinger equation in the presence of the
rest of the nuclear matter, which is supposed to act as a background whose
sole function is to restrict the states available to the interacting pair,
through the exclusion principle. Henceforth we shall refer to this method
as the BG method.

The other approach we consider is a Green-function method where the
AN 'ladder diagrams' for the A-particle proper self energy, Z() * are
summed as Feynman diagrams, and the binding energy By is found from
solving [8] -Bj = Z(0,-Bp). This is the method pioneered by Galitskii [9]
for singular (e.g. hard-core) interaction potentials, henceforth referred to
as the G-method.

Our aim is thus, not to make thoroughly realistic calculations in either
approach, but instead to use a model which is both tractable and close
enough to the real world to enable us to make an meaningful comparison.
To do this, the form chosen for the AN interaction potential is a spin- and
isospin-independent, central, S-wave, separable (and hence non-local) po-
tential. Such a choice enables us to find an exact analytic solution in both
cases. To the knowledge of the author, the first exact solution to the Ga-
litskii approach for nuclear matter is presented here within the scheme
outlined above, but without assuming any small parameter in order to make
a perturbation expansion.

Our philosophy is to do as good a job as possible using just two-body
forces, and the potential is chosen so that we can make a direct compari-
son of the two methods. The G-approach treats the thermodynamics of the
problem correctly and the binding energy calculated is really the chemical
potential of a A-particle in nuclear matter to the same approximation to
which the self energy is calculated. Thus an exact Green-function approach
would include all the so-called rearrangement energy terms. We shall show

* The notation for four-vectors is p = (P, £o). and our system of units is such that
i=c = 1.
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explicitly in our model and quite generally that the BG method gives asymp-
totically the same value for B, as the G-approach as the density of nuclear
matter approaches zero.

In sects. 2 and 3 the two methods are described and the equations for By
derived. The AN interaction potential used in the calculations is described
in sect. 4 and the results of the calculation in sect. 5. In sect. 6 and appen-
dix A the relations between the two approaches are discussed, and in sect.
7 a procedure is given to extend the G-approach to calculate the higher-or-
der cluster contributions to Bj. It is pointed out that this procedure, using
Feynman diagrams, is much simpler to handle than the extended BG ap-
proach using Goldstone diagrams where the self-consistency requirements
are difficult to build in. In outlining the procedure for calculating higher-
order contributions we do not restrict ourselves to separable potentials. In
appendix B, the full power of the G-approach is demonstrated, where we
consider a pure hard core AN interaction potential and derive results for
the effective mass and damping of the A-quasi-particle.

2. BETHE-GOLDSTONE (BG) METHOD

It is assumed from the outset that only AN two-body forces are impor-
tant. Further we make the independent-pair approximation [7], where each
AN pair is treated independently and the rest of the nuclear matter is sup-
posed not to affect the (virtual) scatterings of the pair, except to define the
volume in momentum space in which final states are available (i.e. the ex-
clusion principle is taken into account properly). Also the background of
nuclear matter acts to define a momentum-dependent potential in which the
nucleon of the scattering pair moves. This single-particle potential is
taken into account crudely but in a self-consistent manner by the effective
mass approximation. We assume that the A-particle acquires no effective
mass in this manner, because the two dominant mechanisms which produce
one in the pure nuclear matter case are absent for the A-particle, since no
exclusion principle acts to produce any exchange integrals and any exchange
forces are neglected. (In the physical situation exchange forces could occur
through K-meson exchange).

The two-particle Hamiltonian is

f?= TA+TN+WN+‘7AN = ﬁO+VAN ’

where T is the kinetic energy operator. WN = P{A’N(IQN) is the momentum-
dependent potential acting on the nucleon. In the effective mass approxima-
tion
7,2
Ty +Wy =W, + ”k&
N N o om ItI

Let  represent the two-particle wave functions satisfying
HY=Ey. 2.1)
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The functions ¢, are the products of plane waves satisfying

Hy ¢y =Epdy, . (2.2)
Since the functions ¢, form a complete set, we can make the expansion

lw>=§ [ b, (D, 1) .

From eqs. (2.1) and (2.2):
(9| VAN W) = B -E,) 0, |0
and hence

V)
=6+ D 1ol Van]¥ (2.3)
n #0 (E Eo) (E -E )
where we normalize (¢ | ) = 1.

When we consider the Fermi-sea background which is assumed filled
(zero-temperature limit) and form the properly antisymmetrized total
wave function of all A nucleons plus the A-particle, its effect is to exclude
all states |¢n> from the sum in eq. (2.3) with nucleon momentum less than
the Fermi momentum %p.

Since VjN is a function only of the relative coordinate of the pair, and
hence their total momentum is conserved, we can transform to the c.m.
frame where

MY Xpg+ M, X
P= kA + kN , R = N N ).{\ A s
mA + mN

*
_myky-my Ky e x
T T T % X=X\"XN ’
mA+mN
and writing
-1 .
Y= 977 exp(i P-R)WX) ,

where © is the normalization volume, we find

kF) e X<—mz *(2.4)

(IE pP-v 2

ik -x
IPp,k(X) =e +f (277)3

where p* = mAmI’fI/(mA +m1’§) is the reduced effective mass and the step-
function



BINDING ENERGY OF A IN NUCLEAR MATTER 5977

1 x>0
9@ =0 x <0
1 ~i k-
K =k2+ o [a3 e NN 2ur vy p f(x) . (2.5)

From eq (2.5), in the limit § — « of a large volume of nuclear matter,
K2-k2- 0, since V represents a force of finite range. Hence, since the
denommator in eq. (2. g never goes to zero except exactly at the Fermi
surface, we replace K 2, 1t is well-known that this is not a good ap~
proximation in the case of superconducting fermion systems. Since the en-
ergy gap in nuclear matter is known to be small [10], we may safely make
the approximation in our discussion where we are concerned only with the
binding energy.

Defining Fourier transforms f(f) = fe" t-X f(x)d3x and writing
u=2u*V, eq. (2.4) becomes

9<|7‘;—} P-t|-kyp)

k2-¢2 e

w(t, k; P) = 2m)3 o(¢-k) +

Bt
(2 )3 (tlu| t)y(t ,k;P), (2.6)

where the positive infinitesimal € is introduced as usual for scattered
waves.
The energy shift per pair is now given by

AE(Kk, P) ——f ovg (KIVIOWUE, K P) (2.7

and the total energy shift for the A-particle is

-B,(ky) = 4Qf e(kF rN)AE(K, P) , (2.8)

(2 )3
where the factor 4 in eq. (2.8) accounts for the four spin and isospin degrees
of freedom per nucleon.

If we now consider a separable potential of the form discussed in sect. 4

2 mm
(K| V|Kk =% ro(R)u(k') | p=_—AnN

mp+my ’ (2.9)

eqs. (2.6)-(2.8) are readily solved in the case k = 0 to give
- g(BG) _ 4A* ase
BA 2 )3 O(kp - ( )
9( |'Lk k' "kF> -

[1”\*["3’?' ;k' : m_ﬁ}() fh} 1, (2.10)

(2m)3
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where

*

¥ o= by

=l®

)

for the binding energy BA(BG) = Bp(0) for a A-particle at rest in nuclear
matter. It is important to note that this can now be evaluated exactly.

3. GALITSKII (G) METHOD
We define a A-particle Green-function propagator as
Gplx-x")gp = -i{A| T(T\a(x)x;(xv» |A)

where 7\a(x) is the Heisenberg operator for the A-field, and |A? is the ex-
act nuclear matter Heisenberg ground state. The nucleon propagator Gy is
defined similarly in the usual way. The function Gp defined above propa-
gates only forward in time, and in terms of the usual proper self energy
=(p), Gp takes the form

P2 o1
GAP)gp = [Po - 5"?\ = Bgplh) +in) 1 o€ 808

where 7, € are positive infinitesimals.

We now make the approximation that the only Feynman graphs we keep
for = are the ladder diagrams shown in fig. 1. The expansion is made in
terms of GR, the unperturbed A-particle propagator, where I,3(kp) = 0,
and in terms of the self-consistent nuclear-matter nucleon propagator Gy.
We assume that Gy is known from studies of nuclear matter and make the
simplifying assumption as before that the nucleon single-particle energies
are given by €(k) = W0+k2/2 mﬁ, giving Gy as

% . -1 ipo€
GON(R) = [kg- Wo = — +in sgn (k- kp)] 1 %o,
sz

We now define a function I' which sums the AN ladders for multiple
scatterings between the pair as shown in fig. 2a. This Born-Liouiville se~
ries for I' can be summed diagramatically as in fig. 2b which corresponds
to the integral equation

VW s Y ———= = 6, , —>— = Gy

Fig. 1. The ladder diagrams for the A-particle proper self-energy.
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Py P2
iTP,pu0 R0 = | il =
F’3 A
(a)
Pa P Payse Fa (PZ;“)/"PZ
i = + il 9
-)—
p3 P, P3 P, P3 (P|-q) P
(b)

Fig. 2. (a) The AN scattering diagrams, (b) summed diagramatically as the Bethe-
Salpeter equation.

. : at
iD(pq, Po; P3» Pg) = 1V(Py, Po; P3s P4) - jﬁ‘i L(py - 4, g +q; P3, Dy)
i

X Gylpy +Q)GR(P1 - DV(P1-q,P2+q;P3, Py) »  (3.1)

which is the Bethe-Salpeter equation for this problem. Since the total mo-
mentum of the pair is conserved, I' can be written as a function of three
momentum differences. It is convenient to transform to the ¢c.m. frame
where

1
P=Dp1+Dg =Pg+0y , p=—"— (mﬁpl"mApz) )
WZA+WZN
¥
, mpT MmN
= * a:_—* y
mp+ MmN mp+ MmN

(p|V|p") = V(p1,p2; P3, P4) -
If we define a new function X, by
_ da3q
T(p, p'; P) =T(by, bp; b3, Pa) = IW (pIVig)xa,p;P), (3.2
7
then it is obvious from eq. (3.1) that x satisfies the integral equation

x(p, p'; P) = 2m)3 8(p' p)+zf~— GRE(1+a) P+ pGN(G(1- @) P- p)

><f(2) (pIVip-@Ox(p-q,p;P), (3.3)

and that T" does not depend on p, or po as written explicitly in eq. (3.2)
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Replacing the propagators in eq. (3.3) by their explicit forms, and de-
fining
p2
2(my + my)

E= P,

- W, , (3.4)

we find
0(|3(1- &) P-p |-kp)

X(p, p'; P) = (2m)38(p'-p) +

P2 .
(E EY in)
d3q ,
[ g3 PIVOX G PP, (35)
and hence, from eq. (3.1)
a3k 8(|3(1- o) P- k' |-FF)
2u*T(p, p'; P) ={plu|lp) + | 5 (plulk) =2
p*T(p, p'; P) ={p|u|p f(27r)3 plul Kz
x2p*0(k', p';P),  (3.6)
where
€ =2u*E ; u=2u*V .

If we now assume a separable potential given by eq. (2.9), then eq. (3.6)
can be solved explicitly to give

20*T(p, p'; P) = \*v(p)v(p")D"1(P) ,

where

Bp (31 -P- Kk
(27)3 e-k'2 +in

“RE) 20y (3.7)

D(P) = 1-2* [

Now, in terms of the function I', the self-energy Z is given by

Z(p)

il

i [LE G T, 5, B)
(2m)4

o die
-4i f 2 GN(T(q, q; P) , (3.8)

where
1
q=-—— (mgp-mpk);  P=p+k.

mA+ mN

The A-quasi-particle energy spectrum is given by the poles of the prop-
agator and according to Burkhardt [8] we can identify -Bj with the energy
of a A-quasi-particle at rest (p=0). Thus, Bj is given by the solution to
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By =Z(0,-B) . (3.9)

If we now put in the explicit form for GN(2), and observe that considered as
a function of kg, D(P) is analytic in the upper half-plane when p = 0, we
find

(G) 4}\* 6k - B) p2 u*
~Ryvé (—k
[ v2(k) 9([ k-k'|-kg) _-
X l:l +A* , (3.10)
@m3 (g2 - (L2 k)2, 2,%5G
{ <M1§ ) H¥B) )}
which is an implicit equation for Bj(\G), and should be compared with eq.
(2.10) for B&BG)

4. THE AN SEPARABLE INTERACTION

The real AN interaction is presumably approximately local, of short
range, and includes a hard core of about the same radius as the NN inter-
action [11]. It almost certainly contains non-central forces [4] and is
slightly spin dependent [12]. The latest evidence [12] indicates that its
strength may be reduced in odd angular momentum partial waves.

We have seen that it is very convenient to use a separable potential
however, in order to obtain an exact solution for the binding energy. We
shall use a one-term, S-wave, separable potential which is capable of re-
producing the effects of the hard core in the range of energies with which
we are concerned. Such a potential is, of course, very oversimplified but
contains the most important aspects of the real interaction. We insist that
the potential fit such low energy AN scattering data as is available [13, 14],
including the scattering length and effective range.

In momentum space the S-wave interaction is given by eq. (2.9) where
k and k' are the initial and final relative momenta. It is readily shown that
the S-wave phase shift 6,(%) is then given by

[1+-2 6]
b otg bo(k) = ~47 - 2T S 4.1)
v2(k) ag

G(k) = P.V. fw dg ﬁ’_%@ (4.2)
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and where eq. (4.1) also defines the low-energy scattering parameters a
and 7.

We now use an idea of Tabakin [15] to allow for both attraction and re-
pulsion in the one-term potential. The basic idea is that the phase shift 6,
given by eq. (4.1) will not in general change sign (which must occur for a
realistic potential which includes a hard core and an attractive tail) without
passing through 27, which is not allowed for an unbound system such as AN.
However, we can arrange for the numerator of eq. (4.1) to vanish at some
momentum k. if we impose also that v(k;) = 0, and the ratio

— a2 T =0. (4.3)

Thus, if we can choose a function v(%) which satisfies both of these condi-
tions, we may avoid the phase shift of 37 and produce instead the sign
change expected of a potential with short-range repulsion and an attractive
tail.

Using a simplified form of a suggestion by Tabakin [15] we choose

o(B) = (ki -yt dY)

The values of a, k; and A are fixed by using the condition given by eq. (4.3)
and fitting to the low-energy scattering parameters a, and v,. The experi-
mental data is such that the parameters a, and 7, cannot be evaluated un-
ambiguously. We use the values of Herndon and Tang [12] who assume a
hard core in the AN potential in the reduction of their data. The measured
scattermg amphtude can be written in terms of singlet and triplet compo-
nents, f and f respectively, as

f =301+ 378) v day o8- 1Y)

In a spin-saturated system as nuclear matter, the second term is zero.
Since in the analysis of Herndon and Tang the parameters for singlet and
triplet states are nearly the same, and since the triplet values (which are
seen to be weighted three times as heavily as the singlet values) are better
known than the singlet, we use their triplet values

Gn =~2.25 fm ; Yo = 3.40 fm .
For our choice of potential, G(k) can be evaluated analytically as
1 4 2 2 2 2 2 2
k) = +k k (k +a’)- (k a’)
e Sf ad (K + a%)2 (@ A ke '

#3032 - ) (- (P - Py 2?2+ )]
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0 2.0 40 6.0 80
RELATIVE MOMENTUM k (fm")

Fig. 3. The solid line represents the function (k) used in the separable potential eq.

(2.9); and the dashed line represents the expression {1 +(\/272) G(k)} defined by eqs.
(4.1) and (4.2).
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C-M MOMENTUM k (fm")

Fig. 4. The S-wave phase shift §5(k) produced by the separable potential as a function
of the c.m. momentum k&,
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Fig. 5. The AN total scattering cross section Otqt(Ap — Ap) assuming the nucleon in

itially at rest and the A-particle of momentum p, in the lab frame. The solid curve

is the theoretical prediction using the separable’potential; the experimental points
are from Alexander et al.: @ ref. [13] and A ref. [14].

The condition expressed by eq. (4.3) implies

-167v245
AT 2
a®- kg
and we find
1 ala®-3k2) (574 +a%)
Tag” im0 0T avmad
) 42 kg 2vV2 ak}
These three equations have solution
a=2.328 fm™1 ke = 1.140 fm™1 A =-1180 fm 3 .

In fig. (3) we plot v(%) and the expression [1+(7\/2172) G(®)], and in fig. 4
the phase shift §,(k), which has the form expected.
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As an independent check, we plot in fig. 5 the total cross section in the
lab frame where the nucleon is at rest. It is seen to agree well with the ex-
perimental points, taken from Alexander et al. [13, 14].

5. RESULTS
The following points should be noted, concerning eqs. (2.10) and (3.10)
for the binding energy B,, by the two methods:

(i) It is apparent that the BG method is basically the low-density
(kg — 0) limit of the G-method. This point is illustrated by fig. 6.

24

—~ 201
>
= I x
‘: 6 {my = 065m,)
)
% L
x 12
w
< -
uw
9 s
=)
g L
RS
1 i 1 1 | n
0 04 08 1.2 1.6

FERMI MOMENTUM k. (fm')

Fig. 6. The binding energy Bp as a function of the Fermi momentum kf at a nucleon
effective mass m"ﬁ = 0.65my;. The curve G is from the Galitskii method; the curve
BG from the Bethe-Goldstone method.

(ii) Further, the BG result is a small parameter approximation to the
G-result, in the sense that when either mI’iI /my or the strength of the po-
tential (A) goes to zero, the two methods agree. See also fig. (7) in relation to
the first of these assertions.

(iii) The solution of the G-method always gives less binding than the so-
lution of the BG method.

(iv) For sufficiently negative values of A (attractive tail) it would appear
that the factor in square brackets in egs. (2.10) and (3.10) can go to zero.
This situation is closely related to the phenomenon of Cooper pairing, and
should it arise, would be an indication of the insufficiency of the approxi-
mations made. In fact this factor was always positive in these calculations.

(v) If X is treated as a small parameter, and B is expanded in powers
of A, the two methods always agree through second-order terms. In appen-
dix B we show that this is the case also for a local hard core potential, and
in sect. 6 that this is a general property of the two solutions for all (not
just separable) potentials.
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Fig. 7. The binding energy BA as a function of the nucleon effective mass m*ﬁ evalu-
ated at a Fermi momentum kp =1.35fm-1. The curve G is from the Galitskii method;
the curve BG from the Bethe-Goldstone method.

After the trivial conversion of eqs. (2.10) and (3.10) to double integrals,
the potential described in the last section was inserted, and the integrals
performed numerically on a computer. A reasonable value for the nucleon
effective mass in nuclear matter at the Fermi surface is mi"q = 0.65my, as
shown in ref. [5]. Using this value for my, the values for B as a function
of kg are shown in fig. (6) for the two methods. At the equilibrium density
of nuclear matter, which corresponds to zg = 1.35 fm~1, we find

BB _ 19.99 Mev and B - 18.28 Mev.

Intig. 7, By is plotted as a function of myy for b = 1.35 fm~ 1. At
mN mN the BG and G-methods are in considerable discord, glvmg 62.6
and 37.5 MeV respectively for the binding energy, whilst at mN 0.65my
the relative discrepancy is much smaller and of the order of 10%.
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6. COMPARISON OF THE G AND BG METHODS

We now investigate exactly what we have achieved by using the G-method
rather than the BG method. To this end we shall set up an integral equation
connecting quantities defined in the two approaches. To make the analogy
clearer let us write X{(p, p'; P) in place of the Bethe-Goldstone wave func-
tion ¥(p, p'; P) defined in sect. 2, and define

T*(p,pv;P)=f( )3<plvlq>x(q,p ;P) .

Then we may rewrite eq. (2.6) a

o( é(l-a)P-p\-k) 3
Xp,p'; P) - | 2. =/ dq3<p|ulq>>”<(q,p';1’)
€-pe+in (27m)
= 2m3 6(P-P)+b(P,P;P), (6.1)
with
1. = 1 - P_ - * T '’ 1 - 1 .
e, p's P) = (13(1-) P=p |- k2w Fp, 01 P) [y i |
(6.2)

The reason for writing eq. (6.1) in this manner, is that by observing eq.
(3.5) we see that x(p, p'; P) is the Green function for the left-hand side of
eq. (6.1). Using the symmetry property I'(p,p'; P) = T(p',p; P); it is read-
ily proved that

Xp,p;P)=x(p,p'; P) + f

and hence that

(2 )3 x(p, k; P)b(k, p'; P)

T(p,p'; P) = Tp, p; P) + [ T T(p, k'; PYO(|3(1- ) P- K’ |-Fp)

()3

1 1 } ~
X - 2u* T(k',p"; P) . 6.3
L_k,2+in ) 2 TR 69)
Using eqs. (2.8), (3.8) and (6.3) and that I'(p, &'; P) is analytic in the upper-
half %,-plane for p =0, we find

£k

(0, 00) = -BBC) 1 4 LR 6(|5(1- o) k- k' |-Ep) 0k~ F)

(2m )3 (27 )3

~ 1 1
x 2% B(k', p'; Poy)T(q, k'; P )[ - ] ,
» P75 (0)) A\ g5 X5 £(0) 2u*P0+q2' k'2+iT] q2_ k'2 +in

where
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2
_uT - k

q = ;lit;k, Pg) = (k,po+Wo+—7n‘—tI> .

Hence, since -BI(\G) is the solution to p, = (0, py), we have
( J0:Te B (c) d3k'
- 4B} [ f | k- K' | -Ekg)0(kep- F)
Fa (27 )3 (2m3 FUE
1

x 2u* T(q, k'; P(g)21* T(K', q; P()) . (6.4)

(k'2- g2)(k'2- g2 +2u*B$\G))

In the case of a separable AN potential the solutions obtained for I" and T
are readily shown to satisfy this equation, which is however valid for all
potentials.

The first thing to notice from eq. (6.4) is that if A is a arameter char-
acterising the strength of the potential, then B G) and B(BG) agree to sec-
ond order in A as previously asserted Also the two metﬁods obviously con-
verge in the limit g —0, where ( (G) - p(BG))/p(G) ¢,

To compare the methods further ‘i\et us {xook {he problem that we have
tried to solve in three separate stages.

(a) First consider the hypothetical problem of a A-particle placed in a
free Fermi gas of nucleons, i.e. nuclear matter with the NN interactions
turned off. In both methods this is equivalent to putting Wy = 0, mf = my.
As we have seen, in this case the two methods give different results. As is
well known the BG method also sums the same set of ladder graphs, but it
assumes that the starting initial frequency of the A-particle is known and
takes just its on-the-energy-shell value. In the G-method it is realized that
what is being calculated is a self-energy insertion, and that the frequency
of propagation of the A-particle in the medium is unknown until the problem
is solved.

(b) Let us now turn on the NN interactions. In both cases the single-par-
ticle nucleon energies change. The methods still disagree but in no way es-
sentlally different from case (a). All that happens is that mp gets replaced
by mN This has the consequence of making the relative difference between
the two methods smaller. The reason for this is that lowering the mass of
the nucleon makes it more difficult to excite intermediate states with the
same momentum.

(c) Let us now carry our calculations one step further and make the BG
method 'self-consistent' for the A-particle. This means that just as we as-
sumed the nucleon of the AN pair considered moved in a single-particle po-
tential Wiy(ky), so does the A-particle. To formulate this self-consistency
condition in general is quite difficult. However, to the extent that the A ac-
quires no effective mass (as always assumed) the sole effect is then to shift
the A-particle energy spectrum by a constant amount. Since only energy
differences arise in eq. (2.3) this has no effect on the solution at all. We
might now be tempted to do the same thing for the G-method. That is, in
the ladder diagrams of fig. (1) the unperturbed A-particle propagator would
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be replaced by the self-consistent propagator G = [, -p2/2 mp - Va+m]” 1
and to be self-consistent we replace Vp by -Bj at the end of the calculation.
The effect of this is to make the G and BG methods identical in their re-
sults. This might lead us to suspect that the BG method is correct and the
G-method wrong. However the effect on the G-method of replacing the un-
perturbed intermediate A-propagator by the self-consistent propagator is
effectively to sum a selected class of higher-order graphs (i.e. ones having
two or more nucleon-hole lines). Insofar as we have neglected many other
higher-order graphs this is erroneous, and we are forced to conclude that
the G-method as originally presented is correct to the order (only graphs
with one nucleon hole line) considered. A further discussion of this point,
based on eq. (6.4) is relegated to appendix A.

7. EXTENSION TO HIGHER ORDERS

Both the BG and G-methods we have presented sum the ladder diagrams
for the self-energy of the A-particle (all diagrams with one nucleon-hole
line); the former treating them as Goldstone diagrams, the latter as Feyn-
man diagrams. One might expect that the series expansion for By, of which
we have found the lowest-order term, is one in the number of I'-matrix in-
teractions. Bethe [16] has shown however that such an expansion does not
have good convergence properties for the nuclear-matter problem. He
shows that the expansion is essentially one in powers of the density p, and
the nth order diagrams for the self-energy are essentially all those con-
taining # nucleon hole lines, in close correspondence with the cluster ex-
pansion familiar in statistical mechanics. The expansion parameter in the
nuclear-matter case is roughly the ratio of the volume of the hard core of
the NN interaction to the volume per nucleon or some equivalent correla-
tion parameter wyy . In the case of calculating By we expect similarly
that the nth order contribution will come from summing all diagrams with »
nucleon-hole lines, and we shall henceforth adopt this standpoint. The sec-
ond-order contribution to By presumably depends on both correlation pa-
rameters wNN and WA\ or some equivalent parameters.

From the discussion in appendix A, we see that our lowest- (first-) or-
der calculations for BXG) and B BG) that we have presented differ essential-
ly by higher-order terms, and insofar as we have neglected such terms,
the two (lowest-order) results must be considered identical. Their relative

1 In the Goldstone diagram approach the correlation parameter Wy turns out to be
WyN =P f(u%\n@ d3», where unN» the NN deficit wave function, defined as

un(D) = ¥, ) - KT

ig the difference between the BG wave function for an NN pair and the free wave
function of the uncorrelated pair. The averaging procedure is normally carried out

by setting P= 0 and averaging the K-dependence over the filled Fermi sphere. The
quantity WAy is defined in an analogous fashion.
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difference, however, gives a good indication of whether the cluster expan-
sion is expected to converge well or not. In the case where mltl takes its
physical value, their relative difference is about 10% for our model calcu-
lation.

Let us now consider how to extend our results to make a consistent sec-
ond-order calculation for By. It is now that the power of the Green-function
method becomes apparent. The first-order proper self-energy X is first
calculated as we have already done from the diagrams of fig. (1), where the
intermediate A-particle propagator is G?\ so that we do not overcount when
we look at diagrams for Z9. The second-order proper self-energy Zg is
then calculated from the diagrams of figs. 8a and 8b, where the sawtooth
lines represent a I' y iy or I'yy matrix interaction, as shown in fig. 8c, for
ease of drawing.

A N, N
W 1
! fovnd
'r\MMv vvvvvv N N =
* PAAAAANY
| ->—-: ¢
hananany
A —— = G,
kvvvvvavav}
A N, N,

(a) (b) (¢}

Fig. €. All diagrams containing two nucleon-hole lines which contribute to the A-par-
ticle proper self-energy, as explained in the text.

The diagrams, of which fig. 8a is representative represent all diagrams
formed by drawing a A-particle line and two nucleon lines all with arrows
in the same direction, connected by any number of NN and AN I'-matrix in-
teractions (excluding diagrams in which there is more than one consecu-
tive I-matrix interaction between the same two lines). Part of the A-parti-
cle self-energy X9 is then found by calculating the two sets formed by first
closing N - N7 and Ng - N3 with nucleon hole lines, and second the exchange
diagrams formed by closing N1 - N5 and Ng - N7 with nucleon hole lines. The
only other diagram with two distinct nucleon hole lines which cannot be in-
cluded in these sets is shown in fig. 8b (note that %, = 2, and hence the dia-
gram only contains two distinct nucleon-hole lines). The self energy Zg is
then found by the sum of fig. 8b and all diagrams arising from fig. 8a as in-
dicated above. It is important to realize that the extended G-method treats
these diagrams as Feynman diagrams and that the intermediate A-particle
propagator is the unperturbed GR. We note that the diagrams of which fig.
8a is representive have to include at least three I'matrix interactions. The
possible diagrams containing two I'mmatrix interactions are shown in fig. 9.
The contribution of fig. 9a is excluded since it is not a proper self-energy
and is included as an iteration of the first-order propagator. Fig. 9b which
is the exchange closing of fig. 9a is invalid since it contains two consecu-
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B e

T
.

A 2
(a) (b)
LAANQV\M? Wﬁ
1 M t
A A
(c) (d)

Fig. 9. Diagrams which can be neglected in evaluating the second-order cluster con-
tribution to the A-particle self-energy, as explained in the text.

tive I'-matrix interactions between the same two lines. Figs. 9¢ and 9d will
be included in fig. 1 for X1, if the intermediate G propagator is that found
by a similar lowest-order G-calculation for NN pairs. This can again be
represented crudely by an effective mass approximation for Gy but with a
slightly lower value of mf(; than that found by the BG method, the difference
arising from a similar difference to that already described in the AN case.
To the extent that we are only considering the second-order calculation for
B this difference is unimportant, but in higher orders it would be signifi-
cant.

The self-energy insertion of fig. 8b is responsible for the so-called hole
rearrangement effect and is readily evaluated. Dabrowski and Kéhler [17]
have evaluated it in the extended BG method where the diagram is treated
as a Goldstone diagram. They have also considered two of the diagrams
like fig. 8a, but this is inconsistent since they form part of an infinite set
all of comparable magnitude. This set should be summed, and this could be
done by methods similar to the Bethe- Faddeev techniques used by Bethe for
nuclear matter.

In the extended G-formulation, it is now easy to calculate By to second
order. In lowest order we solved pg = Z1(0, Po) = Z1(po) whose solution
was given by -B 1). To second order we must solve

Po = Z1(Po) +£Z2(bo) , (7.1)

where g is a parameter introduced to keep track of the order of the terms
and is finally set equal to unity. Let eq. (7.1) have solution
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» - gD _p®

o A A
Then to 0(g) we may write
PG VI ) I § VN o) Rt e
By 8By = B 0B ) 8B Gy | g0 TR B
A
which correct to the order we are working has solution
(1)
_ (0 Z2lBRY)
By =By~ - dzq (7-2)
T ape |-
§2 BA

It is important to notice to second order for B, the difference between the
BG and G-values for B{1) is now important.

To sum up, the extended G-technique, using Green-functions leads to a
well-defined prescription for evaluating Bp to any order (in the number of
nucleon-hole lines in the proper self energy). Its beauty lies in the fact that
the diagrams for the self energy can be treated as Feynman diagrams,
having unique values independent of the rest of the diagram in which they
are inserted. In these diagrams the internal A-particle propagators can
be regarded as free propagators (as the exact prescription of Burkhardt [8]
demands) and the self-consistency is guaranteed to the order to which the
self-energy is calculated. In contrast the extended BG method which treats
the diagrams as Goldstone diagrams loses these properties. The concept of
off-the-energy-shell propagation has to be built in artificially in a self-con-
sistent manner which is difficult. The results for any order have to be
modified in passing to the next highest order, whereas in the extended G-
method the values of the diagrams for any order are unchanged in passing
to the next order; only the final equation for By changes. Presumably the
two methods both properly carried out to any order must only differ in
higher-order terms. The point that we should like to make is that the G-
method is much simpler in this case than the BG method which is fraught
with pitfalls in building in the self-consistency requirements which are dif-
ferent in each order.

The general prescription outlined for the extended G-method is easily
extended to higher orders, and is of course valid for all potentials, not just
separable onesi.

8. SUMMARY

Using an S-wave separable potential, we have been able to fit the low-
energy AN scattering data. The potential was chosen to include both attrac-
tion and repulsion. Using such a potential, one can solve exactly for the
binding energy of a A-particle in nuclear matter by both the Bethe-Gold-

t For a somewhat different treatment of the systematic inclusion of higher-order
terms in pure nuclear matter, see ref. [18].
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stone independent pair {BG) method and by a Green-function formalism due
to Galitskii (G) where we kept just two-body clusters (ladder diagrams).
The effect of the NN interactions was taken into account very crudely by re-
placing the nucleon mass by an effective mass. The BG method was shown
to agree with the G-method in the limit of low-nuclear-matter density. For
a realistic density of nuclear matter we showed that for my = 0.65my,
corresponding to the self-consistent effective mass at the Fermi surface,
the two methods differ by about 10%, the G-method giving less binding.
Furthermore, both methods are in essential agreement with the values
found by other authors who consider the S-wave part of a local AN potential
(see e.g. ref. [1]). For a value of mﬁ = my, however, the discrepancy be-
tween the two methods is much larger.

We then considered how the two approaches can be extended to higher
orders, where the order of an approximation is reckoned to be the number
of nucleon-hole lines in the I'-matrix interaction diagrams for the proper
self energy. We showed explicitly that for quite general potentials, the
lowest order BG and G-methods give results which should be considered
identical since they differ only by terms of higher order. The difference in
the first-order results is important however if we wish to do a consistent
second-order approximation for By. We showed an explicit procedure for
extending the G-method to higher orders. The BG method can also be ex-
tended but the necessity of making it self-consistent, which is automatical-
1y built into the expanded G-method, makes it cumbersome and difficult.
The extended G-method is guaranteed to give us results for By, which is
the real chemical potential for the problem, correct to the order in which
the self energy is calculated. The programme we gave for the extended G-
method calculation of By is valid for all AN potentials. The separable po-
tential form is convenient for first-order solutions, and we showed that the
closeness of the lowest-order BG and G-results indicates that the various-
order results for Bp should converge quickly. In practice, this means that
a second-order calculation using a realistic potential would give very pre-
cise results.

We stress again that the calculations with the separable potential do not
give reliable results for Bj but merely indicate the order of magnitude of
the error incurred in using the BG approach naively when extended to sec-
ond order without changing the self-consistency requirements from first
order. There is no reason to suspect that using a more realistic potential
would substantially alter these results.

Even in lowest order, there are several ways in which the separable po-
tential model could be made more realistic. Firstly we would like to in-
clude higher-order partial waves than just S-waves. It is a trivial matter
to extend the formalism to a separable potential of the form

m2 -
(k| V| k" =2_“12 Aok ) PLk - k'),
=0

but the difficulty now comes in choosing expressions for the functions vy,
and for the higher waves there is essentially no experimental data to quide
us.
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A more serious problem is the use of the effective mass approximation
for the GN propagator. It is well known that this approximation is quite
good for hole states with 2N < £p, but is quite bad for particle states with
kN > kw, and as we saw, our results are quite sensitive to the value of m{
used.

The potential we used was central and even if we use a more realistic
local potential, we ought really to include the effects of a tensor piece, and
of the coupling of the AN channel to the N channel.

In their excellent review article Bodmer and Rote [4] indicate how to ap-
proach some of these problems within the extended BG formalism. This
author is presently investigating the possibilities of obtaining a consistent
second-order calculation of By by the extended G-method.

The author would like to thank Professor J.D. Walecka for suggesting
this problem and for many fruitful discussions during its progress.

APPENDIX A

Fuvther comments on the BG and G-methods

In this appendix we wish to show explicitly the difference between the
lowest-order results for the binding energy Bp by the two methods, and
show that the difference is in higher-order terms.

From eq. (6.4) is should be apparent that B(G) and B(BG) differ by terms
involving at least three I'-matrices. To be more quantitative the lowest or-
der iterate (in the number of I'-matrices) of eqs. (6.3) and (6.4) is

2

kR .3 , zu*f(k',q;P<o>>9(\f‘i k- k'|-kp
B/(\G)_Bl(\BG)z '4B/(\G) fFikf a3k [ 7 mp o )

@em3” @em3 [ g2- k2 +in J

k
_ 5@ (TR Bk o b Sk - gy 2
= 4B, Of ony3 | (a3 | XK @5 Pop- ot -)|?, a1

where the last equation follows from eq. (6.1). Thus

kF 43
(G) _ 5(BG) o 45 d’k 3 2
By =By 4B, J (2m)3 fa V‘up(o),q(rﬂ )

where

up k() =¥ pglr)-e X7 (a.2)

is the BG deficit wave function.

Eq. (A.2) can be written slightly differently if we realize that the BG
wave function for a realistic hard-core potential has a negligible depend-
ence on the total momentum P and can be evaluated at P =0 for the pur-
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. 2 2 -
poses of eq. (A.2). If we define (uAN) to be the value of ‘uP(O),q l evalu

ated at P(O) =0 and averaged over the Fermi sea, and realising that

kP Br 4
i _A

@nd e~ P

o

we can write eq. (A.2) as

B/(\G) - BI(\BG) ~ - B/(\G)p [ a3 <uiN(f)>

-W B(G) .

AN BA (A.3)

In sect. 7, we indicated that wpp is a typical expansion parameter in the
extended BG formalism, and hence from eq. (A.3) we see explicitly that our
first-order results by the two methods differ only in higher-order terms.

APPENDIX B

Galitskii formalism for a pure havd-corve AN intervaction
We now consider the case of a AN local hard-core interaction,

Moo, v <a
v(r) = 0, r>a.
In this case, the Fourier transform of the potential is undefined. The gist
of the Galitskii method is to realise that even if V blows up, the scattering

amplitude remains finite. For a local potential, eq. (3.5) becomes

6(|3(1- a) P- p|-kF)

xp, p';P) = (213 8(p' - p) +

(e-p2+in)
f“— u@)x(p-q,p';P) . (B.1)
We define a function X, by:
1 d q

Xo(Ps p'; P) = 2m)3 6(p' - p) + W) xo(P-q,P';P) . (B.2)

(e- P2+ in) Ve (2m)3
If there are no bound states of the V5 potential, then ¥y (p), the exact
¢c.m. two-body scattering wave functions, form a complete set, and the ex-
pansion

B lPk(P)W;;(P')
2m)3 (- k2 +in)

d3
Xo(Ps P'; P) = (€~ p'2 +in) f

is easily verified. .
The Lippmann-Schwinger equation is used to substitute for 2% (p):
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*(p") = (21)3 6(p' - k ﬂ»k_)’
Y (p') = (2m)° 8(p )+(k2_p'2_m)
where
0,00 = [ L4 @y (p-a) (B.3)
Defining I'j, in a similar way to T,
3
2u* Tolp, p'; P) = fi% u@xolP-q, p'; P) , (B.4)
(2m)

we find

* . = d3k 7 Tk
21 Tolp, P53 P) = Fp, P) + [ -5 Flp, k)7 *(p' k)
(2m)

1 1
X . (B5
L-k2+z’n+k2-p'2-in} (B-5)

Using egs. (B.1), (B.2) and (B.4),

35 0(kp-13(1-a) P- k'|)
d°k F iz
F(p,p';P):Fo(p,p';P)- ‘Z—W)EFO(p’k';P)

e-k'2+in
X 2u*T(k', p'; P) . (B.6)

Corect to second order in f, we may replace I by T’y in the integral of eq.
(B.6). In the limit 6, = ~ka — 0,

Flk, k') = -4nf(k, k') — 4n(a-ika?) + O(k2a3) ,

where a is the scattering length or radius of the hard core.
In all that follows we now work to O(az). From eq. (B.5):

3
24* T (q, q; P) = dna+ 167202 [ &F [ 1 P.V. J,

+
2m3 Le- k2+in  Kk2-q2

and hence from eq. (B.6)

3p r6(13(1- ) P- k' |-p)
2u*T(q, q; P) = 4na+ 161242 [-4 k'3 [ - e
(2m)
Hence Z can be found from eq. (3.8).

The excitation spectrum is given by the poles of G, or the solutions to

bo- p2/2mA- Z(p, by) = 0. Since this implies p, = p2/2mA+ O(kga), it is

+ =5 . (B.N)
e-k'2yin k2- q?J

consistent to O(kFa)2 to replace p, by p2/2mA in eq. (B.7) to give
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po—

p? | wr2, {SkF" 64112 I a3z f _—
= 9 -

37 (277)3 (27 )3

X; P.V. +9(|E(1'0)P'k'l'kF)q. (5.6

k'2-q2 q2-k21in )
For p = 0, evaluation of eq. (B.8) gives the same result for the ground-

state energy as found by Walecka [1] who used the Bethe-Goldstone method.
Eq. (B.8) can be written as

2
by = C(D) = +F (D),

2my

and making a Taylor expansion of F(p) around p = 0,

2 2
cp- e =2, - 2~ +1; F(0) , (B.9)
ZWZA 2m ma

since F'(0) = 0, where this equation defines mK, we find

L=_1_+8(akF)2]: - n <1+a/) )] ,

mk A 3n2p*

where

= (B.10)

We see that mA > mp as expected.
Evaluation of eq. (B.10) at g = 1.35 fm" 1, a=0.4 fm, my = 0.65my
yields mA/mA = 1.15, which is really not negligible.

From eq. (B.8) we can also find the damping term y(p) of the quasi~par-
ticle spectrum. Writing the solution to eq. (B.8) in the form p, = &£ (p) + iy (D),
we find

2x4 s 0<x<1

0+~ 1 ()

(596“%) ) x>1,
where ¥ = p/kp, and y(p) has been evaluated, for simplicity, with
myg = my = m.
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