



The University of Manchester Research

# Multi-Level Monte Carlo Simulations with Importance Sampling

Link to publication record in Manchester Research Explorer

**Citation for published version (APA):** Stilger, P. S., & Poon, S-H. (2013). *Multi-Level Monte Carlo Simulations with Importance Sampling.* 

#### Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

#### **General rights**

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

#### Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.



# Multi-Level Monte Carlo Simulations with Importance Sampling

Przemyslaw Stan Stilger and Ser-Huang Poon\*

March 21, 2014

#### Abstract

We present an application of importance sampling to multi-asset options under the Heston and the Bates models as well as to the Heston-Hull-White and the Heston-Cox-Ingersoll-Ross models. Moreover, we provide an efficient importance sampling scheme in a Multi-Level Monte Carlo simulation. In all cases, we explain how the Greeks can be computed in the different simulation schemes using the Likelihood Ratio Method, and how combining it with importance sampling leads to a significant variance reduction for the Greeks.

Keywords: Importance sampling; Simulation; Stochastic volatility

<sup>\*</sup>Przemysław Stan Stilger (przemysław.stilger@postgrad.mbs.ac.uk) and Ser-Huang Poon (serhuang.poon@mbs.ac.uk) are both at Manchester Business School, Crawford House, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. Stilger gratefully acknowledges financial support from the ESRC.

#### 1 Introduction

In practice, the valuation of multi-asset options typically involves the Monte Carlo simulation. The rate of convergence of this simulation is  $\sqrt{n}$  where n is the number of sample paths. Hence, improving the accuracy of the simulation by a factor of 10 requires 100 times as many sample paths. For this reason, variance reduction techniques have become essential. Importance sampling reduces the variance by changing the drift of the simulated sample paths. The extent to which variance reduction is achieved through importance sampling very much depends on the change of drift. Much research effort focuses on how to change the drift to fully exploit the variance reduction potential of importance sampling.

The Multi-Level Monte Carlo was introduced in Giles (2008). It is a Monte Carlo simulation performed on different levels of uniform time discretizations. The main advantage of the Multi-Level Monte Carlo is that, for a given accuracy, it has lower computational cost due to reduced variance compared to the basic Monte Carlo. Here, we show that the variance of Multi-Level Monte Carlo can be further reduced by combining it with other variance reduction technique such as importance sampling.

In this paper, we focus on importance sampling for multi-asset options and incorporating importance sampling in the Multi-Level Monte Carlo simulation. Our contributions are as follows. First, we present an application of importance sampling with a stochastic change of drift to multiasset options. Next, we provide an efficient importance sampling scheme in a Multi-Level Monte Carlo simulation. Then, we combine Multi-Level Monte Carlo with importance sampling to price multi-asset options. In all cases, we explain how the Greeks can be computed in the different simulation schemes using the Likelihood Ratio Method, and combine it with the importance sampling to reduce the variance of the Greeks.

There is relatively little work on variance reduction for multi-asset options in the literature. Barraquand (1995) introduces quadratic resampling and combines it with the importance sampling to price European multi-asset options. Avramidis (2002) proposes an algorithm that selects the importance sampling density as a mixture of multivariate Normal densities for best-of Asian and best-of barrier options. Neddermeyer (2011) develops non-parametric importance sampling in conjunction with quasi-random numbers to price basket and best-of options. The work of Barraquand (1995), Avramidis (2002), as well as Neddermeyer (2011) is done is done under the Black-Scholes model. Su and Fu (1999), Arouna (2004), and Caprotti (2008) use importance sampling, with the optimal change of drift obtained by solving an optimization problem, to price basket options. In Su and Fu (1999) the change of drift based on a stochastic optimization. In Arouna (2004) the change of drift relies on the Robbins-Monro algorithms, whereas in Caprotti (2008), it depends on the least squares minimization. Finally, Pellizzari (1998) suggests the use of control variate based on unconditional and conditional expectations of asset prices as a variance reduction technique for multi-asset options in the Black-Scholes model.

The remainder of this paper is organized as follows. In Section 2, we present an application of importance sampling with a stochastic change of drift to multi-asset options in the Heston stochastic volatility model and the Bates stochastic volatility model with jumps. We consider basket, best-of, worst-of, spread, absolute, composite, and quotient options. In Section 3, we extend the Likelihood Ratio Method to multi-asset options and combine it with the importance sampling to reduce the variance of the Greeks. In Section 4, we derive the optimal change of drift for the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. In Section 5, apply importance sampling in a Multi-Level Monte Carlo using the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. We demonstrate that applying importance sampling only on the first level can significantly improve the effective performance of the Multi-Level Monte Carlo. In Section 6, we use the Likelihood Ratio Method to estimate the Greeks in a Multi-Level Monte Carlo and again combine it with the importance sampling to reduce the variance of the Greeks. In Section 7, we combine Multi-Level Monte Carlo with importance sampling for multi-asset options. Finally, Section 8 concludes the paper.

### 2 Importance Sampling for Multi-Asset Options

In this section, we apply importance sampling to price multi-asset options. The dynamics of the multi-asset Heston model under the risk neutral measure  $\mathbb{Q}$  is given by

$$dS_{i,t} = r_i S_{i,t} dt + \sqrt{v_{i,t}} S_{i,t} dW_{i,t}^{S_i}$$
$$dv_{i,t} = \kappa_i \left(\theta_i - v_{i,t}\right) dt + \xi_i \sqrt{v_{i,t}} dW_{i,t}^{v_i}$$

where  $S_{i,t}$  is the *i*-th stock price,  $r_i$  is the *i*-th risk-free interest rate,  $v_{i,t}$  is the *i*-th variance,  $\kappa_i$  is the *i*-th mean-reversion rate,  $\theta_i$  is the *i*-th long-term variance,  $\xi_i$  is the *i*-th volatility of volatility, and  $i = 1, \dots, n$  denotes the number of underlying assets. The correlation matrix is

$$C = \begin{bmatrix} C_1 & C_2 \\ C_2^\top & C_3 \end{bmatrix}$$
(1)

where

$$C_1 = \left[ \begin{array}{ccc} \rho_{1,1} & \cdots & \rho_{1,n} \\ \vdots & \ddots & \vdots \\ \rho_{n,1} & \cdots & \rho_{n,n} \end{array} \right]$$

is the correlation between the stock price processes,

$$C_2 = \begin{bmatrix} \rho_{1,n+1} & \cdots & \rho_{1,2n} \\ \vdots & \ddots & \vdots \\ \rho_{n,n+1} & \cdots & \rho_{n,2n} \end{bmatrix}$$

is the correlation between the stock price processes and the variance processes, and

$$C_3 = \begin{bmatrix} \rho_{n+1,n+1} & \cdots & \rho_{n+1,2n} \\ \vdots & \ddots & \vdots \\ \rho_{2n,n+1} & \cdots & \rho_{2n,2n} \end{bmatrix}$$

is the correlation between the variance processes.

The difference between the multi-asset Heston model and the multi-asset Bates model is that in the multi-asset Bates model the stock price dynamics under the risk-neutral measure  $\mathbb{Q}$  becomes

$$dS_{i,t} = S_{i,t} \left( r_i - \lambda_i \bar{k}_i \right) dt + S_{i,t} \sqrt{v_{i,t}} dW_{i,t}^{S_i} + S_{i,t} dZ_{i,t}$$

where  $Z_{i,t}$  is a compound Poisson process with intensity  $\lambda_i$  and log-normal distribution of jump sizes such that if  $k_i$  is its jump size then  $\ln(1+k_i) \sim \mathcal{N}\left(\ln\left(1+\bar{k}_i\right) - \frac{1}{2}\delta_i^2, \delta_i^2\right)$ .

In matrix notation, the dynamics of the multi-asset Heston model is

$$dX_t = b\left(X_t\right)dt + a\left(X_t\right)d\eta_t\tag{2}$$

where  $C = \Sigma \Sigma^{\top}$  is the correlation matrix in (1),  $\eta_t$  is a 2*n*-dimensional correlated Q-Brownian

motion and

$$dX_{t} = \begin{pmatrix} S_{1,t} \\ \vdots \\ S_{n,t} \\ v_{1,t} \\ \vdots \\ v_{n,t} \end{pmatrix}$$

$$b(x) = \begin{pmatrix} r_{1}s_{1} \\ \vdots \\ r_{n}s_{n} \\ \kappa_{1}(\theta_{1} - v_{1}) \\ \vdots \\ \kappa_{n}(\theta_{n} - v_{n}) \end{pmatrix}$$

$$a(x) = \begin{pmatrix} \sqrt{v_{1}}s_{1} & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \cdots & \cdots & \cdots & \vdots \\ \vdots & \cdots & \sqrt{v_{n}}s_{n} & \cdots & \cdots & \vdots \\ \vdots & \cdots & \sqrt{v_{n}}s_{n} & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & s_{1}\sqrt{v_{1}} & \cdots & \vdots \\ \vdots & \cdots & \cdots & v_{n} & 0 & \xi_{n}\sqrt{v_{n}} \end{pmatrix}$$

$$\eta_{t} = \begin{pmatrix} W_{1,t}^{S_{1}} \\ \vdots \\ W_{n,t}^{S_{n}} \\ \vdots \\ W_{n,t}^{V_{n}} \\ \vdots \\ W_{n,t}^{V_{n}} \end{pmatrix}$$

Following Fouque and Tullie (2002), we derive the optimal change of measure for the multi-asset Heston model. First, we introduce the martingale

$$H_t = \exp\left(\int_0^T \Sigma^{-1} h(s, X_s) \cdot \Sigma^{-1} d\eta_t + \frac{1}{2} \int_0^T \Sigma^{-1} h(s, X_s) \cdot \Sigma^{-1} h(s, X_s) ds\right)$$
(3)

Next, we define a new probability measure denoted by  $\tilde{\mathbb{Q}}$  which is equivalent to  $\mathbb{Q}$  by its Radon-

Nikodym derivative

$$\frac{d\tilde{\mathbb{Q}}}{d\mathbb{Q}} = \left(H_T\right)^{-1}$$

By the Girsanov theorem for correlated Brownian motions, the process

$$\tilde{\eta}_{t} = \eta_{t} + \int_{0}^{t} h\left(s, X_{s}\right) d\eta_{s}$$

is a 2*n*-dimensional correlated  $\tilde{\mathbb{Q}}$ -Brownian motion. Using  $\tilde{\eta}_t$ , (2) and (3) can be written as

$$dX_t = (b(X_t) - a(X_t) h(t, X_t)) dt + a(X_t) d\tilde{\eta}_t$$
  

$$H_t = \exp\left(\int_0^T \Sigma^{-1} h(s, X_s) \cdot \Sigma^{-1} d\tilde{\eta}_t - \frac{1}{2} \int_0^T \Sigma^{-1} h(s, X_s) \cdot \Sigma^{-1} h(s, X_s) ds\right)$$

Using the analogous derivation to that presented in [13], the optimal choice of h for which the variance of the Monte Carlo estimator under  $\tilde{\mathbb{Q}}$  is minimized is

$$h(t, X_t) = -\frac{1}{P(t, X_t)} a(t, X_t)^\top \nabla P(t, X_t)$$

$$\tag{4}$$

This result is also valid for the Bates model with the difference that

$$a(x) = \begin{pmatrix} \left(\sqrt{v_1} + \frac{dZ_{1,t}}{dW_{1,t}^{S_1}}\right) s_1 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \cdots & \cdots & \cdots & \vdots \\ \vdots & \cdots & \left(\sqrt{v_n} + \frac{dZ_{n,t}}{dW_{n,t}^{S_n}}\right) s_n & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \xi_1 \sqrt{v_1} & \cdots & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & \xi_n \sqrt{v_n} \end{pmatrix}$$

Equation (4) requires the option price and its delta which are not known. Instead, we will use their Black-Scholes equivalents. Under the fast mean-reversion expansion, h for the multi-asset Heston model is given by

$$h_i = -\frac{1}{P_{FMR}} \begin{pmatrix} s_i \sqrt{v_i} \frac{\partial P_{FMR}}{\partial s} \\ 0 \end{pmatrix}$$

where  $P_{FMR}$  is the option price under the classic geometric Brownian motion dynamics with volatility  $\sqrt{\sum_{i=1}^{N} \theta_i^2 - 2\sum_{1 \le i < j \le N}^{N} \rho_{i,j} \sqrt{\theta_i \theta_j}}$ .

Similarly, under the fast mean-reversion expansion, h for the multi-asset Bates model is given

by

$$h_{i} = -\frac{1}{P_{FMR}} \left( \begin{array}{c} s_{i} \left( \sqrt{v_{i}} + \frac{dZ}{dW^{S}} \right) \frac{\partial P_{FMR}}{\partial s} \\ 0 \end{array} \right)$$

where  $P_{FMR}$  is the option price under the classic geometric Brownian motion dynamics with volatility  $\sqrt{\sum_{i=1}^{N} \theta_i^2 - 2\sum_{1 \le i < j \le N}^{N} \rho_{i,j} \sqrt{\theta_i \theta_j}}$ .

#### 2.1 Numerical Examples

In this section, we present the numerical results for spread, absolute, composite, quotient, basket, best-of, and worst-of options. We compared option prices simulated under the importance sampling using fast mean-reversion expansion (MC+IS) against the basic Monte Carlo (MC). All simulations are performed using the same sequence of pseudo-random numbers. We simulate 10,000 sample paths using a time increment of 0.001. For the numerical examples, we assume that the time to maturity is 1 year. For the Bates model, we assume in addition that the jump intensity is 1 jump per year, standard deviation of the jumps is 2%, and the mean jump size is -5%.

#### 2.1.1 Spread, Absolute, Composite, and Quotient Options

Here, we consider options written on two underlying assets. Spread option depends on the difference between two underlying assets. Seller of such an option is long correlation which differentiates this option from the majority of multi-asset options that leave the seller short correlation. For example, the payoff of the spread call with maturity T is given by

$$\max(S_1(T) - S_2(T) - K, 0)$$

Absolute option is an option written on the absolute value of the difference between the two underlying assets at maturity. The holder of an absolute option benefits from the absolute change in price of the underlying assets. For example, the payoff of the spread call with maturity T is given by

$$\max\left(\max\left(S_1(T), S_2(T)\right) - \min\left(S_1(T), S_2(T)\right) - K, 0\right)$$

Composite option is an option on a foreign underlying asset with a strike denominated in the domestic currency. The holder of a composite option faces foreign exchange risk, but benefits from the strike being fixed in the domestic currency. For example, the payoff of the composite call with maturity T is given by

$$\max\left(S_1(T)S_2(T) - K, 0\right)$$

where  $S_2(T)$  is the foreign exchange rate.

Quotient option, also known as ratio option, depends on the ratio of two underlying assets. The holder of a quotient option benefits from the relative change in price of the underlying assets. For example, the payoff of the quotient call with maturity T is given by

$$\max\left(\frac{S_1(T)}{S_2(T)} - K, 0\right)$$

The parameters used in the numerical examples are displayed in Table 1.

| i | S        | r    | $v_0$   | ξ      | $\kappa$ | θ    |  |  |  |  |  |
|---|----------|------|---------|--------|----------|------|--|--|--|--|--|
|   | Spread   |      |         |        |          |      |  |  |  |  |  |
| 1 | 30       | 3    | 0.09    |        |          |      |  |  |  |  |  |
| 2 | 5        | 0.05 | 0.09    | 0.3    | 0.5      | 0.25 |  |  |  |  |  |
|   | Absolute |      |         |        |          |      |  |  |  |  |  |
| 1 | 30       | 0.05 | 0.04    | 0.4    | 3        | 0.09 |  |  |  |  |  |
| 2 | 35       | 0.05 | 0.09    | 0.3    | 0.5      | 0.25 |  |  |  |  |  |
|   |          | Comp | osite / | Quotie | ent      | •    |  |  |  |  |  |
| 1 | 30       | 0.05 | 0.04    | 0.4    | 3        | 0.09 |  |  |  |  |  |
| 2 | 2        | 0.05 | 0.09    | 0.3    | 0.5      | 0.25 |  |  |  |  |  |

Table 1: Model parameters for multi-asset options based on two underlying assets.

The correlation matrix is given by

| 1    | 0.4   | -0.6  | -0.28 |
|------|-------|-------|-------|
| 0.4  | 1     | -0.24 | -0.7  |
| -0.6 | -0.24 | 1     | 0.168 |
|      | -0.7  | 0.168 | 1     |

Tables 2 and 3 report the results for basic Monte Carlo (MC) and importance sampling (IS) for the Heston model and the Bates model. In all cases, importance sampling reduces the variance 5 to 13 times on average compared to the basic Monte Carlo.

| Mone     | yness | 0.7     | 0.8     | 0.9          | 1       | 1.1     | 1.2     | 1.3     |
|----------|-------|---------|---------|--------------|---------|---------|---------|---------|
|          |       |         | Par     | nel A: Sprea | ad      |         |         |         |
|          |       |         |         | Heston       |         |         |         |         |
| Drico    | MC    | 10.9116 | 8.7664  | 6.8078       | 5.0821  | 3.6278  | 2.4616  | 1.5897  |
| Filce    | MC+IS | 10.8962 | 8.7438  | 6.7701       | 5.0316  | 3.5795  | 2.4298  | 1.5730  |
| Varianco | MC    | 51.5956 | 47.0730 | 40.6259      | 32.9627 | 25.0319 | 17.7671 | 11.7748 |
| variance | MC+IS | 3.4245  | 3.7729  | 2.9216       | 1.7977  | 1.3673  | 1.0649  | 0.7246  |
|          |       |         |         | Bates        |         |         |         |         |
| Duise    | MC    | 10.9352 | 8.8015  | 6.8525       | 5.1433  | 3.7056  | 2.5509  | 1.6764  |
| Frice    | MC+IS | 10.9055 | 8.7716  | 6.8252       | 5.1218  | 3.6918  | 2.5521  | 1.6944  |
| Varianco | MC    | 54.2643 | 49.5032 | 42.8706      | 34.9473 | 26.7347 | 19.1973 | 12.9460 |
| variance | MC+IS | 5.4703  | 4.7225  | 4.1768       | 3.4911  | 2.5868  | 1.9515  | 1.4214  |
|          |       |         | Pane    | el B: Absol  | ute     |         |         |         |
|          |       |         |         | Heston       |         |         |         |         |
| Drico    | MC    | 0.8110  | 0.4772  | 0.2775       | 0.1561  | 0.0860  | 0.0470  | 0.0260  |
| Filce    | MC+IS | 0.8157  | 0.4738  | 0.2703       | 0.1517  | 0.0837  | 0.0457  | 0.0241  |
| Varianco | MC    | 8.4177  | 4.9509  | 2.8182       | 1.5635  | 0.8538  | 0.4603  | 0.2410  |
| variance | MC+IS | 4.3064  | 1.9271  | 0.9153       | 0.4107  | 0.1753  | 0.0765  | 0.0256  |
|          |       |         |         | Bates        |         |         |         |         |
| Drico    | MC    | 0.8988  | 0.5351  | 0.3091       | 0.1733  | 0.0947  | 0.0509  | 0.0271  |
| Filce    | MC+IS | 0.8731  | 0.5180  | 0.3015       | 0.1726  | 0.0973  | 0.0530  | 0.0289  |
| Varianco | MC    | 9.2814  | 5.4544  | 3.0895       | 1.6995  | 0.9159  | 0.4850  | 0.2541  |
| variance | MC+IS | 3.9397  | 1.8787  | 0.8458       | 0.3651  | 0.1514  | 0.0554  | 0.0207  |

Table 2: Monte Carlo (MC) and Importance Sampling (MC+IS) price and variance of price for spread and absolute options based on two underlying assets under the Heston model and the Bates model.

| Moneyness |       | 0.7      | 0.8      | 0.9         | 1        | 1.1      | 1.2      | 1.3      |
|-----------|-------|----------|----------|-------------|----------|----------|----------|----------|
|           |       |          | Par      | nel A: Comp | osite    |          |          |          |
|           |       |          |          | Heston      |          |          |          |          |
| Drice     | MC    | 32.6826  | 28.1321  | 23.9924     | 20.2822  | 17.0000  | 14.1175  | 11.6163  |
| Flice     | MC+IS | 32.4569  | 27.8948  | 23.7450     | 20.0351  | 16.7593  | 13.9067  | 11.4605  |
| Variance  | MC    | 958.7243 | 888.7356 | 807.4117    | 719.3844 | 629.3578 | 541.8094 | 459.6539 |
| variance  | MC+IS | 153.3319 | 155.1247 | 150.6481    | 140.7796 | 127.2177 | 111.4294 | 94.7747  |
|           |       |          |          | Bates       |          | -        | -        |          |
| Drice     | MC    | 32.7633  | 28.2312  | 24.1100     | 20.4207  | 17.1358  | 14.2648  | 11.7747  |
| Frice     | MC+IS | 32.6670  | 28.1174  | 23.9634     | 20.2731  | 17.0256  | 14.2011  | 11.7800  |
| Variance  | MC    | 989.9160 | 918.5872 | 835.9709    | 746.4860 | 655.8963 | 567.2028 | 483.7828 |
| variance  | MC+IS | 210.3686 | 203.9079 | 189.1749    | 177.2651 | 162.4286 | 145.2400 | 127.3492 |
|           |       |          | Pa       | nel B: Quot | ient     |          |          |          |
|           |       |          |          | Heston      |          |          |          |          |
| Drico     | MC    | 7.2402   | 5.9534   | 4.8020      | 3.8233   | 3.0250   | 2.3880   | 1.8832   |
| Filce     | MC+IS | 7.2059   | 5.9192   | 4.7583      | 3.7677   | 2.9560   | 2.3126   | 1.8077   |
| Varianco  | MC    | 43.3758  | 41.5555  | 38.6297     | 34.8073  | 30.5444  | 26.3034  | 22.3933  |
| variance  | MC+IS | 3.9368   | 3.6635   | 3.5537      | 3.3123   | 2.9475   | 2.4886   | 2.0209   |
|           |       |          |          | Bates       |          |          |          |          |
| Drice     | MC    | 7.2886   | 6.0117   | 4.8691      | 3.8986   | 3.0977   | 2.4557   | 1.9474   |
| Frice     | MC+IS | 7.2540   | 5.9816   | 4.8495      | 3.8777   | 3.0840   | 2.4433   | 1.9326   |
| Variance  | MC    | 44.9052  | 42.9381  | 39.8828     | 35.9234  | 31.5830  | 27.2593  | 23.2442  |
| variance  | MC+IS | 6.9516   | 8.6092   | 10.8222     | 11.3142  | 12.2593  | 11.4338  | 8.0210   |

Table 3: Monte Carlo (MC) and Importance Sampling (MC+IS) price and variance of price for composite and quotient options based on two underlying assets under the Heston model and the Bates model.

#### 2.1.2 Basket, Best-of, and Worst-of Options

Here, we consider options written on three underlying assets. The payoff of a basket option depends on the performance of a basket of underlying assets, each with its own corresponding weight. The weights  $w_i$  must satisfy the constraints  $0 \le w_i \le 1$  for all  $i = 1, \dots, n$  and  $\sum_{i=1}^n w_i = 1$ . For example, the payoff of the basket call with maturity T is given by

$$\max\left(w_1S_1(T),\cdots,w_nS_n(T)-K,0\right)$$

The main advantage of a basket option is that it offers a greater flexibility in the construction of the underlying basket and it is usually cheaper than buying vanilla options on each of the underlying assets. Basket option is mainly used for diversification purposes.

Best-of option depends on the performance of the best performing asset in a basket. For example, the payoff of the best-of call with maturity T is given by

$$\max\left(\max\left(S_1(T),\cdots,S_n(T)\right)-K,0\right)$$

Best-of call has a higher upside potential compared to a call option on the same basket of underlying assets.

Worst-of option depends on the performance of the worst performing asset in a basket. For example, the payoff of the worst-of call with maturity T is given by

$$\max\left(\min\left(S_1(T),\cdots,S_n(T)\right)-K,0\right)$$

Worst-of call has a lower upside potential compared to a call option on the same basket of underlying assets.

The parameters used in the numerical examples are displayed in Table 4.

| i | w      | S  | r        | $v_0$  | ξ     | $\kappa$ | θ    |  |  |  |  |
|---|--------|----|----------|--------|-------|----------|------|--|--|--|--|
|   | Basket |    |          |        |       |          |      |  |  |  |  |
| 1 | 50%    | 70 | 0.05     | 0.04   | 0.4   | 3        | 0.09 |  |  |  |  |
| 2 | 30%    | 35 | 0.05     | 0.09   | 0.3   | 0.5      | 0.25 |  |  |  |  |
| 3 | 20%    | 40 | 0.05     | 0.25   | 0.2   | 5        | 0.04 |  |  |  |  |
|   |        | В  | est-of a | nd Wor | st-of |          |      |  |  |  |  |
| 1 |        | 30 | 0.05     | 0.04   | 0.4   | 3        | 0.09 |  |  |  |  |
| 2 |        | 35 | 0.05     | 0.09   | 0.3   | 0.5      | 0.25 |  |  |  |  |
| 3 |        | 40 | 0.05     | 0.25   | 0.2   | 5        | 0.04 |  |  |  |  |

Table 4: Model parameters for multi-asset options based on three underlying assets.

The correlation matrix is given by

| 1 | Г     |       |        |        |       |        |
|---|-------|-------|--------|--------|-------|--------|
|   | 1     | 0.4   | 0.2    | -0.6   | -0.28 | -0.1   |
|   | 0.4   | 1     | 0.5    | -0.24  | -0.7  | -0.25  |
|   | 0.2   | 0.5   | 1      | 0.0282 | -0.35 | -0.5   |
|   | -0.6  | -0.24 | 0.0282 | 1      | 0.168 | 0.0294 |
|   | -0.28 | -0.7  | -0.35  | 0.168  | 1     | 0.175  |
|   | -0.1  | -0.25 | -0.5   | 0.0294 | 0.175 | 1      |

Table 5 reports the results for basic Monte Carlo (MC) and importance sampling (IS) for the Heston model and the Bates model. In all cases, importance sampling reduces the variance 3 to 5 times on average compared to the basic Monte Carlo.

| Mone                                                  | yness | 0.7      | 0.8      | 0.9           | 1       | 1.1     | 1.2     | 1.3     |  |  |  |
|-------------------------------------------------------|-------|----------|----------|---------------|---------|---------|---------|---------|--|--|--|
|                                                       |       |          | Pan      | el A: Basket  | -       |         |         |         |  |  |  |
| Heston                                                |       |          |          |               |         |         |         |         |  |  |  |
| Duise                                                 | MC    | 18.0939  | 13.4929  | 9.4321        | 6.1308  | 3.6583  | 2.0060  | 0.9916  |  |  |  |
| Flice                                                 | MC+IS | 18.1301  | 13.5388  | 9.4302        | 6.0855  | 3.6288  | 1.9740  | 0.9759  |  |  |  |
| Variance                                              | MC    | 131.7882 | 116.7452 | 93.7079       | 66.5853 | 41.7007 | 22.8492 | 11.1104 |  |  |  |
| variance                                              | MC+IS | 22.8241  | 27.9146  | 15.9959       | 11.1225 | 10.7502 | 5.6949  | 1.8306  |  |  |  |
|                                                       |       |          |          | Bates         | -       | -       |         | -       |  |  |  |
| MC 18.0972 13.5079 9.4722 6.1935 3.7289 2.0761 1.0521 |       |          |          |               |         |         |         |         |  |  |  |
| Price                                                 | MC+IS | 18.0389  | 13.4853  | 9.4724        | 6.2015  | 3.7453  | 2.0880  | 1.0719  |  |  |  |
| Variance                                              | MC    | 135.8888 | 120.4728 | 96.8471       | 69.1762 | 43.8538 | 24.5189 | 12.2881 |  |  |  |
| variance                                              | MC+IS | 31.0928  | 26.9779  | 21.0307       | 14.3609 | 8.3187  | 4.1190  | 1.7322  |  |  |  |
|                                                       |       |          | Pan      | el B: Best-o  | f       |         |         |         |  |  |  |
|                                                       |       |          |          | Heston        |         |         |         |         |  |  |  |
| Duise                                                 | MC    | 20.0806  | 16.8117  | 13.6660       | 10.7524 | 8.1722  | 5.9940  | 4.2450  |  |  |  |
| Price                                                 | MC+IS | 20.0837  | 16.8275  | 13.6950       | 10.7276 | 8.1459  | 5.9882  | 4.2398  |  |  |  |
| <b>V</b> 7                                            | MC    | 114.2491 | 112.0612 | 106.5591      | 96.5682 | 82.5957 | 66.5238 | 50.5769 |  |  |  |
| variance                                              | MC+IS | 49.6236  | 40.2004  | 31.9864       | 24.6266 | 19.9598 | 15.4075 | 11.2659 |  |  |  |
|                                                       |       |          |          | Bates         |         |         |         |         |  |  |  |
| Drigo                                                 | MC    | 20.2257  | 16.9608  | 13.8165       | 10.8969 | 8.3088  | 6.1219  | 4.3675  |  |  |  |
| Flice                                                 | MC+IS | 20.1805  | 16.9499  | 13.8360       | 10.8988 | 8.3327  | 6.1667  | 4.4003  |  |  |  |
| Variance                                              | MC    | 117.5027 | 115.1506 | 109.5496      | 99.5909 | 85.5577 | 69.3061 | 53.0277 |  |  |  |
| variance                                              | MC+IS | 49.5691  | 40.9534  | 33.3357       | 26.6619 | 21.6881 | 16.7958 | 12.4169 |  |  |  |
|                                                       |       |          | Pane     | el C: Worst-o | of      |         |         |         |  |  |  |
|                                                       |       |          |          | Heston        |         |         |         |         |  |  |  |
| Drigo                                                 | MC    | 5.0870   | 3.1251   | 1.7429        | 0.8760  | 0.3895  | 0.1544  | 0.0590  |  |  |  |
| Flice                                                 | MC+IS | 5.1117   | 3.1181   | 1.7279        | 0.8628  | 0.3849  | 0.1524  | 0.0533  |  |  |  |
| Variance                                              | MC    | 32.2608  | 21.3585  | 12.1857       | 5.9854  | 2.5606  | 0.9838  | 0.3423  |  |  |  |
| variance                                              | MC+IS | 13.8514  | 8.7862   | 4.7116        | 2.1009  | 0.7885  | 0.2509  | 0.0701  |  |  |  |
|                                                       |       |          |          | Bates         |         |         |         |         |  |  |  |
| Drigo                                                 | MC    | 5.0152   | 3.0794   | 1.7277        | 0.8753  | 0.3964  | 0.1649  | 0.0615  |  |  |  |
| Frice                                                 | MC+IS | 5.0174   | 3.0583   | 1.6931        | 0.8489  | 0.3835  | 0.1561  | 0.0580  |  |  |  |
| Variance                                              | MC    | 32.4943  | 21.5437  | 12.3510       | 6.1418  | 2.6990  | 1.0523  | 0.3754  |  |  |  |
| variance                                              | MC+IS | 14.3138  | 8.9745   | 4.7930        | 2.1609  | 0.8268  | 0.2723  | 0.0798  |  |  |  |

Table 5: Monte Carlo (MC) and Importance Sampling (MC+IS) price and variance of price for basket, best-of, and worst-of options based on three underlying assets under the Heston model and the Bates model.

## 3 Greeks for Multi-Asset Options

We begin with an option price under  $\mathbb Q$  defined as

$$P(t,x) = \int_0^\infty \cdots \int_0^\infty e^{-r(T-t)} \phi\left(S_1(T), \cdots, S_n(T)\right) f(x_1, \cdots, x_n) dx_1 \cdots dx_n$$

where  $\phi(S_1(T), \dots, S_n(T))$  is the payoff function and  $f(x_1, \dots, x_n)$  is the joint risk-neutral probability density function.

Next, consider, delta  $\Delta$ , the first derivative of the option price with respect to  $S_1(0)$ 

$$\Delta = \frac{\partial}{\partial S_1(0)} \int_0^\infty \cdots \int_0^\infty B\phi(S_1(T), \cdots, S_n(T)) f(x_1, \cdots, x_n) dx_1 \cdots dx_n$$
  
= 
$$\int_0^\infty \cdots \int_0^\infty B\phi(S_1(T), \cdots, S_n(T)) \frac{\frac{\partial}{\partial S_1(0)} f(x_1, \cdots, x_n)}{f(x_1, \cdots, x_n)} f(x_1, \cdots, x_n) dx_1 \cdots dx_n$$

where  $B = e^{-r(T-t)}$  and  $\frac{\frac{\partial}{\partial S_1(0)}f(x_1, \dots, x_n)}{f(x_1, \dots, x_n)}$  is the likelihood ratio. By Sklar's Theorem there exists a copula C such that

$$F(x_1, \cdots, x_n) = C(F_1(x_1), \cdots, F_n(x_n)) = C(u_1, \cdots, u_n)$$
(5)

In [13], we showed that the cumulative distribution function (CDF) and the probability density function (PDF) for both the Heston model and the Bates model can be obtained as

$$F_{1}(x_{1}) = Pr\left(S_{1}(T) \leq x_{1}\right) = \frac{1}{2} - \frac{1}{\pi} \int_{0}^{\infty} Re\left[\frac{\exp\left(-i\omega\ln\left(x_{1}\right)\right)\psi_{T}\left(\omega\right)}{i\omega}\right] d\omega$$
$$f_{1}(x_{1}) \approx \frac{F_{1}\left(x_{1} + \Delta x\right) - F_{1}\left(x_{1}\right)}{\Delta x}$$

where  $\psi$  is the characteristic function. Taking  $n^{th}$  order differentiation of (5) gives an expression for the joint density.

$$f(x_1, \cdots, x_n) = \prod_{i=1}^n f_i(x_i) c(u_1, \cdots, u_n)$$

where  $c(u_1, \dots, u_n) = \frac{\partial^n C(u_1, \dots, u_n)}{\partial u_1 \cdots \partial u_n}$ . In order to estimate the Greeks we will use an analytical copula as an approximation of copula in (5). The same procedure as above can be followed to compute the other Greeks.

#### 3.1 Numerical Examples

In this section, we present delta,  $\Delta$ , and gamma,  $\Gamma$ , of the multi-asset Heston model and the multiasset Bates model calculated using Likelihood Ratio Method (MC) and Likelihood Ratio Method combined with importance sampling (MC+IS). We consider basket call option described in Section 2.1.2. As an approximation of the joint PDF for the Heston model we will use the t-copula with 62 degrees of freedom and correlation matrix

$$\begin{bmatrix} 1 & 0.4 & 0.2 \\ 0.4 & 1 & 0.5 \\ 0.2 & 0.5 & 1 \end{bmatrix}$$
(6)

As an approximation of the joint PDF for the Bates model we will use the t-copula with 30 degrees of freedom and the correlation matrix given by (6). For both models the correlation matrix and the number of degrees of freedom were estimated using maximum likelihood.

Table 6 presents results for delta and gamma, respectively, of a basket call option for the multiasset Heston model. On average importance sampling reduces the variance of delta and gamma by factor of 2.

| i | Mone     | yness | 0.7    | 0.8    | 0.9    | 1      | 1.1    | 1.2    | 1.3    |
|---|----------|-------|--------|--------|--------|--------|--------|--------|--------|
|   | Delte    | MC    | 0.4850 | 0.4572 | 0.4070 | 0.3346 | 0.2500 | 0.1678 | 0.1005 |
|   | Delta    | MC+IS | 0.4832 | 0.4528 | 0.4005 | 0.3290 | 0.2499 | 0.1702 | 0.1045 |
|   | Variance | MC    | 2.9080 | 2.0993 | 1.4687 | 0.9938 | 0.6445 | 0.3937 | 0.2223 |
| 1 |          | MC+IS | 1.9176 | 1.1636 | 0.6470 | 0.3326 | 0.2544 | 0.1250 | 0.0439 |
| 1 |          | MC    | 0.0009 | 0.0025 | 0.0048 | 0.0071 | 0.0084 | 0.0083 | 0.0067 |
|   | Gamma    | MC+IS | 0.0026 | 0.0039 | 0.0060 | 0.0079 | 0.0089 | 0.0086 | 0.0071 |
|   | Variance | MC    | 0.0378 | 0.0291 | 0.0217 | 0.0157 | 0.0108 | 0.0070 | 0.0042 |
|   | variance | MC+IS | 0.0262 | 0.0174 | 0.0107 | 0.0061 | 0.0033 | 0.0018 | 0.0009 |
|   | Dolta    | MC    | 0.2873 | 0.2671 | 0.2329 | 0.1870 | 0.1366 | 0.0906 | 0.0524 |
|   | Delta    | MC+IS | 0.2865 | 0.2673 | 0.2365 | 0.1910 | 0.1352 | 0.0874 | 0.0501 |
|   | Variance | MC    | 7.8665 | 5.3811 | 3.4908 | 2.1292 | 1.2105 | 0.6341 | 0.3048 |
| 1 |          | MC+IS | 6.5965 | 4.1291 | 2.3213 | 1.1894 | 0.6826 | 0.2735 | 0.0868 |
|   | Commo    | MC    | 0.0115 | 0.0093 | 0.0077 | 0.0065 | 0.0054 | 0.0042 | 0.0027 |
|   | Gamma    | MC+IS | 0.0169 | 0.0144 | 0.0120 | 0.0100 | 0.0079 | 0.0055 | 0.0036 |
|   | Variance | MC    | 0.3224 | 0.2279 | 0.1536 | 0.0977 | 0.0581 | 0.0322 | 0.0164 |
|   | variance | MC+IS | 0.2865 | 0.1852 | 0.1098 | 0.0587 | 0.0298 | 0.0127 | 0.0046 |
|   | Dolta    | MC    | 0.1886 | 0.1728 | 0.1506 | 0.1219 | 0.0897 | 0.0583 | 0.0340 |
|   | Dena     | MC+IS | 0.1932 | 0.1789 | 0.1593 | 0.1315 | 0.0995 | 0.0689 | 0.0430 |
|   | Variance | MC    | 5.4444 | 3.6204 | 2.2803 | 1.3568 | 0.7634 | 0.4083 | 0.2102 |
| 9 | Variance | MC+IS | 4.0029 | 2.3606 | 1.2534 | 0.6082 | 0.2816 | 0.1127 | 0.0388 |
| 5 | 3 Commo  | MC    | 0.0082 | 0.0063 | 0.0047 | 0.0036 | 0.0029 | 0.0024 | 0.0020 |
|   | Gamma    | MC+IS | 0.0103 | 0.0081 | 0.0062 | 0.0047 | 0.0034 | 0.0025 | 0.0017 |
|   | Variance | MC    | 0.1294 | 0.0883 | 0.0576 | 0.0360 | 0.0218 | 0.0130 | 0.0078 |
|   | variance | MC+IS | 0.0928 | 0.0554 | 0.0301 | 0.0150 | 0.0079 | 0.0032 | 0.0011 |

Table 6: Likelihood Ratio Method (MC) and Likelihood Ratio Method with Importance Sampling (MC+IS) Greeks (delta, variance of delta, gamma, and variance of gamma) for a basket call under the Heston model.

Table 7 presents results for delta and gamma, respectively, of a basket call option for the multiasset Bates model. On average importance sampling reduces the variance of delta and gamma by factor of 2.

| i | Mone       | yness | 0.7    | 0.8    | 0.9    | 1      | 1.1    | 1.2    | 1.3    |
|---|------------|-------|--------|--------|--------|--------|--------|--------|--------|
|   | Dalta      | MC    | 0.4845 | 0.4567 | 0.4066 | 0.3347 | 0.2512 | 0.1706 | 0.1044 |
|   | Delta      | MC+IS | 0.4769 | 0.4489 | 0.3976 | 0.3292 | 0.2488 | 0.1722 | 0.1092 |
|   | Variance   | MC    | 2.8944 | 2.1049 | 1.4874 | 1.0193 | 0.6713 | 0.4182 | 0.2421 |
| 1 |            | MC+IS | 1.9074 | 1.1758 | 0.6710 | 0.3565 | 0.1826 | 0.0906 | 0.0463 |
|   |            | MC    | 0.0028 | 0.0040 | 0.0060 | 0.0080 | 0.0091 | 0.0087 | 0.0071 |
|   | Gamma      | MC+IS | 0.0040 | 0.0055 | 0.0071 | 0.0089 | 0.0100 | 0.0094 | 0.0078 |
|   | Variance   | MC    | 0.0379 | 0.0295 | 0.0223 | 0.0163 | 0.0114 | 0.0076 | 0.0047 |
|   | variance   | MC+IS | 0.0242 | 0.0168 | 0.0105 | 0.0063 | 0.0036 | 0.0020 | 0.0011 |
|   | Dolta      | MC    | 0.2933 | 0.2708 | 0.2342 | 0.1862 | 0.1364 | 0.0906 | 0.0529 |
|   | Dena       | MC+IS | 0.2812 | 0.2598 | 0.2284 | 0.1803 | 0.1296 | 0.0833 | 0.0477 |
|   | X7         | MC    | 7.8325 | 5.3818 | 3.5098 | 2.1576 | 1.2400 | 0.6602 | 0.3245 |
| 9 | variance   | MC+IS | 6.5213 | 4.1040 | 2.3413 | 1.2146 | 0.5691 | 0.2377 | 0.0889 |
| 2 | Commo      | MC    | 0.0174 | 0.0142 | 0.0115 | 0.0093 | 0.0072 | 0.0053 | 0.0033 |
|   | Gaiiiiia   | MC+IS | 0.0227 | 0.0199 | 0.0163 | 0.0132 | 0.0098 | 0.0072 | 0.0048 |
|   | Varianco   | MC    | 0.3207 | 0.2294 | 0.1565 | 0.1009 | 0.0608 | 0.0340 | 0.0175 |
|   | variance   | MC+IS | 0.2523 | 0.1679 | 0.1049 | 0.0561 | 0.0279 | 0.0123 | 0.0051 |
|   | Dolta      | MC    | 0.1722 | 0.1588 | 0.1390 | 0.1136 | 0.0831 | 0.0543 | 0.0317 |
|   | Dena       | MC+IS | 0.1701 | 0.1611 | 0.1442 | 0.1206 | 0.0939 | 0.0655 | 0.0404 |
|   | Varianco   | MC    | 5.2603 | 3.4916 | 2.1943 | 1.3011 | 0.7289 | 0.3872 | 0.1981 |
| 2 | Variance   | MC+IS | 3.8632 | 2.2887 | 1.2276 | 0.6000 | 0.2648 | 0.1058 | 0.0389 |
|   | 3<br>Camma | MC    | 0.0096 | 0.0071 | 0.0050 | 0.0035 | 0.0025 | 0.0019 | 0.0014 |
|   | Gamma      | MC+IS | 0.0094 | 0.0075 | 0.0057 | 0.0041 | 0.0032 | 0.0021 | 0.0013 |
|   | Variance   | MC    | 0.1184 | 0.0801 | 0.0515 | 0.0315 | 0.0185 | 0.0105 | 0.0059 |
|   | variance   | MC+IS | 0.0781 | 0.0472 | 0.0258 | 0.0129 | 0.0061 | 0.0026 | 0.0009 |

Table 7: Likelihood Ratio Method (MC) and Likelihood Ratio Method with Importance Sampling (MC+IS) Greeks (delta, variance of delta, gamma, and variance of gamma) for a basket call under the Bates model.

## 4 Importance Sampling for Heston with Stochastic Interest

## Rates

Here, we consider models with stochastic volatility and stochastic interest rates. The dynamics of the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model under the risk neutral measure  $\mathbb{Q}$  is given by

$$dS_t = r_t S_t dt + \sqrt{v_t} S_t dW_t^S$$
$$dv_t = \kappa (\bar{v} - v_t) dt + \gamma \sqrt{v_t} dW_t^v$$
$$dr_t = \lambda (\theta_t - r_t) dt + \eta r_t^p dW_t^r$$

where  $\langle dW_t^S dW_t^v \rangle = \rho_{S,v} dt$ ,  $\langle dW_t^S dW_t^r \rangle = \rho_{S,r} dt$ , and  $\langle dW_t^r dW_t^v \rangle = 0$ .  $S_t$  is the stock price,  $r_t$  is the risk-free interest rate,  $v_t$  is the variance,  $\kappa$  is the variance mean-reversion rate,  $\bar{v}$  is the

long-term variance,  $\gamma$  is the volatility of volatility,  $\lambda$  is the interest rate mean-reversion rate,  $\theta_t$  is the long-term interest rate,  $\eta$  is the volatility of interest rate,  $\rho_{S,v}$  is the correlation between stock returns and changes in the variance, and  $\rho_{S,r}$  is the correlation between stock returns and changes in the interest rate. If p = 0, we have the Heston-Hull-White model and if p = 0.5, we have the Heston-Cox-Ingersoll-Ross model.

In matrix notation, the model dynamics is

$$dX_t = b\left(X_t\right)dt + a\left(X_t\right)d\eta_t\tag{7}$$

where  $\eta_t$  is a 3-dimensional  $\mathbb Q\text{-}\mathsf{Brownian}$  motion and

$$dX_{t} = \begin{pmatrix} S_{t} \\ v_{t} \\ r_{t} \end{pmatrix}$$

$$b(x) = \begin{pmatrix} rs \\ \kappa(\bar{v} - v) \\ \lambda(\theta_{t} - r) \end{pmatrix}$$

$$a(x) = \begin{pmatrix} \sqrt{vs} & 0 & 0 \\ \gamma\sqrt{v}\rho_{S,v} & \gamma\sqrt{v\left(1 - \rho_{S,v}^{2}\right)} & 0 \\ \eta r^{p}\rho_{S,r} & \eta r^{p} \frac{-\rho_{S,v}\rho_{S,r}}{\sqrt{(1 - \rho_{S,v}^{2})}} & \eta r^{p} \sqrt{1 - \left(\rho_{S,r}^{2} + \frac{\rho_{S,v}^{2}\rho_{S,r}^{2}}{1 - \rho_{S,v}^{2}}\right)} \end{pmatrix}$$

$$\eta_{t} = \begin{pmatrix} W_{t}^{S} \\ W_{t}^{v} \\ W_{t}^{r} \end{pmatrix}$$

Following Fouque and Tullie (2002), we derive the optimal change of measure for the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. First, we introduce the martingale

$$H_{t} = \exp\left(\int_{0}^{T} h^{\top}(s, X_{s}) d\eta_{s} + \frac{1}{2} \int_{0}^{T} \|h(s, X_{s})\|^{2} ds\right)$$
(8)

where  $h^{\top}$  denotes the transpose of h. Next, we define a new probability measure denoted by  $\tilde{\mathbb{Q}}$  which is equivalent to  $\mathbb{Q}$  by its Radon-Nikodym derivative

$$\frac{d\tilde{\mathbb{Q}}}{d\mathbb{Q}} = \left(H_T\right)^{-1}$$

By the Girsanov theorem, the process

$$\tilde{\eta}_{t} = \eta_{t} + \int_{0}^{t} h\left(s, X_{s}\right) d\eta_{s}$$

is a 3-dimensional  $\hat{\mathbb{Q}}$ -Brownian motion. Using  $\tilde{\eta}_t$ , (7) and (8) can be written as

$$dX_t = (b(X_t) - a(X_t)h(t, X_t))dt + a(X_t)d\tilde{\eta}_t$$
  

$$H_t = \exp\left(\int_0^T h^{\top}(s, X_s)d\tilde{\eta}_t - \frac{1}{2}\int_0^T ||h(s, X_s)||^2 ds\right)$$

Using the analogous derivation to that presented in [13], the optimal choice of h for which the variance of the Monte Carlo estimator under  $\tilde{\mathbb{Q}}$  is minimized is

$$h(t, X_t) = -\frac{1}{P(t, X_t)} a(t, X_t)^\top \nabla P(t, X_t)$$
(9)

From (9), under the fast mean-reversion expansion, h is given by

$$h = -\frac{1}{P_{FMR}} \left( \begin{array}{c} s\sqrt{v} \frac{\partial P_{FMR}}{\partial s} \\ 0 \end{array} \right)$$

where  $P_{FMR}$  is the option price under the classic geometric Brownian motion dynamics with volatility  $\sqrt{\overline{v}}$ .

## 5 Multi-Level Monte Carlo with Importance Sampling

Multi-Level Monte Carlo is a Monte Carlo simulation with different number of time steps  $h_l = 2^{-l}T$ on each level  $l = 0, 1, \dots, L$ . For detailed discussion of Multi-Level Monte Carlo we refer to the Appendix. To illustrate the performance of Multi-Level Monte Carlo with the importance sampling, we will use the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model described in the previous section. We compare the performance of the Multi-Level Monte Carlo with the importance sampling (MLMC+IS) and without importance sampling (MLMC) for the European call option against the semi-analytical solution (HHW/HCIR). The parameters are set as follows:  $\kappa = 2, \gamma = 0.06, v_0 = \bar{v} = 0.04, \lambda = 0.05, r_0 = \theta = 0.07, \eta = 0.01, S_0 = 100, \rho_{S,v} = -0.3,$  $\rho_{S,r} = 0.2, T = 1$ . We set  $\epsilon = 0.01$  and L = 8. We consider five strikes: 60, 80, 100, 120, and 140. Table 8 presents the price, variance, and relative error of the European call. The relative error is measured against the semi-analytical solution.

| Strike               |         | 60           | 80           | 100      | 120     | 140     |
|----------------------|---------|--------------|--------------|----------|---------|---------|
|                      |         | Heston-Hu    | ll-White     | •        |         |         |
|                      | HHW     | 44.0682      | 26.0077      | 11.5943  | 3.7583  | 0.9221  |
| Price                | MLMC    | 44.0918      | 26.0258      | 11.6100  | 3.7636  | 0.9219  |
|                      | MLMC+IS | 44.0879      | 26.0256      | 11.6085  | 3.7648  | 0.9229  |
| Variance             | MLMC    | 413.4086     | 379.9792     | 238.5803 | 90.0735 | 23.6667 |
| variance             | MLMC+IS | 44.9006      | 157.6493     | 124.6953 | 31.2749 | 3.4079  |
| Polotino ormon (%)   | MLMC    | 0.05         | 0.07         | 0.13     | 0.14    | 0.02    |
| Relative error (70)  | MLMC+IS | 0.04         | 0.07         | 0.12     | 0.17    | 0.08    |
|                      | He      | eston-Cox-In | gersoll-Ross |          |         |         |
|                      | HCIR    | 44.0686      | 25.9996      | 11.5668  | 3.7296  | 0.9071  |
| Price                | MLMC    | 44.0724      | 26.0067      | 11.5696  | 3.7320  | 0.9037  |
|                      | MLMC+IS | 44.0769      | 26.0045      | 11.5693  | 3.7326  | 0.9041  |
| Variance             | MLMC    | 413.1371     | 379.8149     | 238.3690 | 90.1313 | 23.6259 |
| variance             | MLMC+IS | 43.8495      | 159.4084     | 121.6297 | 29.2775 | 3.5179  |
| Polotino ormon (%)   | MLMC    | 0.01         | 0.03         | 0.02     | 0.06    | 0.37    |
| Trefative effor (70) | MLMC+IS | 0.02         | 0.02         | 0.02%    | 0.08    | 0.33    |

Table 8: Multi-Level Monte Carlo (MLMC) and Importance Sampling (MLMC+IS) price, variance of price, and relative error for a European call under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. Relative error is measured against the semi-analytical solution (HHW/HCIR).

Given the nature of the Multi-Level Monte Carlo, we observe that it is possible to use importance sampling on all levels or some levels. We will refer to the former as full importance sampling. We note that the first level, where l = 0, is the coarsest, because there is only one step at this level with step size T. Variance at level l decreases as l increases because both  $P_{l-1}$  and  $P_l$  accurately approximate P as they are obtained using the same Brownian path. Therefore, as an alternative to the full importance sampling, we will consider importance sampling on the first level only.

Figure 1 plots the effective performance against strikes for the different simulation schemes. Effective performance is defined as the ratio of variance reduction to speed. Speed itself is defined as the ratio of computational time of the Multi-Level Monte Carlo with the importance sampling to computational time of the Multi-Level Monte Carlo without importance sampling. Figure 1 compares Multi-Level Monte Carlo with full importance sampling, Multi-Level Monte Carlo with the importance sampling on the first level only, and Multi-Level Monte Carlo without importance sampling. The results indicate that the Multi-Level Monte Carlo with the importance sampling is more efficient than Multi-Level Monte Carlo without importance sampling. In addition, Multi-Level Monte Carlo with the importance sampling on the first level only is much more efficient than both Multi-Level Monte Carlo without importance sampling and Multi-Level Monte Carlo with full importance sampling. The performance improvement, compared to the Multi-Level Monte Carlo full importance sampling comes from two sources. The first one is variance reduction from importance sampling; the second is reduced computational time. This is due to the fact that the number of sample paths at level l which is given by (13) depends on the variance at level l. Since importance sampling reduces the variance at the first level, the required number of sample paths at this level is less, compared to the Multi-Level Monte Carlo without importance sampling.



(b) Heston-Cox-Ingersoll-Ross

Figure 1: Effective performance for different strikes.

So far, we have demonstrated that importance sampling improves the efficiency of both basic Monte Carlo and Multi-Level Monte Carlo. It has been also shown by Giles (2008) that Multi-Level Monte Carlo is more efficient than basic Monte Carlo. To complete the picture, we compare basic Monte Carlo with Importance Sampling and Multi-Level Monte Carlo with Importance Sampling. Figure 2 compares the computational cost associated with the desired accuracy,  $\epsilon$ , for basic Monte Carlo with Importance Sampling (MC+IS) and Multi-Level Monte Carlo with Importance Sampling on the first level (MLMC+IS). For Multi-Level Monte Carlo, the computational cost, C, is defined as the total number of time steps on all levels. For each sample path at level l > 0, there is one fine path with  $2^l$  time steps and one coarse path with  $2^{l-1}$  time steps. Hence,

$$C = N_0 + \sum_{l=1}^{L} N_l \left( 2^l + 2^{l-1} \right)$$

The computational of the basic Monte Carlo is calculated as

$$C^* = \sum_{l=0}^L N_l^* 2^l$$

where  $N_l^* = 2\epsilon^{-2} Var \left[\phi_l\left(S\right)\right]$  so that the variance of the basic Monte Carlo estimator is also  $\frac{1}{2}\epsilon^2$ . Figure 2 shows that for a given accuracy, Multi-Level Monte Carlo with Importance Sampling on the first level has lower computational cost compared to the basic Monte Carlo with Importance Sampling. For Multi-Level Monte Carlo,  $\epsilon^2 C$  is roughly constant which is consistent with theory that predicts computational cost of order  $\epsilon^{-2}$ . For basic Monte Carlo,  $\epsilon^2 C$  is approximately proportional to  $\epsilon^{-1}$ , which is in line with the theoretical cost of order  $\epsilon^{-3}$ .



(b) Heston-Cox-Ingersoll-Ross

Figure 2: Computational cost associated with the desired accuracy ( $\epsilon$ ) for basic Monte Carlo with Importance Sampling (MC+IS) and Multi-Level Monte Carlo with Importance Sampling on the first level (MLMC+IS).

## 6 Greeks for Multi-Level Monte Carlo

It is also possible to use the Likelihood Ratio Method to estimate the Greeks in a Multi-Level Monte Carlo. Let us consider the first derivative of the Multi-Level Monte Carlo estimator (10) with respect to  $S_0$ .

$$\begin{split} \Delta &= \frac{\partial}{\partial S_0} \mathbb{E} \left[ \phi_L \left( S \right) \right] \\ &= \frac{\partial}{\partial S_0} \mathbb{E} \left[ \phi_0 \left( S \right) \right] + \sum_{l=1}^L \frac{\partial}{\partial S_0} \mathbb{E} \left[ \phi_l \left( S \right) - \phi_{l-1} \left( S \right) \right] \\ &= \int_0^\infty e^{-r(T-t)} \phi_0 \left( s \right) \frac{\frac{\partial}{\partial S_0} f(x)}{f(x)} f(x) dx + \\ &+ \sum_{l=1}^L \int_0^\infty e^{-r(T-t)} \left( \left[ \phi_l \left( s \right) - \phi_{l-1} \left( s \right) \right] \right) \frac{\frac{\partial}{\partial S_0} f(x)}{f(x)} f(x) dx \end{split}$$

where  $\frac{\partial}{\partial S_0} \frac{f(x)}{f(x)}$  is the likelihood ratio which can be obtained from the characteristic function as in [13].

Table 9 reports delta and gamma computed by the Likelihood Ratio Method with the importance sampling (IS) and without importance sampling (L) for European option under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. On average importance sampling reduces the variance of delta 8 times and the variance of gamma 7 times.

| St                | trike   | 60        | 80          | 100    | 120    | 140    |  |  |  |
|-------------------|---------|-----------|-------------|--------|--------|--------|--|--|--|
| Heston-Hull-White |         |           |             |        |        |        |  |  |  |
| Dolto             | MLMC    | 0.9595    | 0.9187      | 0.6691 | 0.3227 | 0.1068 |  |  |  |
| Dena              | MLMC+IS | 0.9621    | 0.9172      | 0.6690 | 0.3235 | 0.1058 |  |  |  |
| Variance          | MLMC    | 8.5492    | 4.7461      | 2.5166 | 1.1986 | 0.4324 |  |  |  |
| variance          | MLMC+IS | 4.3355    | 1.1883      | 0.2358 | 0.0869 | 0.0379 |  |  |  |
| Commo             | MLMC    | 0.0001    | 0.0042      | 0.0165 | 0.0175 | 0.0092 |  |  |  |
| Gaiiiiia          | MLMC+IS | 0.0001    | 0.0042      | 0.0164 | 0.0174 | 0.0092 |  |  |  |
| Varianco          | MLMC    | 0.0569    | 0.0370      | 0.0219 | 0.0119 | 0.0055 |  |  |  |
| variance          | MLMC+IS | 0.0264    | 0.0108      | 0.0035 | 0.0011 | 0.0005 |  |  |  |
|                   | He      | eston-Cox | -Ingersoll- | Ross   |        |        |  |  |  |
| Dolto             | MLMC    | 0.9570    | 0.9179      | 0.6698 | 0.3231 | 0.1062 |  |  |  |
| Dena              | MLMC+IS | 0.9577    | 0.9195      | 0.6686 | 0.3224 | 0.1057 |  |  |  |
| Variance          | MLMC    | 8.6794    | 4.8099      | 2.5586 | 1.2152 | 0.4403 |  |  |  |
| variance          | MLMC+IS | 4.4050    | 1.2070      | 0.2374 | 0.0861 | 0.0350 |  |  |  |
| Commo             | MLMC    | 0.0001    | 0.0041      | 0.0165 | 0.0176 | 0.0092 |  |  |  |
| Gamma             | MLMC+IS | 0.0002    | 0.0042      | 0.0164 | 0.0175 | 0.0091 |  |  |  |
| Variance          | MLMC    | 0.0591    | 0.0383      | 0.0227 | 0.0123 | 0.0057 |  |  |  |
| variance          | MLMC+IS | 0.0271    | 0.0112      | 0.0036 | 0.0011 | 0.0005 |  |  |  |

Table 9: Likelihood Ratio Method (MLMC) and Likelihood Ratio Method with Importance Sampling (MLMC+IS) Greeks (delta, variance of delta, gamma, and variance of gamma) for a European call under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model.

# 7 Multi-Level Monte Carlo with Importance Sampling for Multi-Asset Options

Finally, we will use the Multi-Level Monte Carlo to price basket call on three underlying assets. We will use the same parameters as in Section 2 and  $\lambda = 0.05$ ,  $r_0 = \theta = 0.05$ ,  $\eta = 0.01$ ,  $\rho_{S,v} = -0.3$ ,  $\rho_{S,r} = 0.2$ ,  $\rho_{r,v} = 0$ . We set  $\epsilon = 0.05$  and L = 8. We note that a combination of Multi-Level Monte Carlo and hybrid stochastic volatility model such as Heston-Hull-White or Heston-Cox-Ingersoll-Ross is particularly suitable for pricing variable annuities which are in principle long-dated basket put options.

Table 10 reports the results for Multi-Level Monte Carlo with the importance sampling (MLMC+IS) and without importance sampling (MLMC) for a basket call on three underlying assets under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. On average importance sampling reduces the variance 3 times compared to the Multi-Level Monte Carlo without importance sampling.

| Moneyness |                   | 0.7      | 0.8        | 0.9         | 1       | 1.1     | 1.2     | 1.3     |  |  |  |
|-----------|-------------------|----------|------------|-------------|---------|---------|---------|---------|--|--|--|
|           | Heston-Hull-White |          |            |             |         |         |         |         |  |  |  |
| Price     | MLMC              | 17.9506  | 13.2379    | 9.1427      | 5.8453  | 3.3797  | 1.7681  | 0.8636  |  |  |  |
|           | MLMC+IS           | 17.9671  | 13.2424    | 9.1135      | 5.7541  | 3.3249  | 1.8456  | 0.9217  |  |  |  |
| <b>V</b>  | MLMC              | 123.9666 | 114.0966   | 94.7747     | 68.4085 | 43.3949 | 24.5796 | 12.3358 |  |  |  |
| variance  | MLMC+IS           | 41.6504  | 40.1116    | 33.2675     | 22.6223 | 12.5556 | 6.4589  | 2.4066  |  |  |  |
|           |                   |          | Heston-Cox | -Ingersoll- | Ross    |         |         |         |  |  |  |
| Drigo     | MLMC              | 17.9789  | 13.2578    | 9.2080      | 5.8265  | 3.3508  | 1.7697  | 0.9293  |  |  |  |
| Filce     | MLMC+IS           | 17.9381  | 13.1990    | 9.0608      | 5.7880  | 3.3921  | 1.8451  | 0.9390  |  |  |  |
| Vanianaa  | MLMC              | 123.7446 | 114.3640   | 95.0163     | 68.7593 | 43.3255 | 24.1792 | 12.3348 |  |  |  |
| variance  | MLMC+IS           | 41.3532  | 40.3292    | 33.2685     | 22.9515 | 12.6570 | 6.1357  | 2.5758  |  |  |  |

Table 10: Multi-Level Monte Carlo (MLMC) and Importance Sampling (MLMC+IS) price and variance of price for a basket call under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model.

Tables 11 and 12 report delta and gamma of each underlying asset computed by the Likelihood Ratio Method with the importance sampling (IS) and without importance sampling (L) under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. On average importance sampling reduces the variance of delta and gamma by factor of 3.

|                           | 1                  |         |         |         |         |         |         |         |        |  |
|---------------------------|--------------------|---------|---------|---------|---------|---------|---------|---------|--------|--|
| i                         | <i>i</i> Moneyness |         | 0.7     | 0.8     | 0.9     | 1       | 1.1     | 1.2     | 1.3    |  |
| Heston-Hull-White         |                    |         |         |         |         |         |         |         |        |  |
| 1                         | Delta              | MLMC    | 0.3564  | 0.3421  | 0.2985  | 0.2464  | 0.1807  | 0.1122  | 0.0639 |  |
|                           |                    | MLMC+IS | 0.3562  | 0.3256  | 0.2956  | 0.2404  | 0.1776  | 0.1201  | 0.0680 |  |
|                           | Variance           | MLMC    | 2.1769  | 1.5899  | 1.1284  | 0.7723  | 0.4973  | 0.3056  | 0.1876 |  |
|                           |                    | MLMC+IS | 1.3601  | 0.8669  | 0.5247  | 0.3050  | 0.1676  | 0.0910  | 0.0362 |  |
| 2                         | Delta              | MLMC    | 0.5109  | 0.4553  | 0.3840  | 0.3004  | 0.2275  | 0.1624  | 0.1099 |  |
|                           |                    | MLMC+IS | 0.5040  | 0.4634  | 0.3802  | 0.2979  | 0.2200  | 0.1698  | 0.1174 |  |
|                           | Variance           | MLMC    | 11.6235 | 8.5318  | 6.0153  | 4.2465  | 2.8229  | 1.7758  | 1.1957 |  |
|                           |                    | MLMC+IS | 8.5810  | 5.7738  | 3.7107  | 2.0393  | 1.1347  | 0.6621  | 0.2517 |  |
| 3                         | Delta              | MLMC    | 0.9084  | 0.8531  | 0.7083  | 0.6401  | 0.4732  | 0.3304  | 0.2159 |  |
|                           |                    | MLMC+IS | 0.8841  | 0.8444  | 0.7431  | 0.6094  | 0.4847  | 0.3504  | 0.2311 |  |
|                           | Variance           | MLMC    | 38.4584 | 31.8220 | 25.7602 | 16.5950 | 15.8343 | 11.4764 | 8.1404 |  |
|                           |                    | MLMC+IS | 22.4692 | 13.6315 | 12.6515 | 5.0691  | 3.3503  | 2.6284  | 0.6424 |  |
| Heston-Cox-Ingersoll-Ross |                    |         |         |         |         |         |         |         |        |  |
| 1                         | Delta              | MLMC    | 0.3658  | 0.3407  | 0.3069  | 0.2444  | 0.1787  | 0.1158  | 0.0769 |  |
|                           |                    | MLMC+IS | 0.3542  | 0.3327  | 0.3008  | 0.2462  | 0.1831  | 0.1182  | 0.0779 |  |
|                           | Variance           | MLMC    | 2.2403  | 1.6174  | 1.1399  | 0.7857  | 0.5084  | 0.3250  | 0.1949 |  |
|                           |                    | MLMC+IS | 1.3789  | 0.8831  | 0.5337  | 0.3191  | 0.1751  | 0.0910  | 0.0530 |  |
| 2                         | Delta              | MLMC    | 0.5209  | 0.4610  | 0.3938  | 0.3160  | 0.2363  | 0.1538  | 0.1066 |  |
|                           |                    | MLMC+IS | 0.5021  | 0.4704  | 0.3833  | 0.3010  | 0.2218  | 0.1693  | 0.1113 |  |
|                           | Variance           | MLMC    | 11.9429 | 8.9477  | 6.1634  | 4.3160  | 2.8600  | 1.6796  | 1.0906 |  |
|                           |                    | MLMC+IS | 8.6689  | 5.9153  | 3.7445  | 2.1748  | 1.1615  | 0.5881  | 0.3708 |  |
| 3                         | Delta              | MLMC    | 0.9053  | 0.8298  | 0.7488  | 0.6466  | 0.4987  | 0.3463  | 0.2317 |  |
|                           |                    | MLMC+IS | 0.9361  | 0.8567  | 0.7586  | 0.5951  | 0.5186  | 0.3498  | 0.2279 |  |
|                           | Variance           | MLMC    | 39.3159 | 29.1621 | 22.8414 | 16.5218 | 10.2947 | 5.8761  | 3.4462 |  |
|                           |                    | MLMC+IS | 19.0239 | 14.6707 | 12.4880 | 3.7593  | 3.6790  | 0.7555  | 0.4583 |  |

Table 11: Likelihood Ratio Method (MLMC) and Likelihood Ratio Method with Importance Sampling (MLMC+IS) Greeks (delta and variance of delta) for a basket call under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model.

| i                         | Moneyness |         | 0.7     | 0.8     | 0.9     | 1       | 1.1    | 1.2    | 1.3    |  |
|---------------------------|-----------|---------|---------|---------|---------|---------|--------|--------|--------|--|
| Heston-Hull-White         |           |         |         |         |         |         |        |        |        |  |
| 1                         | Gamma     | MLMC    | -0.0208 | -0.0147 | -0.0096 | -0.0033 | 0.0007 | 0.0022 | 0.0023 |  |
|                           |           | MLMC+IS | -0.0219 | -0.0158 | -0.0089 | -0.0034 | 0.0007 | 0.0026 | 0.0022 |  |
|                           | Variance  | MLMC    | 0.0190  | 0.0144  | 0.0110  | 0.0079  | 0.0053 | 0.0035 | 0.0025 |  |
|                           |           | MLMC+IS | 0.0111  | 0.0075  | 0.0047  | 0.0030  | 0.0018 | 0.0010 | 0.0005 |  |
| 2                         | Gamma     | MLMC    | 0.0078  | 0.0145  | 0.0157  | 0.0195  | 0.0190 | 0.0157 | 0.0135 |  |
|                           |           | MLMC+IS | 0.0073  | 0.0157  | 0.0162  | 0.0173  | 0.0183 | 0.0174 | 0.0135 |  |
|                           | Variance  | MLMC    | 0.4305  | 0.3349  | 0.2444  | 0.1860  | 0.1268 | 0.0882 | 0.0640 |  |
|                           |           | MLMC+IS | 0.2910  | 0.2022  | 0.1398  | 0.0784  | 0.0477 | 0.0302 | 0.0117 |  |
| 3                         | Gamma     | MLMC    | 0.2474  | 0.2027  | 0.1676  | 0.1338  | 0.0959 | 0.0687 | 0.0449 |  |
|                           |           | MLMC+IS | 0.2430  | 0.2081  | 0.1605  | 0.1269  | 0.0970 | 0.0718 | 0.0481 |  |
|                           | Variance  | MLMC    | 2.9352  | 1.9736  | 1.5644  | 0.7162  | 0.4576 | 0.3758 | 0.1866 |  |
|                           |           | MLMC+IS | 0.7470  | 1.2402  | 0.8445  | 0.1511  | 0.0870 | 0.0505 | 0.0206 |  |
| Heston-Cox-Ingersoll-Ross |           |         |         |         |         |         |        |        |        |  |
| 1                         | Gamma     | MLMC    | -0.0205 | -0.0156 | -0.0091 | -0.0038 | 0.0007 | 0.0029 | 0.0030 |  |
|                           |           | MLMC+IS | -0.0212 | -0.0154 | -0.0086 | -0.0032 | 0.0008 | 0.0023 | 0.0037 |  |
|                           | Variance  | MLMC    | 0.0204  | 0.0148  | 0.0111  | 0.0081  | 0.0057 | 0.0038 | 0.0025 |  |
|                           |           | MLMC+IS | 0.0112  | 0.0078  | 0.0049  | 0.0031  | 0.0019 | 0.0010 | 0.0010 |  |
| 2                         | Gamma     | MLMC    | 0.0104  | 0.0150  | 0.0166  | 0.0197  | 0.0211 | 0.0163 | 0.0125 |  |
|                           |           | MLMC+IS | 0.0082  | 0.0165  | 0.0197  | 0.0171  | 0.0178 | 0.0170 | 0.0145 |  |
|                           | Variance  | MLMC    | 0.4728  | 0.3633  | 0.2544  | 0.1871  | 0.1365 | 0.0780 | 0.0546 |  |
|                           |           | MLMC+IS | 0.2982  | 0.2181  | 0.1403  | 0.0890  | 0.0502 | 0.0256 | 0.0223 |  |
| 3                         | Gamma     | MLMC    | 0.2529  | 0.2013  | 0.1657  | 0.1364  | 0.0953 | 0.0777 | 0.0465 |  |
|                           |           | MLMC+IS | 0.2488  | 0.2099  | 0.1667  | 0.1265  | 0.1011 | 0.0683 | 0.0523 |  |
|                           | Variance  | MLMC    | 2.2489  | 1.8205  | 1.3654  | 1.2104  | 0.4645 | 0.3950 | 0.1975 |  |
|                           |           | MLMC+IS | 0.9539  | 0.4543  | 0.2702  | 0.2800  | 0.0928 | 0.1580 | 0.0188 |  |

Table 12: Likelihood Ratio Method (MLMC) and Likelihood Ratio Method with Importance Sampling (MLMC+IS) Greeks (gamma and variance of gamma) for a basket under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model.

## 8 Conclusion

We have presented an application of importance sampling with stochastic change of drift to multiasset options. We have illustrated the use of importance sampling with spread, absolute, composite, quotient, basket, best-of, and worst-of options as examples. Based on our results, importance sampling reduces variance of multi-asset options by a factor of 3-13 on average.

The paper has also provided an extension of the Likelihood Ratio Method to multi-asset options, and combined it with the importance sampling to reduce the variance of the Greeks. Based on our results, importance sampling reduces variance of the Greeks of multi-asset options by a factor of 2 on average.

We applied importance sampling in a Multi-Level Monte Carlo and have demonstrated that applying importance sampling on the first level significantly improves its effective performance. For the European option in the Multi-Level Monte Carlo with full importance sampling the effective performance is on average almost 3 times better than that of the Multi-Level Monte Carlo without importance sampling. For the same option in the Multi-Level Monte Carlo with the importance sampling on the first level only the effective performance is on average almost 19 times better than that of the Multi-Level Monte Carlo without importance sampling. We have also used the Likelihood Ratio Method to estimate the Greeks in a Multi-Level Monte Carlo, and combined it with the importance sampling to reduce the variance of the Greeks. Based on our results, importance sampling reduces variance of the Greeks by a factor of 7-8 on average for the European option and by a factor of 3 for a basket option.

## Appendix A. Multi-Level Monte Carlo

Multi-Level Monte Carlo is a Monte Carlo simulation with different number of time steps of size  $h_l = 2^{-l}T$  on each level  $l = 0, 1, \dots, L$ . For example, when l = 0, there is only one time step of size  $h_0 = T$ . When l = 1, there are two times steps each of size  $h_1 = \frac{T}{2}$ . Finally, when l = L, there are  $2^L$  times steps each of size  $h_L = \frac{T}{2^L}$ .

Let P denote the true derivative price

$$P = \mathbb{E}\left[\phi_L\left(S\right)\right] = \mathbb{E}\left[\phi_0\left(S\right)\right] + \sum_{l=1}^{L} \mathbb{E}\left[\phi_l\left(S\right) - \phi_{l-1}\left(S\right)\right]$$
(10)

where  $\phi_l(s)$  denotes the payoff on level *l*. The Multi-Level Monte Carlo estimator is given by

$$\hat{P} = \sum_{l=0}^{L} \hat{P}_l$$

 $\hat{P}_0$  is an estimator for  $\mathbb{E}\left[\phi_0\left(S\right)\right]$  calculated as a mean of  $N_l$  independent sample paths

$$\hat{P}_{0} = \frac{1}{N_{0}} \sum_{i=1}^{N_{0}} \phi_{0}\left(s_{i}\right)$$

and  $\hat{P}_l$  is an estimator for  $\mathbb{E}[P_l - P_{l-1}]$  calculated as a mean of  $N_l$  independent sample paths

$$\hat{P}_{l} = \frac{1}{N_{l}} \sum_{i=1}^{N_{l}} (\phi_{l} (s_{i}) - \phi_{l-1} (s_{i}))$$

The variance of the combined Multi-Level Monte Carlo estimator on level l is given by

$$Var\left[\hat{P}_{l}\right] = Var\left[\frac{1}{N_{l}}\sum_{i=1}^{N_{l}}\left(\phi_{l}\left(s_{i}\right) - \phi_{l-1}\left(s_{i}\right)\right)\right]$$
$$= \frac{1}{N_{l}^{2}}\sum_{i=1}^{N_{l}}Var\left[\phi_{l}\left(s_{i}\right) - \phi_{l-1}\left(s_{i}\right)\right]$$
$$= \frac{V_{l}}{N_{l}}$$

Thus, the variance of the combined Multi-Level Monte Carlo estimator is

$$Var\left[\hat{P}\right] = \sum_{l=0}^{L} Var\left[\hat{P}_{l}\right] = \sum_{l=0}^{L} \frac{1}{N_{l}} V_{l}$$

where  $V_l = Var \left[\phi_l \left(S\right) - \phi_{l-1} \left(S\right)\right]$ . Furthermore,

$$V_{l} = Var [\phi_{l} (S) - \phi_{l-1} (S)]$$
  
= Var [\phi\_{l} (S)] + Var [\phi\_{l-1} (S)] - 2Cov [\phi\_{l} (S), \phi\_{l-1} (S)]

so the higher the correlation between  $\phi_l(S)$  and  $\phi_{l-1}(S)$ , the lower the variance of the Multi-Level Monte Carlo estimator.

In order to minimize the variance of the Multi-Level Monte Carlo estimator for a given computational cost  $C = \sum_{l=0}^{L} N_l \frac{T}{h_l}$ , it is possible to use the Lagrange multiplier method. The Lagrangian is given by

$$\mathcal{L} = \sum_{l=0}^{L} \frac{1}{N_l} V_l + \lambda \left( \sum_{l=0}^{L} N_l \frac{T}{h_l} - C \right)$$
(11)

Differentiating (11) with respect to  $N_l$  and applying the first order condition shows that the variance is minimized at

$$N_l^* = \sqrt{\frac{V_l h_l}{\lambda T}} \tag{12}$$

With such choice of  $N_l$  the variance of the combined Multi-Level Monte Carlo estimator becomes

$$Var\left[\hat{P}\right] = \sum_{l=0}^{L} \frac{1}{N_l^*} V_l = \sum_{l=0}^{L} \sqrt{\frac{V_l \lambda T}{h_l}}$$

By Theorem 3.1 in Giles (2008),  $Var\left[\hat{P}\right] \leq \frac{\epsilon^2}{2}$  where  $\epsilon$  is a user-specified accuracy. It follows that,

$$\sum_{l=0}^L \sqrt{\frac{V_l \lambda T}{h_l}} \leq \frac{\epsilon^2}{2}$$

Using the definition of  $\lambda$  in (12) this becomes

$$N_l \ge 2\epsilon^{-2}\sqrt{V_l h_l} \left(\sum_{l=0}^L \sqrt{\frac{V_l}{h_l}}\right)$$

Therefore, the optimal number of sample paths for level l, in order to minimize the variance of the Multi-Level Monte Carlo estimator for a given computational cost C, is

$$N_l = \left\lceil 2\epsilon^{-2} \sqrt{V_l h_l} \left( \sum_{l=0}^L \sqrt{\frac{V_l}{h_l}} \right) \right\rceil \tag{13}$$

Overall, Monte Carlo has computational cost proportional to  $\epsilon^{-3}$ , whereas that of the Multi-Level Monte Carlo is proportional to  $\epsilon^{-2} (\log \epsilon)^2$  due to reduced variance.

## References

- Arouna, B. (2004) Robbins-Monro Algorithms and Variance Reduction in Finance. Journal of Computational Finance, 7(2):35-62.
- [2] Avramidis, A. (2002) Importance Sampling for Multimodal Functions and Applications to Pricing Exotic Options. Proceedings of the 2002 Winter Simulation Conference, pp. 1493-1501.
- Barraquand, J. (1995) Numerical Valuation of High Dimensional Multivariate European Securities. Management Science, 41(12):1882-1891.
- [4] Bates D. (1996) Jumps and Stochastic Volatility: The Exchange Rate Processes Implicit in Deutschemark Options. Review of Financial Studies, 9(1):69-107.
- [5] Bouzoubaa M. and A. Osseiran (2010) Exotic Options and Hybrids: A Guide to Structuring, Pricing and Trading. John Wiley & Sons.
- [6] Capriotti, L. (2008) Least Squares Importance Sampling for Monte Carlo Security Pricing. Quantitative Finance, 8(5):485-497.
- [7] Fouque, J.P. and T. Tullie (2002) Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment. Quantitative Finance, 2(1):24-30.
- [8] Giles, M.B. (2008) Multi-Level Monte Carlo Path Simulation. Operations Research, 56(3):607-617.
- [9] Grzelak, L. and C. Oosterlee (2011) On the Heston Model with Stochastic Interest Rates. SIAM Journal on Financial Mathematics, 2(1):255-286.
- [10] Heston H. L. (1993) A Closed-form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Review of Financial Studies, 6(2):327-343.
- [11] Neddermeyer, J.C. (2011) Non-Parametric Partial Importance Sampling for Financial Derivative Pricing. Quantitative Finance, 11(8):1193-1206.
- [12] Pellizzari, P. (1998) Efficient Monte Carlo Pricing of Basket Options. Working Paper.
- [13] Stilger, P.S., S. Acomb and S.-H. Poon (2012) Pricing and Risk Management with Stochastic Volatility Using Importance Sampling. Working Paper.

- [14] Su, Y. and M.C. Fu (2002) Optimal Importance Sampling in Securities Pricing. Journal of Computational Finance, 5(4):27-50.
- [15] Zhang, P. G. (1998) Exotic Options: A Guide to Second Generation Options. World Scientific.