

The University of Manchester Research

Fracture behaviour and damage characterisation in composite impact panels by laboratory X-ray computed tomography

DOI: 10.6084/m9.figshare.902203

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Wilkinson, A., Stein, J., Withers, P., & Leonard, F. (2013). Fracture behaviour and damage characterisation in composite impact panels by laboratory X-ray computed tomography. In *Thermosets 2013: From Monomers to Components* (pp. 69-71) https://doi.org/10.6084/m9.figshare.902203

Published in:

Thermosets 2013

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Fracture Behaviour and Damage Characterisation in Composite Impact Panels by Laboratory X-ray Computed Tomography

Arthur Wilkinson¹, Jasmin Stein^{1,2}, Philip J. Withers², and Fabien Léonard²

1Northwest Composite Centre, 2Henry Moseley X-ray Imaging Facility, School of Materials, The University of Manchester, UK

Thermosets 2013 September 18th – 20th , Berlin

Engineering and Physical Sciences Research Council

Outline	Introduction O	Experimental procedures	$\begin{array}{c} {}_{Results} \\ \bigcirc \bigcirc$	Conclusion O
Outline				

- Introduction
 - Overview
- Experimental procedures
 - Materials
 - Manufacturing
 - Characterisation (SENB fracture, Mode-I ILFT, XCT)
- Results
 - Plane-Strain Fracture Toughness of Matrices
 - XCT of As-prepared Panels
 - Mode I Interlaminar Fracture Toughness
 - Impact Behaviour
 - XCT of Impact Damage
- Conclusions

Outline O	Introduction O	Experimental procedures	Conclusion O
Materials			
_			

Base system

- Base System
 - Formulated using Factorial Experiment Design (FED) based on;
 - T_g
 - Heat of reaction
 - Viscosity
 - Chemical structures;

(a) TGAP (Araldite[®] MY0510, Huntsman)

(b) TGDDM (Araldite® MY721, Huntsman)

(c) DDS (Aradure[®] 976-1, Huntsman)

Outline O	Introduction O	Experimental procedures	$\begin{array}{c} \text{Results} \\ \bigcirc $	Conclusion O
Materials				
Toughenir	ng agents			

- PES
 - (a) Reactive high molecular weight (47k) Virantage® VW10200 RFP, Solvay
 - (b) Reactive low molecular weight (21k) Virantage® VW10700 RFP , Solvay
 - (c) Non-reactive medium molecular weight (36k) Virantage® VW10300 FP , Solvay

• Tri-block copolymer (dimethylacrylamide-modified) MAM

(a) Functional MAM -Nanostrength® M52N NP, Arkema

Outline O	Introduction O	Experimental procedures $\bigcirc igodot$	Conclusion O
Manufacturing			

Cure cycle optimisation and RFI

- Cure cycle
 - Optimised cure cycle based on the degree of cure of the neat resin
 - Degree of cure > 95 %

• Resin Film Infusion (RFI)

Stacks [90, 0, 90, 0] of UD carbon fibre fabric, of 445 gm⁻²(Sigmatex, UK). 12k carbon tows bound by a fine glass fibre weft yarn at \approx 6 mm intervals

Outline O	Introduction O	Experimental procedures $\bigcirc \bigcirc \bigcirc$	$\begin{array}{c} \text{Results} \\ \bigcirc $	Conclusion O
Characterisation				

Techniques

- XCT
 - Nikon Metrology 225/320 kV Custom Bay (see <u>www.mxif.manchester.ac.uk</u>)
- Impact
 - Instron Ceast 9350 Drop Tower
 - 89 mm x 55 mm, energies 5,10,15, 20 J
- Plane-Strain Fracture Toughness -K_{lc}
 - ASTM D5045
 - 44 mm x 10 mm x 5 mm
 - at 10 mm/min crosshead speed

- Acid digestion void volume %
 - ASTM D3171
 - Matrix digestion using sulfuric acid/ hydrogen peroxide
 - Specimen size ≈ 1 g

- Mode I Interlaminar Fracture Toughness- G_{Ic}
 - ASTM D5528
 - 125 mm x 25 mm x 5 mm
 - at 0.75 mm/min crosshead speed

Outline O	Introduction O	Experimental procedures $\bigcirc \bigcirc \bigcirc$	Results	Conclusion O
Results				

Composites

Table 1: Acid digestion results of manufactured laminates.

	Laminates with	Additive wt. %	Fibre Content Vol. %	Void Content Vol. %
	Neat Resin	0	68.4 ± 0.4	0.67 ± 0.10
	RHMW PES	10	67.4 ± 2.0	1.23 ± 0.26
	NRMMW PES	10	68.9 ± 0.1	1.35 ± 0.32
	RBCP	5	69.6 ± 0.5	2.09 ± 0.05
X-Ray CT				
a) all labels		b) Glass v Yarns and	veft voids	c) Void
10 mm) 10 mm		,

Examples of segmentation: matrix (blue), yarn (yellow), and pores (red) (10 mm scale bar).

composites

Outline O	Introduction O	Experimental procedures	$\bigcirc \bigcirc $	Conclusion O
Results				

XCT statistical analysis of void positions

XUI

Outline O	Introduction O	Experimental procedures	Conclusion	
VCT				

Outline	Introduction	Experimental procedures	Results	Conclusion
0	0	000	0000000000	

Comparative Rheology

Outline O	Introduction O	Experimental procedures	$\begin{array}{c} \text{Results} \\ \bigcirc $	Conclusion O
Results				

Plane-Strain Fracture Toughness of Bulk Matrices - K_{Ic}

Outline O	Introduction O	Experimental procedures	$\bigcirc \bigcirc $	Conclusion O	
Results					

Mode I Interlaminar Fracture

Outline O	Introduction O	Experimental procedures	$\bigcirc \bigcirc $	Conclusion O	
Results					

Mode I Interlaminar Fracture

Mode-I initiation G_{IC} values

Mean Mode-I propagation values

Matrix Resin	Mean $G_{Ic-prop}$ (J/m ²)
Unmodified	211 ± 40
$+ \ 10 \ wt\%$ RHMW PES	249 ± 16
+ 10 $wt%$ NRMMW PES	221 ± 22
+ 5 $wt\%$ RBCP	241 ± 31

Outline O	Introduction O	Experimental procedures	$\bigcirc \bigcirc $	Conclusion O
Results				

Impact

Cross-sectional orthoslice views (XZ, YZ) – unmodified resin system

Outline O	Introduction O	Experimental procedures	Results	Conclusion O
Results				

Impact

Interfacial damage area progression with impact energy. The numbers indicate the interlaminar regions below the impacted face – unmodified resin system

Outline O	Int	croduction	Exper O C	imental procedures O	$\begin{array}{c} \text{Results} \\ \bigcirc $	Conclusion
Results						
Impact						
			1		0	no est to popular all construction of prior.
	(a) 5 J unmodifie	ed	(b)	5 J $+5wt\%$ RBCP	2	
in a second s		1. S. 1.			â	
2.9 193	(c) 10 J unmodifi	ed	(d)	10 J + 5wt% RBCP	5.	A Provide Law
Transf.		the state of the second			23	
55 -	(e) 15 J unmodifi	ed	(f)	15 J + 5wt% RBCP	(e) Front +5wt% RBCP
-		5				15J
tion -			-11-m ²			
	(g) 20 J unmodifi	ied	(h)	20 J + 5wt% RBCP	÷ ; ;	
Unm	odified resi	า	FBCP I	modified resin		
30				1		
20				AND I		D Back +5wt% BBCP
ล้		22	151	and the second		
ndy.		· ·				

(a) Front unmodified

(b) Back unmodified

Outline O	Introduction O	Experimental procedures	Results	Conclusion O
Results				

Impact

3-D view of impact damage; each interfacial damage is given a different colour

Outline O	Introduction O	Experimental procedures	$\bigcirc \bigcirc $	Conclusion O
Results				

Impact

Damage volume vs. distance from impact face - unmodified resin 15J

Outline O	Introduction O	Experimental procedures	$\bigcirc \bigcirc $	Conclusion O
Results				
Impact				

Damage volume vs. distance from impact face - different matrices 15J

Outline	Introduction	Experimental procedures	Results	Conclusion
0	0	000	$\circ \circ $	0

Conclusions

- XCT can provide extension information on voids in as-prepared composites and on damage in impacted composites.
- In the bulk matrix systems, FBCP imparted superior toughness than PES.
- In interlaminar fracture and impact testing differences due to matrix fracture toughness become less clear.

Outline O	Introduction O	Experimental procedures	Conclusion

Acknowledgements

• EPSRC – funding

Engineering and Physical Sciences Research Council

• NWCC / NCCEF – facilities

• Alan Nesbitt – technical support

northwest composites

• Huntsman, Solvay, Sigmatex, Arkema – supply of materials

