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Abstract

We present an application of importance sampling to multi-asset options under the Heston

and the Bates models as well as to the Heston-Hull-White and the Heston-Cox-Ingersoll-Ross

models. Moreover, we provide an efficient importance sampling scheme in a Multi-Level Monte

Carlo simulation. In all cases, we explain how the Greeks can be computed in the different

simulation schemes using the Likelihood Ratio Method, and how combining it with importance

sampling leads to a significant variance reduction for the Greeks.
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1 Introduction

In practice, the valuation of multi-asset options typically involves the Monte Carlo simulation.

The rate of convergence of this simulation is
√
n where n is the number of sample paths. Hence,

improving the accuracy of the simulation by a factor of 10 requires 100 times as many sample

paths. For this reason, variance reduction techniques have become essential. Importance sampling

reduces the variance by changing the drift of the simulated sample paths. The extent to which

variance reduction is achieved through importance sampling very much depends on the change of

drift. Much research effort focuses on how to change the drift to fully exploit the variance reduction

potential of importance sampling.

The Multi-Level Monte Carlo was introduced in Giles (2008). It is a Monte Carlo simulation

performed on different levels of uniform time discretizations. The main advantage of the Multi-

Level Monte Carlo is that, for a given accuracy, it has lower computational cost due to reduced

variance compared to the basic Monte Carlo. Here, we show that the variance of Multi-Level

Monte Carlo can be further reduced by combining it with other variance reduction technique such

as importance sampling.

In this paper, we focus on importance sampling for multi-asset options and incorporating im-

portance sampling in the Multi-Level Monte Carlo simulation. Our contributions are as follows.

First, we present an application of importance sampling with a stochastic change of drift to multi-

asset options. Next, we provide an efficient importance sampling scheme in a Multi-Level Monte

Carlo simulation. Then, we combine Multi-Level Monte Carlo with importance sampling to price

multi-asset options. In all cases, we explain how the Greeks can be computed in the different sim-

ulation schemes using the Likelihood Ratio Method, and combine it with the importance sampling

to reduce the variance of the Greeks.

There is relatively little work on variance reduction for multi-asset options in the literature.

Barraquand (1995) introduces quadratic resampling and combines it with the importance sampling

to price European multi-asset options. Avramidis (2002) proposes an algorithm that selects the

importance sampling density as a mixture of multivariate Normal densities for best-of Asian and

best-of barrier options. Neddermeyer (2011) develops non-parametric importance sampling in con-

junction with quasi-random numbers to price basket and best-of options. The work of Barraquand

(1995), Avramidis (2002), as well as Neddermeyer (2011) is done is done under the Black-Scholes

model.

2



Su and Fu (1999), Arouna (2004), and Caprotti (2008) use importance sampling, with the

optimal change of drift obtained by solving an optimization problem, to price basket options. In

Su and Fu (1999) the change of drift based on a stochastic optimization. In Arouna (2004) the

change of drift relies on the Robbins-Monro algorithms, whereas in Caprotti (2008), it depends on

the least squares minimization. Finally, Pellizzari (1998) suggests the use of control variate based

on unconditional and conditional expectations of asset prices as a variance reduction technique for

multi-asset options in the Black-Scholes model.

The remainder of this paper is organized as follows. In Section 2, we present an application

of importance sampling with a stochastic change of drift to multi-asset options in the Heston

stochastic volatility model and the Bates stochastic volatility model with jumps. We consider

basket, best-of, worst-of, spread, absolute, composite, and quotient options. In Section 3, we

extend the Likelihood Ratio Method to multi-asset options and combine it with the importance

sampling to reduce the variance of the Greeks. In Section 4, we derive the optimal change of drift

for the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. In Section 5, apply

importance sampling in a Multi-Level Monte Carlo using the Heston-Hull-White model and the

Heston-Cox-Ingersoll-Ross model. We demonstrate that applying importance sampling only on

the first level can significantly improve the effective performance of the Multi-Level Monte Carlo.

In Section 6, we use the Likelihood Ratio Method to estimate the Greeks in a Multi-Level Monte

Carlo and again combine it with the importance sampling to reduce the variance of the Greeks. In

Section 7, we combine Multi-Level Monte Carlo with importance sampling for multi-asset options.

Finally, Section 8 concludes the paper.

2 Importance Sampling for Multi-Asset Options

In this section, we apply importance sampling to price multi-asset options. The dynamics of the

multi-asset Heston model under the risk neutral measure Q is given by

dSi,t = riSi,tdt+
√
vi,tSi,tdW

Si
i,t

dvi,t = κi (θi − vi,t) dt+ ξi
√
vi,tdW

vi
i,t

where Si,t is the i-th stock price, ri is the i-th risk-free interest rate, vi,t is the i-th variance, κi is

the i-th mean-reversion rate, θi is the i-th long-term variance, ξi is the i-th volatility of volatility,
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and i = 1, · · · , n denotes the number of underlying assets. The correlation matrix is

C =

 C1 C2

C>2 C3

 (1)

where

C1 =


ρ1,1 · · · ρ1,n

...
. . .

...

ρn,1 · · · ρn,n


is the correlation between the stock price processes,

C2 =


ρ1,n+1 · · · ρ1,2n

...
. . .

...

ρn,n+1 · · · ρn,2n


is the correlation between the stock price processes and the variance processes, and

C3 =


ρn+1,n+1 · · · ρn+1,2n

...
. . .

...

ρ2n,n+1 · · · ρ2n,2n


is the correlation between the variance processes.

The difference between the multi-asset Heston model and the multi-asset Bates model is that

in the multi-asset Bates model the stock price dynamics under the risk-neutral measure Q becomes

dSi,t = Si,t
(
ri − λik̄i

)
dt+ Si,t

√
vi,tdW

Si
i,t + Si,tdZi,t

where Zi,t is a compound Poisson process with intensity λi and log-normal distribution of jump

sizes such that if ki is its jump size then ln (1 + ki) ∼ N
(
ln
(
1 + k̄i

)
− 1

2δ
2
i , δ

2
i

)
.

In matrix notation, the dynamics of the multi-asset Heston model is

dXt = b (Xt) dt+ a (Xt) dηt (2)

where C = ΣΣ> is the correlation matrix in (1), ηt is a 2n-dimensional correlated Q-Brownian
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motion and

dXt =



S1,t

...

Sn,t

v1,t
...

vn,t



b(x) =



r1s1
...

rnsn

κ1(θ1 − v1)

...

κn(θn − vn)



a(x) =



√
v1s1 0 · · · · · · · · · 0

0
. . . · · · · · · · · ·

...

... · · · √vnsn · · · · · ·
...

... · · · · · · ξ1
√
v1 · · ·

...

... · · · · · · · · ·
. . . 0

0 · · · · · · · · · 0 ξn
√
vn



ηt =



WS1
1,t

...

WSn
n,t

W v1
1,t

...

W vn
n,t


Following Fouque and Tullie (2002), we derive the optimal change of measure for the multi-asset

Heston model. First, we introduce the martingale

Ht = exp

(ˆ T

0

Σ−1h(s,Xs) · Σ−1dηt +
1

2

ˆ T

0

Σ−1h(s,Xs) · Σ−1h(s,Xs)ds

)
(3)

Next, we define a new probability measure denoted by Q̃ which is equivalent to Q by its Radon-
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Nikodym derivative

dQ̃
dQ

= (HT )
−1

By the Girsanov theorem for correlated Brownian motions, the process

η̃t = ηt +

ˆ t

0

h (s,Xs) dηs

is a 2n-dimensional correlated Q̃-Brownian motion. Using η̃t, (2) and (3) can be written as

dXt = (b (Xt)− a (Xt)h (t,Xt)) dt+ a (Xt) dη̃t

Ht = exp

(ˆ T

0

Σ−1h(s,Xs) · Σ−1dη̃t −
1

2

ˆ T

0

Σ−1h(s,Xs) · Σ−1h(s,Xs)ds

)

Using the analogous derivation to that presented in [13], the optimal choice of h for which the

variance of the Monte Carlo estimator under Q̃ is minimized is

h(t,Xt) = − 1

P (t,Xt)
a(t,Xt)

>∇P (t,Xt) (4)

This result is also valid for the Bates model with the difference that

a(x) =



(
√
v1 +

dZ1,t

dW
S1
1,t

)
s1 0 · · · · · · · · · 0

0
. . . · · · · · · · · ·

...

... · · ·
(
√
vn +

dZn,t

dWSn
n,t

)
sn · · · · · ·

...

... · · · · · · ξ1
√
v1 · · ·

...

... · · · · · · · · ·
. . . 0

0 · · · · · · · · · 0 ξn
√
vn


Equation (4) requires the option price and its delta which are not known. Instead, we will use their

Black-Scholes equivalents. Under the fast mean-reversion expansion, h for the multi-asset Heston

model is given by

hi = − 1

PFMR

 si
√
vi
∂PFMR

∂s

0


where PFMR is the option price under the classic geometric Brownian motion dynamics with

volatility
√∑N

i=1 θ
2
i − 2

∑N
1≤i<j≤N ρi,j

√
θiθj .

Similarly, under the fast mean-reversion expansion, h for the multi-asset Bates model is given
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by

hi = − 1

PFMR

 si
(√
vi + dZ

dWS

)
∂PFMR

∂s

0


where PFMR is the option price under the classic geometric Brownian motion dynamics with

volatility
√∑N

i=1 θ
2
i − 2

∑N
1≤i<j≤N ρi,j

√
θiθj .

2.1 Numerical Examples

In this section, we present the numerical results for spread, absolute, composite, quotient, basket,

best-of, and worst-of options. We compared option prices simulated under the importance sampling

using fast mean-reversion expansion (MC+IS) against the basic Monte Carlo (MC). All simulations

are performed using the same sequence of pseudo-random numbers. We simulate 10,000 sample

paths using a time increment of 0.001. For the numerical examples, we assume that the time to

maturity is 1 year. For the Bates model, we assume in addition that the jump intensity is 1 jump

per year, standard deviation of the jumps is 2%, and the mean jump size is -5%.

2.1.1 Spread, Absolute, Composite, and Quotient Options

Here, we consider options written on two underlying assets. Spread option depends on the difference

between two underlying assets. Seller of such an option is long correlation which differentiates this

option from the majority of multi-asset options that leave the seller short correlation. For example,

the payoff of the spread call with maturity T is given by

max (S1(T )− S2(T )−K, 0)

Absolute option is an option written on the absolute value of the difference between the two

underlying assets at maturity. The holder of an absolute option benefits from the absolute change

in price of the underlying assets. For example, the payoff of the spread call with maturity T is

given by

max (max (S1(T ), S2(T ))−min (S1(T ), S2(T ))−K, 0)

Composite option is an option on a foreign underlying asset with a strike denominated in the

domestic currency. The holder of a composite option faces foreign exchange risk, but benefits from

the strike being fixed in the domestic currency. For example, the payoff of the composite call with

maturity T is given by

max (S1(T )S2(T )−K, 0)
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where S2(T ) is the foreign exchange rate.

Quotient option, also known as ratio option, depends on the ratio of two underlying assets.

The holder of a quotient option benefits from the relative change in price of the underlying assets.

For example, the payoff of the quotient call with maturity T is given by

max

(
S1(T )

S2(T )
−K, 0

)

The parameters used in the numerical examples are displayed in Table 1.

i S r v0 ξ κ θ

Spread

1 30 0.05 0.04 0.4 3 0.09

2 5 0.05 0.09 0.3 0.5 0.25

Absolute

1 30 0.05 0.04 0.4 3 0.09

2 35 0.05 0.09 0.3 0.5 0.25

Composite / Quotient

1 30 0.05 0.04 0.4 3 0.09

2 2 0.05 0.09 0.3 0.5 0.25

Table 1: Model parameters for multi-asset options based on two underlying assets.

The correlation matrix is given by



1 0.4 −0.6 −0.28

0.4 1 −0.24 −0.7

−0.6 −0.24 1 0.168

−0.28 −0.7 0.168 1


Tables 2 and 3 report the results for basic Monte Carlo (MC) and importance sampling (IS) for

the Heston model and the Bates model. In all cases, importance sampling reduces the variance 5

to 13 times on average compared to the basic Monte Carlo.
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Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3

Panel A: Spread

Heston

Price
MC 10.9116 8.7664 6.8078 5.0821 3.6278 2.4616 1.5897

MC+IS 10.8962 8.7438 6.7701 5.0316 3.5795 2.4298 1.5730

Variance
MC 51.5956 47.0730 40.6259 32.9627 25.0319 17.7671 11.7748

MC+IS 3.4245 3.7729 2.9216 1.7977 1.3673 1.0649 0.7246

Bates

Price
MC 10.9352 8.8015 6.8525 5.1433 3.7056 2.5509 1.6764

MC+IS 10.9055 8.7716 6.8252 5.1218 3.6918 2.5521 1.6944

Variance
MC 54.2643 49.5032 42.8706 34.9473 26.7347 19.1973 12.9460

MC+IS 5.4703 4.7225 4.1768 3.4911 2.5868 1.9515 1.4214

Panel B: Absolute

Heston

Price
MC 0.8110 0.4772 0.2775 0.1561 0.0860 0.0470 0.0260

MC+IS 0.8157 0.4738 0.2703 0.1517 0.0837 0.0457 0.0241

Variance
MC 8.4177 4.9509 2.8182 1.5635 0.8538 0.4603 0.2410

MC+IS 4.3064 1.9271 0.9153 0.4107 0.1753 0.0765 0.0256

Bates

Price
MC 0.8988 0.5351 0.3091 0.1733 0.0947 0.0509 0.0271

MC+IS 0.8731 0.5180 0.3015 0.1726 0.0973 0.0530 0.0289

Variance
MC 9.2814 5.4544 3.0895 1.6995 0.9159 0.4850 0.2541

MC+IS 3.9397 1.8787 0.8458 0.3651 0.1514 0.0554 0.0207

Table 2: Monte Carlo (MC) and Importance Sampling (MC+IS) price and variance of price for
spread and absolute options based on two underlying assets under the Heston model and the Bates
model.
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Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3

Panel A: Composite

Heston

Price
MC 32.6826 28.1321 23.9924 20.2822 17.0000 14.1175 11.6163

MC+IS 32.4569 27.8948 23.7450 20.0351 16.7593 13.9067 11.4605

Variance
MC 958.7243 888.7356 807.4117 719.3844 629.3578 541.8094 459.6539

MC+IS 153.3319 155.1247 150.6481 140.7796 127.2177 111.4294 94.7747

Bates

Price
MC 32.7633 28.2312 24.1100 20.4207 17.1358 14.2648 11.7747

MC+IS 32.6670 28.1174 23.9634 20.2731 17.0256 14.2011 11.7800

Variance
MC 989.9160 918.5872 835.9709 746.4860 655.8963 567.2028 483.7828

MC+IS 210.3686 203.9079 189.1749 177.2651 162.4286 145.2400 127.3492

Panel B: Quotient

Heston

Price
MC 7.2402 5.9534 4.8020 3.8233 3.0250 2.3880 1.8832

MC+IS 7.2059 5.9192 4.7583 3.7677 2.9560 2.3126 1.8077

Variance
MC 43.3758 41.5555 38.6297 34.8073 30.5444 26.3034 22.3933

MC+IS 3.9368 3.6635 3.5537 3.3123 2.9475 2.4886 2.0209

Bates

Price
MC 7.2886 6.0117 4.8691 3.8986 3.0977 2.4557 1.9474

MC+IS 7.2540 5.9816 4.8495 3.8777 3.0840 2.4433 1.9326

Variance
MC 44.9052 42.9381 39.8828 35.9234 31.5830 27.2593 23.2442

MC+IS 6.9516 8.6092 10.8222 11.3142 12.2593 11.4338 8.0210

Table 3: Monte Carlo (MC) and Importance Sampling (MC+IS) price and variance of price for
composite and quotient options based on two underlying assets under the Heston model and the
Bates model.

2.1.2 Basket, Best-of, and Worst-of Options

Here, we consider options written on three underlying assets. The payoff of a basket option depends

on the performance of a basket of underlying assets, each with its own corresponding weight. The

weights wi must satisfy the constraints 0 ≤ wi ≤ 1 for all i = 1, · · · , n and
∑n
i=1 wi = 1. For

example, the payoff of the basket call with maturity T is given by

max (w1S1(T ), · · · , wnSn(T )−K, 0)

The main advantage of a basket option is that it offers a greater flexibility in the construction of the

underlying basket and it is usually cheaper than buying vanilla options on each of the underlying

assets. Basket option is mainly used for diversification purposes.

Best-of option depends on the performance of the best performing asset in a basket. For

example, the payoff of the best-of call with maturity T is given by

max (max (S1(T ), · · · , Sn(T ))−K, 0)
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Best-of call has a higher upside potential compared to a call option on the same basket of underlying

assets.

Worst-of option depends on the performance of the worst performing asset in a basket. For

example, the payoff of the worst-of call with maturity T is given by

max (min (S1(T ), · · · , Sn(T ))−K, 0)

Worst-of call has a lower upside potential compared to a call option on the same basket of underlying

assets.

The parameters used in the numerical examples are displayed in Table 4.

i w S r v0 ξ κ θ

Basket

1 50% 70 0.05 0.04 0.4 3 0.09

2 30% 35 0.05 0.09 0.3 0.5 0.25

3 20% 40 0.05 0.25 0.2 5 0.04

Best-of and Worst-of

1 30 0.05 0.04 0.4 3 0.09

2 35 0.05 0.09 0.3 0.5 0.25

3 40 0.05 0.25 0.2 5 0.04

Table 4: Model parameters for multi-asset options based on three underlying assets.

The correlation matrix is given by



1 0.4 0.2 −0.6 −0.28 −0.1

0.4 1 0.5 −0.24 −0.7 −0.25

0.2 0.5 1 0.0282 −0.35 −0.5

−0.6 −0.24 0.0282 1 0.168 0.0294

−0.28 −0.7 −0.35 0.168 1 0.175

−0.1 −0.25 −0.5 0.0294 0.175 1


Table 5 reports the results for basic Monte Carlo (MC) and importance sampling (IS) for the

Heston model and the Bates model. In all cases, importance sampling reduces the variance 3 to 5

times on average compared to the basic Monte Carlo.
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Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3

Panel A: Basket

Heston

Price
MC 18.0939 13.4929 9.4321 6.1308 3.6583 2.0060 0.9916

MC+IS 18.1301 13.5388 9.4302 6.0855 3.6288 1.9740 0.9759

Variance
MC 131.7882 116.7452 93.7079 66.5853 41.7007 22.8492 11.1104

MC+IS 22.8241 27.9146 15.9959 11.1225 10.7502 5.6949 1.8306

Bates

Price
MC 18.0972 13.5079 9.4722 6.1935 3.7289 2.0761 1.0521

MC+IS 18.0389 13.4853 9.4724 6.2015 3.7453 2.0880 1.0719

Variance
MC 135.8888 120.4728 96.8471 69.1762 43.8538 24.5189 12.2881

MC+IS 31.0928 26.9779 21.0307 14.3609 8.3187 4.1190 1.7322

Panel B: Best-of

Heston

Price
MC 20.0806 16.8117 13.6660 10.7524 8.1722 5.9940 4.2450

MC+IS 20.0837 16.8275 13.6950 10.7276 8.1459 5.9882 4.2398

Variance
MC 114.2491 112.0612 106.5591 96.5682 82.5957 66.5238 50.5769

MC+IS 49.6236 40.2004 31.9864 24.6266 19.9598 15.4075 11.2659

Bates

Price
MC 20.2257 16.9608 13.8165 10.8969 8.3088 6.1219 4.3675

MC+IS 20.1805 16.9499 13.8360 10.8988 8.3327 6.1667 4.4003

Variance
MC 117.5027 115.1506 109.5496 99.5909 85.5577 69.3061 53.0277

MC+IS 49.5691 40.9534 33.3357 26.6619 21.6881 16.7958 12.4169

Panel C: Worst-of

Heston

Price
MC 5.0870 3.1251 1.7429 0.8760 0.3895 0.1544 0.0590

MC+IS 5.1117 3.1181 1.7279 0.8628 0.3849 0.1524 0.0533

Variance
MC 32.2608 21.3585 12.1857 5.9854 2.5606 0.9838 0.3423

MC+IS 13.8514 8.7862 4.7116 2.1009 0.7885 0.2509 0.0701

Bates

Price
MC 5.0152 3.0794 1.7277 0.8753 0.3964 0.1649 0.0615

MC+IS 5.0174 3.0583 1.6931 0.8489 0.3835 0.1561 0.0580

Variance
MC 32.4943 21.5437 12.3510 6.1418 2.6990 1.0523 0.3754

MC+IS 14.3138 8.9745 4.7930 2.1609 0.8268 0.2723 0.0798

Table 5: Monte Carlo (MC) and Importance Sampling (MC+IS) price and variance of price for
basket, best-of, and worst-of options based on three underlying assets under the Heston model and
the Bates model.

3 Greeks for Multi-Asset Options

We begin with an option price under Q defined as

P (t, x) =

ˆ ∞
0

· · ·
ˆ ∞
0

e−r(T−t)φ (S1(T ), · · · , Sn(T )) f(x1, · · · , xn)dx1 · · · dxn

where φ (S1(T ), · · · , Sn(T )) is the payoff function and f(x1, · · · , xn) is the joint risk-neutral prob-

ability density function.
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Next, consider, delta ∆, the first derivative of the option price with respect to S1(0)

∆ =
∂

∂S1(0)

ˆ ∞
0

· · ·
ˆ ∞
0

Bφ(S1(T ), · · · , Sn(T ))f(x1, · · · , xn)dx1 · · · dxn

=

ˆ ∞
0

· · ·
ˆ ∞
0

Bφ(S1(T ), · · · , Sn(T ))

∂
∂S1(0)

f(x1, · · · , xn)

f(x1, · · · , xn)
f(x1, · · · , xn)dx1 · · · dxn

where B = e−r(T−t) and
∂

∂S1(0)
f(x1,··· ,xn)

f(x1,··· ,xn)
is the likelihood ratio. By Sklar’s Theorem there exists

a copula C such that

F (x1, · · · , xn) = C (F1 (x1) , · · · , Fn (xn)) = C (u1, · · · , un) (5)

In [13], we showed that the cumulative distribution function (CDF) and the probability density

function (PDF) for both the Heston model and the Bates model can be obtained as

F1 (x1) = Pr (S1(T ) ≤ x1) =
1

2
− 1

π

ˆ ∞
0

Re

[
exp (−iω ln (x1))ψT (ω)

iω

]
dω

f1 (x1) ≈ F1 (x1 + ∆x)− F1 (x1)

∆x

where ψ is the characteristic function. Taking nth order differentiation of (5) gives an expression

for the joint density.

f(x1, · · · , xn) =

n∏
i=1

fi (xi) c (u1, · · · , un)

where c (u1, · · · , un) = ∂nC(u1,··· ,un)
∂u1···∂un

. In order to estimate the Greeks we will use an analytical

copula as an approximation of copula in (5). The same procedure as above can be followed to

compute the other Greeks.

3.1 Numerical Examples

In this section, we present delta, ∆, and gamma, Γ, of the multi-asset Heston model and the multi-

asset Bates model calculated using Likelihood Ratio Method (MC) and Likelihood Ratio Method

combined with importance sampling (MC+IS). We consider basket call option described in Section

2.1.2. As an approximation of the joint PDF for the Heston model we will use the t-copula with

62 degrees of freedom and correlation matrix


1 0.4 0.2

0.4 1 0.5

0.2 0.5 1

 (6)
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As an approximation of the joint PDF for the Bates model we will use the t-copula with 30 degrees

of freedom and the correlation matrix given by (6). For both models the correlation matrix and

the number of degrees of freedom were estimated using maximum likelihood.

Table 6 presents results for delta and gamma, respectively, of a basket call option for the multi-

asset Heston model. On average importance sampling reduces the variance of delta and gamma

by factor of 2.

i Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3

1

Delta
MC 0.4850 0.4572 0.4070 0.3346 0.2500 0.1678 0.1005

MC+IS 0.4832 0.4528 0.4005 0.3290 0.2499 0.1702 0.1045

Variance
MC 2.9080 2.0993 1.4687 0.9938 0.6445 0.3937 0.2223

MC+IS 1.9176 1.1636 0.6470 0.3326 0.2544 0.1250 0.0439

Gamma
MC 0.0009 0.0025 0.0048 0.0071 0.0084 0.0083 0.0067

MC+IS 0.0026 0.0039 0.0060 0.0079 0.0089 0.0086 0.0071

Variance
MC 0.0378 0.0291 0.0217 0.0157 0.0108 0.0070 0.0042

MC+IS 0.0262 0.0174 0.0107 0.0061 0.0033 0.0018 0.0009

2

Delta
MC 0.2873 0.2671 0.2329 0.1870 0.1366 0.0906 0.0524

MC+IS 0.2865 0.2673 0.2365 0.1910 0.1352 0.0874 0.0501

Variance
MC 7.8665 5.3811 3.4908 2.1292 1.2105 0.6341 0.3048

MC+IS 6.5965 4.1291 2.3213 1.1894 0.6826 0.2735 0.0868

Gamma
MC 0.0115 0.0093 0.0077 0.0065 0.0054 0.0042 0.0027

MC+IS 0.0169 0.0144 0.0120 0.0100 0.0079 0.0055 0.0036

Variance
MC 0.3224 0.2279 0.1536 0.0977 0.0581 0.0322 0.0164

MC+IS 0.2865 0.1852 0.1098 0.0587 0.0298 0.0127 0.0046

3

Delta
MC 0.1886 0.1728 0.1506 0.1219 0.0897 0.0583 0.0340

MC+IS 0.1932 0.1789 0.1593 0.1315 0.0995 0.0689 0.0430

Variance
MC 5.4444 3.6204 2.2803 1.3568 0.7634 0.4083 0.2102

MC+IS 4.0029 2.3606 1.2534 0.6082 0.2816 0.1127 0.0388

Gamma
MC 0.0082 0.0063 0.0047 0.0036 0.0029 0.0024 0.0020

MC+IS 0.0103 0.0081 0.0062 0.0047 0.0034 0.0025 0.0017

Variance
MC 0.1294 0.0883 0.0576 0.0360 0.0218 0.0130 0.0078

MC+IS 0.0928 0.0554 0.0301 0.0150 0.0079 0.0032 0.0011

Table 6: Likelihood Ratio Method (MC) and Likelihood Ratio Method with Importance Sampling
(MC+IS) Greeks (delta, variance of delta, gamma, and variance of gamma) for a basket call under
the Heston model.

Table 7 presents results for delta and gamma, respectively, of a basket call option for the multi-

asset Bates model. On average importance sampling reduces the variance of delta and gamma by

factor of 2.
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i Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3

1

Delta
MC 0.4845 0.4567 0.4066 0.3347 0.2512 0.1706 0.1044

MC+IS 0.4769 0.4489 0.3976 0.3292 0.2488 0.1722 0.1092

Variance
MC 2.8944 2.1049 1.4874 1.0193 0.6713 0.4182 0.2421

MC+IS 1.9074 1.1758 0.6710 0.3565 0.1826 0.0906 0.0463

Gamma
MC 0.0028 0.0040 0.0060 0.0080 0.0091 0.0087 0.0071

MC+IS 0.0040 0.0055 0.0071 0.0089 0.0100 0.0094 0.0078

Variance
MC 0.0379 0.0295 0.0223 0.0163 0.0114 0.0076 0.0047

MC+IS 0.0242 0.0168 0.0105 0.0063 0.0036 0.0020 0.0011

2

Delta
MC 0.2933 0.2708 0.2342 0.1862 0.1364 0.0906 0.0529

MC+IS 0.2812 0.2598 0.2284 0.1803 0.1296 0.0833 0.0477

Variance
MC 7.8325 5.3818 3.5098 2.1576 1.2400 0.6602 0.3245

MC+IS 6.5213 4.1040 2.3413 1.2146 0.5691 0.2377 0.0889

Gamma
MC 0.0174 0.0142 0.0115 0.0093 0.0072 0.0053 0.0033

MC+IS 0.0227 0.0199 0.0163 0.0132 0.0098 0.0072 0.0048

Variance
MC 0.3207 0.2294 0.1565 0.1009 0.0608 0.0340 0.0175

MC+IS 0.2523 0.1679 0.1049 0.0561 0.0279 0.0123 0.0051

3

Delta
MC 0.1722 0.1588 0.1390 0.1136 0.0831 0.0543 0.0317

MC+IS 0.1701 0.1611 0.1442 0.1206 0.0939 0.0655 0.0404

Variance
MC 5.2603 3.4916 2.1943 1.3011 0.7289 0.3872 0.1981

MC+IS 3.8632 2.2887 1.2276 0.6000 0.2648 0.1058 0.0389

Gamma
MC 0.0096 0.0071 0.0050 0.0035 0.0025 0.0019 0.0014

MC+IS 0.0094 0.0075 0.0057 0.0041 0.0032 0.0021 0.0013

Variance
MC 0.1184 0.0801 0.0515 0.0315 0.0185 0.0105 0.0059

MC+IS 0.0781 0.0472 0.0258 0.0129 0.0061 0.0026 0.0009

Table 7: Likelihood Ratio Method (MC) and Likelihood Ratio Method with Importance Sampling
(MC+IS) Greeks (delta, variance of delta, gamma, and variance of gamma) for a basket call under
the Bates model.

4 Importance Sampling for Heston with Stochastic Interest

Rates

Here, we consider models with stochastic volatility and stochastic interest rates. The dynamics

of the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model under the risk neutral

measure Q is given by

dSt = rtStdt+
√
vtStdW

S
t

dvt = κ (v̄ − vt) dt+ γ
√
vtdW

v
t

drt = λ (θt − rt) dt+ ηrpt dW
r
t

where
〈
dWS

t dW
v
t

〉
= ρS,vdt,

〈
dWS

t dW
r
t

〉
= ρS,rdt, and 〈dW r

t dW
v
t 〉 = 0. St is the stock price,

rt is the risk-free interest rate, vt is the variance, κ is the variance mean-reversion rate, v̄ is the
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long-term variance, γ is the volatility of volatility, λ is the interest rate mean-reversion rate, θt is

the long-term interest rate, η is the volatility of interest rate, ρS,v is the correlation between stock

returns and changes in the variance, and ρS,r is the correlation between stock returns and changes

in the interest rate. If p = 0, we have the Heston-Hull-White model and if p = 0.5, we have the

Heston-Cox-Ingersoll-Ross model.

In matrix notation, the model dynamics is

dXt = b (Xt) dt+ a (Xt) dηt (7)

where ηt is a 3-dimensional Q-Brownian motion and

dXt =


St

vt

rt



b(x) =


rs

κ(v̄ − v)

λ(θt − r)



a(x) =


√
vs 0 0

γ
√
vρS,v γ

√
v
(

1− ρ2S,v
)

0

ηrpρS,r ηrp
−ρS,vρS,r√
(1−ρ2S,v)

ηrp
√

1−
(
ρ2S,r +

ρ2S,vρ
2
S,r

1−ρ2S,v

)


ηt =


WS
t

W v
t

W r
t


Following Fouque and Tullie (2002), we derive the optimal change of measure for the Heston-Hull-

White model and the Heston-Cox-Ingersoll-Ross model. First, we introduce the martingale

Ht = exp

(ˆ T

0

h> (s,Xs) dηs +
1

2

ˆ T

0

‖h (s,Xs)‖2 ds

)
(8)

where h> denotes the transpose of h. Next, we define a new probability measure denoted by Q̃

which is equivalent to Q by its Radon-Nikodym derivative

dQ̃
dQ

= (HT )
−1
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By the Girsanov theorem, the process

η̃t = ηt +

ˆ t

0

h (s,Xs) dηs

is a 3-dimensional Q̃-Brownian motion. Using η̃t, (7) and (8) can be written as

dXt = (b (Xt)− a (Xt)h (t,Xt)) dt+ a (Xt) dη̃t

Ht = exp

(ˆ T

0

h>(s,Xs)dη̃t −
1

2

ˆ T

0

||h(s,Xs)||2ds

)

Using the analogous derivation to that presented in [13], the optimal choice of h for which the

variance of the Monte Carlo estimator under Q̃ is minimized is

h(t,Xt) = − 1

P (t,Xt)
a(t,Xt)

>∇P (t,Xt) (9)

From (9), under the fast mean-reversion expansion, h is given by

h = − 1

PFMR

 s
√
v ∂PFMR

∂s

0


where PFMR is the option price under the classic geometric Brownian motion dynamics with

volatility
√
v̄.

5 Multi-Level Monte Carlo with Importance Sampling

Multi-Level Monte Carlo is a Monte Carlo simulation with different number of time steps hl = 2−lT

on each level l = 0, 1, · · · , L. For detailed discussion of Multi-Level Monte Carlo we refer to the

Appendix. To illustrate the performance of Multi-Level Monte Carlo with the importance sampling,

we will use the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model described in

the previous section. We compare the performance of the Multi-Level Monte Carlo with the

importance sampling (MLMC+IS) and without importance sampling (MLMC) for the European

call option against the semi-analytical solution (HHW/HCIR). The parameters are set as follows:

κ = 2, γ = 0.06, v0 = v̄ = 0.04, λ = 0.05, r0 = θ = 0.07, η = 0.01, S0 = 100, ρS,v = −0.3,

ρS,r = 0.2, T = 1. We set ε = 0.01 and L = 8. We consider five strikes: 60, 80, 100, 120, and 140.

Table 8 presents the price, variance, and relative error of the European call. The relative error is

measured against the semi-analytical solution.
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Strike 60 80 100 120 140

Heston-Hull-White

Price

HHW 44.0682 26.0077 11.5943 3.7583 0.9221

MLMC 44.0918 26.0258 11.6100 3.7636 0.9219

MLMC+IS 44.0879 26.0256 11.6085 3.7648 0.9229

Variance
MLMC 413.4086 379.9792 238.5803 90.0735 23.6667

MLMC+IS 44.9006 157.6493 124.6953 31.2749 3.4079

Relative error (%)
MLMC 0.05 0.07 0.13 0.14 0.02

MLMC+IS 0.04 0.07 0.12 0.17 0.08

Heston-Cox-Ingersoll-Ross

Price

HCIR 44.0686 25.9996 11.5668 3.7296 0.9071

MLMC 44.0724 26.0067 11.5696 3.7320 0.9037

MLMC+IS 44.0769 26.0045 11.5693 3.7326 0.9041

Variance
MLMC 413.1371 379.8149 238.3690 90.1313 23.6259

MLMC+IS 43.8495 159.4084 121.6297 29.2775 3.5179

Relative error (%)
MLMC 0.01 0.03 0.02 0.06 0.37

MLMC+IS 0.02 0.02 0.02% 0.08 0.33

Table 8: Multi-Level Monte Carlo (MLMC) and Importance Sampling (MLMC+IS) price, vari-
ance of price, and relative error for a European call under the Heston-Hull-White model and the
Heston-Cox-Ingersoll-Ross model. Relative error is measured against the semi-analytical solution
(HHW/HCIR).

Given the nature of the Multi-Level Monte Carlo, we observe that it is possible to use impor-

tance sampling on all levels or some levels. We will refer to the former as full importance sampling.

We note that the first level, where l = 0, is the coarsest, because there is only one step at this level

with step size T . Variance at level l decreases as l increases because both Pl−1 and Pl accurately

approximate P as they are obtained using the same Brownian path. Therefore, as an alternative

to the full importance sampling, we will consider importance sampling on the first level only.

Figure 1 plots the effective performance against strikes for the different simulation schemes.

Effective performance is defined as the ratio of variance reduction to speed. Speed itself is defined

as the ratio of computational time of the Multi-Level Monte Carlo with the importance sampling

to computational time of the Multi-Level Monte Carlo without importance sampling. Figure 1

compares Multi-Level Monte Carlo with full importance sampling, Multi-Level Monte Carlo with

the importance sampling on the first level only, and Multi-Level Monte Carlo without importance

sampling. The results indicate that the Multi-Level Monte Carlo with the importance sampling

is more efficient than Multi-Level Monte Carlo without importance sampling. In addition, Multi-

Level Monte Carlo with the importance sampling on the first level only is much more efficient than

both Multi-Level Monte Carlo without importance sampling and Multi-Level Monte Carlo with

full importance sampling. The performance improvement, compared to the Multi-Level Monte

Carlo full importance sampling comes from two sources. The first one is variance reduction from
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importance sampling; the second is reduced computational time. This is due to the fact that the

number of sample paths at level l which is given by (13) depends on the variance at level l. Since

importance sampling reduces the variance at the first level, the required number of sample paths

at this level is less, compared to the Multi-Level Monte Carlo without importance sampling.
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Figure 1: Effective performance for different strikes.
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So far, we have demonstrated that importance sampling improves the efficiency of both basic

Monte Carlo and Multi-Level Monte Carlo. It has been also shown by Giles (2008) that Multi-Level

Monte Carlo is more efficient than basic Monte Carlo. To complete the picture, we compare basic

Monte Carlo with Importance Sampling and Multi-Level Monte Carlo with Importance Sampling.

Figure 2 compares the computational cost associated with the desired accuracy, ε, for basic Monte

Carlo with Importance Sampling (MC+IS) and Multi-Level Monte Carlo with Importance Sam-

pling on the first level (MLMC+IS). For Multi-Level Monte Carlo, the computational cost, C, is

defined as the total number of time steps on all levels. For each sample path at level l > 0, there

is one fine path with 2l time steps and one coarse path with 2l−1 time steps. Hence,

C = N0 +

L∑
l=1

Nl
(
2l + 2l−1

)
The computational of the basic Monte Carlo is calculated as

C∗ =

L∑
l=0

N∗l 2l

where N∗l = 2ε−2V ar [φl (S)] so that the variance of the basic Monte Carlo estimator is also 1
2ε

2.

Figure 2 shows that for a given accuracy, Multi-Level Monte Carlo with Importance Sampling on

the first level has lower computational cost compared to the basic Monte Carlo with Importance

Sampling. For Multi-Level Monte Carlo, ε2C is roughly constant which is consistent with theory

that predicts computational cost of order ε−2. For basic Monte Carlo, ε2C is approximately

proportional to ε−1, which is in line with the theoretical cost of order ε−3.
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Figure 2: Computational cost associated with the desired accuracy (ε) for basic Monte Carlo with
Importance Sampling (MC+IS) and Multi-Level Monte Carlo with Importance Sampling on the
first level (MLMC+IS).
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6 Greeks for Multi-Level Monte Carlo

It is also possible to use the Likelihood Ratio Method to estimate the Greeks in a Multi-Level

Monte Carlo. Let us consider the first derivative of the Multi-Level Monte Carlo estimator (10)

with respect to S0.

∆ =
∂

∂S0
E [φL (S)]

=
∂

∂S0
E [φ0 (S)] +

L∑
l=1

∂

∂S0
E [φl (S)− φl−1 (S)]

=

ˆ ∞
0

e−r(T−t)φ0 (s)
∂
∂S0

f(x)

f(x)
f(x)dx+

+

L∑
l=1

ˆ ∞
0

e−r(T−t) ([φl (s)− φl−1 (s)])
∂
∂S0

f(x)

f(x)
f(x)dx

where
∂

∂S0
f(x)

f(x) is the likelihood ratio which can be obtained from the characteristic function as in

[13].

Table 9 reports delta and gamma computed by the Likelihood Ratio Method with the impor-

tance sampling (IS) and without importance sampling (L) for European option under the Heston-

Hull-White model and the Heston-Cox-Ingersoll-Ross model. On average importance sampling

reduces the variance of delta 8 times and the variance of gamma 7 times.

Strike 60 80 100 120 140

Heston-Hull-White

Delta
MLMC 0.9595 0.9187 0.6691 0.3227 0.1068

MLMC+IS 0.9621 0.9172 0.6690 0.3235 0.1058

Variance
MLMC 8.5492 4.7461 2.5166 1.1986 0.4324

MLMC+IS 4.3355 1.1883 0.2358 0.0869 0.0379

Gamma
MLMC 0.0001 0.0042 0.0165 0.0175 0.0092

MLMC+IS 0.0001 0.0042 0.0164 0.0174 0.0092

Variance
MLMC 0.0569 0.0370 0.0219 0.0119 0.0055

MLMC+IS 0.0264 0.0108 0.0035 0.0011 0.0005

Heston-Cox-Ingersoll-Ross

Delta
MLMC 0.9570 0.9179 0.6698 0.3231 0.1062

MLMC+IS 0.9577 0.9195 0.6686 0.3224 0.1057

Variance
MLMC 8.6794 4.8099 2.5586 1.2152 0.4403

MLMC+IS 4.4050 1.2070 0.2374 0.0861 0.0350

Gamma
MLMC 0.0001 0.0041 0.0165 0.0176 0.0092

MLMC+IS 0.0002 0.0042 0.0164 0.0175 0.0091

Variance
MLMC 0.0591 0.0383 0.0227 0.0123 0.0057

MLMC+IS 0.0271 0.0112 0.0036 0.0011 0.0005

Table 9: Likelihood Ratio Method (MLMC) and Likelihood Ratio Method with Importance Sam-
pling (MLMC+IS) Greeks (delta, variance of delta, gamma, and variance of gamma) for a European
call under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model.
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7 Multi-Level Monte Carlo with Importance Sampling for

Multi-Asset Options

Finally, we will use the Multi-Level Monte Carlo to price basket call on three underlying assets. We

will use the same parameters as in Section 2 and λ = 0.05, r0 = θ = 0.05, η = 0.01, ρS,v = −0.3,

ρS,r = 0.2, ρr,v = 0. We set ε = 0.05 and L = 8. We note that a combination of Multi-Level Monte

Carlo and hybrid stochastic volatility model such as Heston-Hull-White or Heston-Cox-Ingersoll-

Ross is particularly suitable for pricing variable annuities which are in principle long-dated basket

put options.

Table 10 reports the results for Multi-Level Monte Carlo with the importance sampling (MLMC+IS)

and without importance sampling (MLMC) for a basket call on three underlying assets under the

Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. On average importance sam-

pling reduces the variance 3 times compared to the Multi-Level Monte Carlo without importance

sampling.

Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3

Heston-Hull-White

Price
MLMC 17.9506 13.2379 9.1427 5.8453 3.3797 1.7681 0.8636

MLMC+IS 17.9671 13.2424 9.1135 5.7541 3.3249 1.8456 0.9217

Variance
MLMC 123.9666 114.0966 94.7747 68.4085 43.3949 24.5796 12.3358

MLMC+IS 41.6504 40.1116 33.2675 22.6223 12.5556 6.4589 2.4066

Heston-Cox-Ingersoll-Ross

Price
MLMC 17.9789 13.2578 9.2080 5.8265 3.3508 1.7697 0.9293

MLMC+IS 17.9381 13.1990 9.0608 5.7880 3.3921 1.8451 0.9390

Variance
MLMC 123.7446 114.3640 95.0163 68.7593 43.3255 24.1792 12.3348

MLMC+IS 41.3532 40.3292 33.2685 22.9515 12.6570 6.1357 2.5758

Table 10: Multi-Level Monte Carlo (MLMC) and Importance Sampling (MLMC+IS) price and
variance of price for a basket call under the Heston-Hull-White model and the Heston-Cox-Ingersoll-
Ross model.

Tables 11 and 12 report delta and gamma of each underlying asset computed by the Likelihood

Ratio Method with the importance sampling (IS) and without importance sampling (L) under

the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. On average importance

sampling reduces the variance of delta and gamma by factor of 3.
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i Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3

Heston-Hull-White

1

Delta
MLMC 0.3564 0.3421 0.2985 0.2464 0.1807 0.1122 0.0639

MLMC+IS 0.3562 0.3256 0.2956 0.2404 0.1776 0.1201 0.0680

Variance
MLMC 2.1769 1.5899 1.1284 0.7723 0.4973 0.3056 0.1876

MLMC+IS 1.3601 0.8669 0.5247 0.3050 0.1676 0.0910 0.0362

2

Delta
MLMC 0.5109 0.4553 0.3840 0.3004 0.2275 0.1624 0.1099

MLMC+IS 0.5040 0.4634 0.3802 0.2979 0.2200 0.1698 0.1174

Variance
MLMC 11.6235 8.5318 6.0153 4.2465 2.8229 1.7758 1.1957

MLMC+IS 8.5810 5.7738 3.7107 2.0393 1.1347 0.6621 0.2517

3

Delta
MLMC 0.9084 0.8531 0.7083 0.6401 0.4732 0.3304 0.2159

MLMC+IS 0.8841 0.8444 0.7431 0.6094 0.4847 0.3504 0.2311

Variance
MLMC 38.4584 31.8220 25.7602 16.5950 15.8343 11.4764 8.1404

MLMC+IS 22.4692 13.6315 12.6515 5.0691 3.3503 2.6284 0.6424

Heston-Cox-Ingersoll-Ross

1

Delta
MLMC 0.3658 0.3407 0.3069 0.2444 0.1787 0.1158 0.0769

MLMC+IS 0.3542 0.3327 0.3008 0.2462 0.1831 0.1182 0.0779

Variance
MLMC 2.2403 1.6174 1.1399 0.7857 0.5084 0.3250 0.1949

MLMC+IS 1.3789 0.8831 0.5337 0.3191 0.1751 0.0910 0.0530

2

Delta
MLMC 0.5209 0.4610 0.3938 0.3160 0.2363 0.1538 0.1066

MLMC+IS 0.5021 0.4704 0.3833 0.3010 0.2218 0.1693 0.1113

Variance
MLMC 11.9429 8.9477 6.1634 4.3160 2.8600 1.6796 1.0906

MLMC+IS 8.6689 5.9153 3.7445 2.1748 1.1615 0.5881 0.3708

3

Delta
MLMC 0.9053 0.8298 0.7488 0.6466 0.4987 0.3463 0.2317

MLMC+IS 0.9361 0.8567 0.7586 0.5951 0.5186 0.3498 0.2279

Variance
MLMC 39.3159 29.1621 22.8414 16.5218 10.2947 5.8761 3.4462

MLMC+IS 19.0239 14.6707 12.4880 3.7593 3.6790 0.7555 0.4583

Table 11: Likelihood Ratio Method (MLMC) and Likelihood Ratio Method with Importance
Sampling (MLMC+IS) Greeks (delta and variance of delta) for a basket call under the Heston-
Hull-White model and the Heston-Cox-Ingersoll-Ross model.
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i Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3

Heston-Hull-White

1

Gamma
MLMC -0.0208 -0.0147 -0.0096 -0.0033 0.0007 0.0022 0.0023

MLMC+IS -0.0219 -0.0158 -0.0089 -0.0034 0.0007 0.0026 0.0022

Variance
MLMC 0.0190 0.0144 0.0110 0.0079 0.0053 0.0035 0.0025

MLMC+IS 0.0111 0.0075 0.0047 0.0030 0.0018 0.0010 0.0005

2

Gamma
MLMC 0.0078 0.0145 0.0157 0.0195 0.0190 0.0157 0.0135

MLMC+IS 0.0073 0.0157 0.0162 0.0173 0.0183 0.0174 0.0135

Variance
MLMC 0.4305 0.3349 0.2444 0.1860 0.1268 0.0882 0.0640

MLMC+IS 0.2910 0.2022 0.1398 0.0784 0.0477 0.0302 0.0117

3

Gamma
MLMC 0.2474 0.2027 0.1676 0.1338 0.0959 0.0687 0.0449

MLMC+IS 0.2430 0.2081 0.1605 0.1269 0.0970 0.0718 0.0481

Variance
MLMC 2.9352 1.9736 1.5644 0.7162 0.4576 0.3758 0.1866

MLMC+IS 0.7470 1.2402 0.8445 0.1511 0.0870 0.0505 0.0206

Heston-Cox-Ingersoll-Ross

1

Gamma
MLMC -0.0205 -0.0156 -0.0091 -0.0038 0.0007 0.0029 0.0030

MLMC+IS -0.0212 -0.0154 -0.0086 -0.0032 0.0008 0.0023 0.0037

Variance
MLMC 0.0204 0.0148 0.0111 0.0081 0.0057 0.0038 0.0025

MLMC+IS 0.0112 0.0078 0.0049 0.0031 0.0019 0.0010 0.0010

2

Gamma
MLMC 0.0104 0.0150 0.0166 0.0197 0.0211 0.0163 0.0125

MLMC+IS 0.0082 0.0165 0.0197 0.0171 0.0178 0.0170 0.0145

Variance
MLMC 0.4728 0.3633 0.2544 0.1871 0.1365 0.0780 0.0546

MLMC+IS 0.2982 0.2181 0.1403 0.0890 0.0502 0.0256 0.0223

3

Gamma
MLMC 0.2529 0.2013 0.1657 0.1364 0.0953 0.0777 0.0465

MLMC+IS 0.2488 0.2099 0.1667 0.1265 0.1011 0.0683 0.0523

Variance
MLMC 2.2489 1.8205 1.3654 1.2104 0.4645 0.3950 0.1975

MLMC+IS 0.9539 0.4543 0.2702 0.2800 0.0928 0.1580 0.0188

Table 12: Likelihood Ratio Method (MLMC) and Likelihood Ratio Method with Importance
Sampling (MLMC+IS) Greeks (gamma and variance of gamma) for a basket under the Heston-
Hull-White model and the Heston-Cox-Ingersoll-Ross model.

8 Conclusion

We have presented an application of importance sampling with stochastic change of drift to multi-

asset options. We have illustrated the use of importance sampling with spread, absolute, composite,

quotient, basket, best-of, and worst-of options as examples. Based on our results, importance

sampling reduces variance of multi-asset options by a factor of 3-13 on average.

The paper has also provided an extension of the Likelihood Ratio Method to multi-asset options,

and combined it with the importance sampling to reduce the variance of the Greeks. Based on our

results, importance sampling reduces variance of the Greeks of multi-asset options by a factor of 2

on average.

We applied importance sampling in a Multi-Level Monte Carlo and have demonstrated that

applying importance sampling on the first level significantly improves its effective performance. For
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the European option in the Multi-Level Monte Carlo with full importance sampling the effective

performance is on average almost 3 times better than that of the Multi-Level Monte Carlo without

importance sampling. For the same option in the Multi-Level Monte Carlo with the importance

sampling on the first level only the effective performance is on average almost 19 times better

than that of the Multi-Level Monte Carlo without importance sampling. We have also used the

Likelihood Ratio Method to estimate the Greeks in a Multi-Level Monte Carlo, and combined

it with the importance sampling to reduce the variance of the Greeks. Based on our results,

importance sampling reduces variance of the Greeks by a factor of 7-8 on average for the European

option and by a factor of 3 for a basket option.
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Appendix A. Multi-Level Monte Carlo

Multi-Level Monte Carlo is a Monte Carlo simulation with different number of time steps of size

hl = 2−lT on each level l = 0, 1, · · · , L. For example, when l = 0, there is only one time step of

size h0 = T . When l = 1, there are two times steps each of size h1 = T
2 . Finally, when l = L, there

are 2L times steps each of size hL = T
2L

.

Let P denote the true derivative price

P = E [φL (S)] = E [φ0 (S)] +

L∑
l=1

E [φl (S)− φl−1 (S)] (10)

where φl (s) denotes the payoff on level l. The Multi-Level Monte Carlo estimator is given by

P̂ =

L∑
l=0

P̂l

P̂0 is an estimator for E [φ0 (S)] calculated as a mean of Nl independent sample paths

P̂0 =
1

N0

N0∑
i=1

φ0 (si)

and P̂l is an estimator for E [Pl − Pl−1] calculated as a mean of Nl independent sample paths

P̂l =
1

Nl

Nl∑
i=1

(φl (si)− φl−1 (si))

The variance of the combined Multi-Level Monte Carlo estimator on level l is given by

V ar
[
P̂l

]
= V ar

[
1

Nl

Nl∑
i=1

(φl (si)− φl−1 (si))

]

=
1

N2
l

Nl∑
i=1

V ar [φl (si)− φl−1 (si)]

=
Vl
Nl

Thus, the variance of the combined Multi-Level Monte Carlo estimator is

V ar
[
P̂
]

=

L∑
l=0

V ar
[
P̂l

]
=

L∑
l=0

1

Nl
Vl
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where Vl = V ar [φl (S)− φl−1 (S)]. Furthermore,

Vl = V ar [φl (S)− φl−1 (S)]

= V ar [φl (S)] + V ar [φl−1 (S)]− 2Cov [φl (S) , φl−1 (S)]

so the higher the correlation between φl (S) and φl−1 (S), the lower the variance of the Multi-Level

Monte Carlo estimator.

In order to minimize the variance of the Multi-Level Monte Carlo estimator for a given compu-

tational cost C =
∑L
l=0Nl

T
hl

, it is possible to use the Lagrange multiplier method. The Lagrangian

is given by

L =

L∑
l=0

1

Nl
Vl + λ

(
L∑
l=0

Nl
T

hl
− C

)
(11)

Differentiating (11) with respect toNl and applying the first order condition shows that the variance

is minimized at

N∗l =

√
Vlhl
λT

(12)

With such choice of Nl the variance of the combined Multi-Level Monte Carlo estimator becomes

V ar
[
P̂
]

=

L∑
l=0

1

N∗l
Vl =

L∑
l=0

√
VlλT

hl

By Theorem 3.1 in Giles (2008), V ar
[
P̂
]
≤ ε2

2 where ε is a user-specified accuracy. It follows that,

L∑
l=0

√
VlλT

hl
≤ ε2

2

Using the definition of λ in (12) this becomes

Nl ≥ 2ε−2
√
Vlhl

(
L∑
l=0

√
Vl
hl

)

Therefore, the optimal number of sample paths for level l, in order to minimize the variance of the

Multi-Level Monte Carlo estimator for a given computational cost C, is

Nl =

⌈
2ε−2

√
Vlhl

(
L∑
l=0

√
Vl
hl

)⌉
(13)

Overall, Monte Carlo has computational cost proportional to ε−3, whereas that of the Multi-Level

Monte Carlo is proportional to ε−2 (log ε)
2

due to reduced variance.
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