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Abstract

We present an application of importance sampling to multi-asset options under the Heston
and the Bates models as well as to the Heston-Hull-White and the Heston-Cox-Ingersoll-Ross
models. Moreover, we provide an efficient importance sampling scheme in a Multi-Level Monte
Carlo simulation. In all cases, we explain how the Greeks can be computed in the different
simulation schemes using the Likelihood Ratio Method, and how combining it with importance

sampling leads to a significant variance reduction for the Greeks.
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1 Introduction

In practice, the valuation of multi-asset options typically involves the Monte Carlo simulation.
The rate of convergence of this simulation is \/n where n is the number of sample paths. Hence,
improving the accuracy of the simulation by a factor of 10 requires 100 times as many sample
paths. For this reason, variance reduction techniques have become essential. Importance sampling
reduces the variance by changing the drift of the simulated sample paths. The extent to which
variance reduction is achieved through importance sampling very much depends on the change of
drift. Much research effort focuses on how to change the drift to fully exploit the variance reduction
potential of importance sampling.

The Multi-Level Monte Carlo was introduced in Giles (2008). It is a Monte Carlo simulation
performed on different levels of uniform time discretizations. The main advantage of the Multi-
Level Monte Carlo is that, for a given accuracy, it has lower computational cost due to reduced
variance compared to the basic Monte Carlo. Here, we show that the variance of Multi-Level
Monte Carlo can be further reduced by combining it with other variance reduction technique such
as importance sampling.

In this paper, we focus on importance sampling for multi-asset options and incorporating im-
portance sampling in the Multi-Level Monte Carlo simulation. Our contributions are as follows.
First, we present an application of importance sampling with a stochastic change of drift to multi-
asset options. Next, we provide an efficient importance sampling scheme in a Multi-Level Monte
Carlo simulation. Then, we combine Multi-Level Monte Carlo with importance sampling to price
multi-asset options. In all cases, we explain how the Greeks can be computed in the different sim-
ulation schemes using the Likelihood Ratio Method, and combine it with the importance sampling
to reduce the variance of the Greeks.

There is relatively little work on variance reduction for multi-asset options in the literature.
Barraquand (1995) introduces quadratic resampling and combines it with the importance sampling
to price European multi-asset options. Avramidis (2002) proposes an algorithm that selects the
importance sampling density as a mixture of multivariate Normal densities for best-of Asian and
best-of barrier options. Neddermeyer (2011) develops non-parametric importance sampling in con-
junction with quasi-random numbers to price basket and best-of options. The work of Barraquand
(1995), Avramidis (2002), as well as Neddermeyer (2011) is done is done under the Black-Scholes

model.



Su and Fu (1999), Arouna (2004), and Caprotti (2008) use importance sampling, with the
optimal change of drift obtained by solving an optimization problem, to price basket options. In
Su and Fu (1999) the change of drift based on a stochastic optimization. In Arouna (2004) the
change of drift relies on the Robbins-Monro algorithms, whereas in Caprotti (2008), it depends on
the least squares minimization. Finally, Pellizzari (1998) suggests the use of control variate based
on unconditional and conditional expectations of asset prices as a variance reduction technique for
multi-asset options in the Black-Scholes model.

The remainder of this paper is organized as follows. In Section 2, we present an application
of importance sampling with a stochastic change of drift to multi-asset options in the Heston
stochastic volatility model and the Bates stochastic volatility model with jumps. We consider
basket, best-of, worst-of, spread, absolute, composite, and quotient options. In Section 3, we
extend the Likelihood Ratio Method to multi-asset options and combine it with the importance
sampling to reduce the variance of the Greeks. In Section 4, we derive the optimal change of drift
for the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. In Section 5, apply
importance sampling in a Multi-Level Monte Carlo using the Heston-Hull-White model and the
Heston-Cox-Ingersoll-Ross model. We demonstrate that applying importance sampling only on
the first level can significantly improve the effective performance of the Multi-Level Monte Carlo.
In Section 6, we use the Likelihood Ratio Method to estimate the Greeks in a Multi-Level Monte
Carlo and again combine it with the importance sampling to reduce the variance of the Greeks. In
Section 7, we combine Multi-Level Monte Carlo with importance sampling for multi-asset options.

Finally, Section 8 concludes the paper.

2 Importance Sampling for Multi-Asset Options

In this section, we apply importance sampling to price multi-asset options. The dynamics of the

multi-asset Heston model under the risk neutral measure Q is given by

dSip = 71iSiadt + /Ui Si dW

d'Ui’t = K; (92 - Ui,t) dt + giq /vi,tdW;jz

where S; ; is the i-th stock price, r; is the i-th risk-free interest rate, v;; is the i-th variance, &; is

the i-th mean-reversion rate, 6; is the i-th long-term variance, §; is the i-th volatility of volatility,



and i = 1,--- ,n denotes the number of underlying assets. The correlation matrix is

Cy Cy
c=| " (1)
Gy
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is the correlation between the stock price processes,

P1,n+1 o P1,2n
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is the correlation between the stock price processes and the variance processes, and

pn+1,n+1 et pn+1,2n
Cs =

P2n,n+1 ce P2n,2n

is the correlation between the variance processes.
The difference between the multi-asset Heston model and the multi-asset Bates model is that

in the multi-asset Bates model the stock price dynamics under the risk-neutral measure QQ becomes
dSie = Si (ri — Niki) dt + S0 /Oi2dW i + S 4dZ;

where Z;; is a compound Poisson process with intensity A; and log-normal distribution of jump

sizes such that if k; is its jump size then In (1 + k;) ~ N (ln (1 + l_ei) — 152 52).
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In matrix notation, the dynamics of the multi-asset Heston model is

where C = %7 is the correlation matrix in (1), 7 is a 2n-dimensional correlated Q-Brownian



motion and

S1t
Sn,t
dX, =
U1,t
Un,t
r181
Tndn
b(z) =
Iil((gl — U1)

VUnSn
§14/01

0 0 &n/on
W

Sn
Wn,t
=

V1
Wl,t

Wan

n,t

Following Fouque and Tullie (2002), we derive the optimal change of measure for the multi-asset

Heston model. First, we introduce the martingale
T 1 (T
H; = exp / Y h(s, X,) - Xy + 5/ Y h(s, X,) - X7 h(s, X,)ds (3)
0 0

Next, we define a new probability measure denoted by Q which is equivalent to Q by its Radon-



Nikodym derivative

dQ 1
Q- (Hr)

By the Girsanov theorem for correlated Brownian motions, the process

¢
Ne = 1 +/ h (s, Xs) dns
0
is a 2n-dimensional correlated Q-Brownian motion. Using 7, (2) and (3) can be written as

dXt = (b (Xt) —a(Xt)h(t,Xt))dt—&-a(Xt) d’f]t

T T
1
H, = exp (/ E‘lh(s,Xs)~E‘1dﬁt—§/ Z_lh(s,Xs)~E_1h(s,Xs)ds>
0 0

Using the analogous derivation to that presented in [13], the optimal choice of h for which the

variance of the Monte Carlo estimator under Q is minimized is

h(t, X,) = —ﬁa(t,Xt)TVP(t,Xt) (4)

This result is also valid for the Bates model with the difference that

dZ1 4
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0
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Equation (4) requires the option price and its delta which are not known. Instead, we will use their
Black-Scholes equivalents. Under the fast mean-reversion expansion, h for the multi-asset Heston

model is given by

ap,
1 8iy/V; T HME
Prur 0

hi =

where Ppjr is the option price under the classic geometric Brownian motion dynamics with

. N N
volatility \/Z¢:1 07 =23 cicien Pij\/0i0;.

Similarly, under the fast mean-reversion expansion, h for the multi-asset Bates model is given




by

1 si (VUi + Figs) 2opan
Pryur 0

hi =

where Ppyr is the option price under the classic geometric Brownian motion dynamics with

volatility /3317, 62 — 2551, v p1,51/0:0;.

2.1 Numerical Examples

In this section, we present the numerical results for spread, absolute, composite, quotient, basket,
best-of, and worst-of options. We compared option prices simulated under the importance sampling
using fast mean-reversion expansion (MC+IS) against the basic Monte Carlo (MC). All simulations
are performed using the same sequence of pseudo-random numbers. We simulate 10,000 sample
paths using a time increment of 0.001. For the numerical examples, we assume that the time to
maturity is 1 year. For the Bates model, we assume in addition that the jump intensity is 1 jump

per year, standard deviation of the jumps is 2%, and the mean jump size is -5%.

2.1.1 Spread, Absolute, Composite, and Quotient Options

Here, we consider options written on two underlying assets. Spread option depends on the difference
between two underlying assets. Seller of such an option is long correlation which differentiates this
option from the majority of multi-asset options that leave the seller short correlation. For example,

the payoff of the spread call with maturity 7" is given by

max (S1(T) — S2(T) — K,0)

Absolute option is an option written on the absolute value of the difference between the two
underlying assets at maturity. The holder of an absolute option benefits from the absolute change
in price of the underlying assets. For example, the payoff of the spread call with maturity T is
given by

max (max (S1(T), S2(T)) — min (S1(T"), S2(T)) — K, 0)

Composite option is an option on a foreign underlying asset with a strike denominated in the
domestic currency. The holder of a composite option faces foreign exchange risk, but benefits from
the strike being fixed in the domestic currency. For example, the payoff of the composite call with
maturity T is given by

max (51 (T)S52(T) — K,0)



where S3(7') is the foreign exchange rate.
Quotient option, also known as ratio option, depends on the ratio of two underlying assets.
The holder of a quotient option benefits from the relative change in price of the underlying assets.

For example, the payoff of the quotient call with maturity T is given by

o (3850

The parameters used in the numerical examples are displayed in Table 1.

) ‘ S ‘ r ‘ Vo ‘ 13 ‘ K ‘ 0
Spread

1 (30| 0.05 | 004 | 0.4 3 0.09
2| 5 | 005|009 |03]05]| 025
Absolute
1|30 | 0.05| 004 | 04 3 0.09
2| 35| 005 | 0.09 | 0.3 |05 ]| 0.25
Composite / Quotient
1|30 | 0.05| 004 | 0.4 3 0.09
2| 2 |005| 009 |03]05]| 025

Table 1: Model parameters for multi-asset options based on two underlying assets.

The correlation matrix is given by

1 0.4 —-0.6 —-0.28
0.4 1 -0.24 0.7
-0.6 —-0.24 1 0.168

-0.28 —0.7 0.168 1

Tables 2 and 3 report the results for basic Monte Carlo (MC) and importance sampling (IS) for
the Heston model and the Bates model. In all cases, importance sampling reduces the variance 5

to 13 times on average compared to the basic Monte Carlo.



Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3
Panel A: Spread

Heston
Price MC 10.9116 8.7664 6.8078 5.0821 3.6278 2.4616 1.5897
MC+IS | 10.8962 8.7438 6.7701 5.0316 3.5795 2.4298 1.5730
Variance MC 51.5956 | 47.0730 | 40.6259 | 32.9627 | 25.0319 | 17.7671 | 11.7748
MC+IS 3.4245 3.7729 2.9216 1.7977 1.3673 1.0649 0.7246

Bates
Price MC 10.9352 8.8015 6.8525 5.1433 3.7056 2.5509 1.6764
MC+IS | 10.9055 8.7716 6.8252 5.1218 3.6918 2.5521 1.6944
Variance MC 54.2643 | 49.5032 | 42.8706 | 34.9473 | 26.7347 | 19.1973 | 12.9460
MC+HIS 5.4703 4.7225 4.1768 3.4911 2.5868 1.9515 1.4214

Panel B: Absolute

Heston
Price MC 0.8110 0.4772 0.2775 0.1561 0.0860 0.0470 0.0260
MC+IS 0.8157 0.4738 0.2703 0.1517 0.0837 0.0457 0.0241
Variance MC 8.4177 4.9509 2.8182 1.5635 0.8538 0.4603 0.2410
MCHIS 4.3064 1.9271 0.9153 0.4107 0.1753 0.0765 0.0256

Bates
Price MC 0.8988 0.5351 0.3091 0.1733 0.0947 0.0509 0.0271
MC+IS 0.8731 0.5180 0.3015 0.1726 0.0973 0.0530 0.0289
Variance MC 9.2814 5.4544 3.0895 1.6995 0.9159 0.4850 0.2541
MC+IS 3.9397 1.8787 0.8458 0.3651 0.1514 0.0554 0.0207

Table 2: Monte Carlo (MC) and Importance Sampling (MC+IS) price and variance of price for
spread and absolute options based on two underlying assets under the Heston model and the Bates
model.



Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3
Panel A: Composite
Heston
Price MC 32.6826 28.1321 23.9924 20.2822 17.0000 14.1175 11.6163
MC+H+IS 32.4569 27.8948 23.7450 20.0351 16.7593 13.9067 11.4605
Variance MC 958.7243 | 888.7356 | 807.4117 | 719.3844 | 629.3578 | 541.8094 | 459.6539
MCH+IS | 153.3319 | 155.1247 | 150.6481 | 140.7796 | 127.2177 | 111.4294 94.7747
Bates
Price MC 32.7633 28.2312 24.1100 20.4207 17.1358 14.2648 11.7747
MCH+IS 32.6670 28.1174 23.9634 20.2731 17.0256 14.2011 11.7800
Variance MC 989.9160 | 918.5872 | 835.9709 | 746.4860 | 655.8963 | 567.2028 | 483.7828
MC+IS | 210.3686 | 203.9079 | 189.1749 | 177.2651 | 162.4286 | 145.2400 | 127.3492
Panel B: Quotient
Heston
Price MC 7.2402 5.9534 4.8020 3.8233 3.0250 2.3880 1.8832
MCH+IS 7.2059 5.9192 4.7583 3.7677 2.9560 2.3126 1.8077
Variance MC 43.3758 41.5555 38.6297 34.8073 30.5444 26.3034 22.3933
MCH+IS 3.9368 3.6635 3.5537 3.3123 2.9475 2.4886 2.0209
Bates
Price MC 7.2886 6.0117 4.8691 3.8986 3.0977 2.4557 1.9474
MCH+IS 7.2540 5.9816 4.8495 3.8777 3.0840 2.4433 1.9326
Variance MC 44.9052 42.9381 39.8828 35.9234 31.5830 27.2593 23.2442
MCH+IS 6.9516 8.6092 10.8222 11.3142 12.2593 11.4338 8.0210

Table 3: Monte Carlo (MC) and Importance Sampling (MC+IS) price and variance of price for
composite and quotient options based on two underlying assets under the Heston model and the
Bates model.

2.1.2 Basket, Best-of, and Worst-of Options

Here, we consider options written on three underlying assets. The payoff of a basket option depends
on the performance of a basket of underlying assets, each with its own corresponding weight. The
weights w; must satisfy the constraints 0 < w; < 1 for all ¢ = 1,--- ,n and Y., w; = 1. For

example, the payoff of the basket call with maturity T is given by

max (w1.51(T), -+ ,wpSp(T) — K, 0)

The main advantage of a basket option is that it offers a greater flexibility in the construction of the
underlying basket and it is usually cheaper than buying vanilla options on each of the underlying
assets. Basket option is mainly used for diversification purposes.

Best-of option depends on the performance of the best performing asset in a basket. For

example, the payoff of the best-of call with maturity T is given by

max (max (S1(T), - ,S5.(T)) — K,0)

10



Best-of call has a higher upside potential compared to a call option on the same basket of underlying

assets.

Worst-of option depends on the performance of the worst performing asset in a basket. For

example, the payoff of the worst-of call with maturity 7" is given by

max (min (S1(T),--+,S,(T)) — K,0)

Worst-of call has a lower upside potential compared to a call option on the same basket of underlying

assets.

The parameters used in the numerical examples are displayed in Table 4.

) ‘ w ‘ S ‘ r ‘ V0 ‘ 13 ‘ K ‘ 0
Basket

1(50% | 70 | 0.05 | 0.04 | 04 3 0.09
30% | 35 | 0.05 | 0.09 | 0.3 | 0.5 | 0.25
20% | 40 | 0.05 | 0.25 | 0.2 5 0.04
Best-of and Worst-of
1 30 | 0.05 | 0.04 | 0.4 3 0.09
35 | 0.05 | 0.09 | 0.3 | 0.5 | 0.25
40 | 0.05 | 0.25 | 0.2 5 0.04

Table 4: Model parameters for multi-asset options based on three underlying assets.

The correlation matrix is given by

1 0.4 0.2 -0.6 —-0.28 0.1
0.4 1 0.5 -0.24 —-0.7 —-0.25
0.2 0.5 1 0.0282 —-0.35 —0.5

—-0.6 —0.24 0.0282 1 0.168  0.0294
-0.28 —-0.7 —0.35 0.168 1 0.175

-0.1 -0.25 —0.5 0.0294 0.175 1

Table 5 reports the results for basic Monte Carlo (MC) and importance sampling (IS) for the
Heston model and the Bates model. In all cases, importance sampling reduces the variance 3 to 5

times on average compared to the basic Monte Carlo.

11



Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3
Panel A: Basket
Heston
Price MC 18.0939 | 13.4929 | 9.4321 | 6.1308 | 3.6583 | 2.0060 | 0.9916
MCHIS | 18.1301 | 13.5388 | 9.4302 | 6.0855 | 3.6288 | 1.9740 | 0.9759
Vasiance | MC | 1817882 | 116.7452 | 937079 | 66.5853 | 41.7007 | 228492 | 11.1104
MCHIS | 22.8241 | 27.9146 | 15.9959 | 11.1225 | 10.7502 | 5.6949 | 1.8306
Bates
, MC 18.0972 | 13.5079 | 9.4722 | 6.1935 | 3.7280 | 2.0761 | 1.0521
Price UGS | 18.0389 | 13.4853 | 94724 | 62015 | 3.7453 | 2.0880 | L0719
, MC | 135.8888 | 120.4728 | 96.8471 | 69.1762 | 43.8538 | 24.5180 | 12.2881
Variance e e 31,0098 | 26.9779 | 21007 | 143609 | 8.3187 | 41190 | 1.7322
Panel B: Best-of
Heston
brice MC | 20.0806 | 16.8117 | 13.6660 | 10.7524 | 8.1722 | 5.9940 | 4.2450
MCHIS | 20.0837 | 16.8275 | 13.6950 | 10.7276 | 8.1459 | 59882 | 4.2398
, MC | 114.2491 | 112.0612 | 106.5591 | 96.5682 | 82.5957 | 66.5238 | 50.5769
Vartance 1= SIS | 496236 | 402004 | 319864 | 24.6266 | 19.9598 | 15.4075 | 11.2659
Bates
i MC | 20.2257 | 16.9608 | 13.8165 | 10.8960 | 8.3088 | 6.1219 | 4.3675
MC+IS | 20.1805 | 16.9499 | 13.8360 | 10.8988 | 8.3327 | 6.1667 | 4.4003
Vasiance | MC__| 1175027 | 115.1506 | 109.5496 | 99.5909 | 85.5577 | 69.3061 | 53.0277
MCHIS | 49.5691 | 40.9534 | 33.3357 | 26.6619 | 21.6881 | 16.7958 | 12.4169
Panel C: Worst-of
Heston
i MC 50870 | 3.1251 | 1.7429 | 0.8760 | 0.3895 | 0.1544 | 0.0590
MCHIS | 5.1117 | 3.1181 | 1.7279 | 0.8628 | 0.3849 | 0.1524 | 0.0533
Variance | MC | 322608 | 213585 | 121857 | 5.9854 | 25606 | 0.9838 | 0.3423
MC+IS | 138514 | 8.7862 | 4.7116 | 2.1009 | 0.7885 | 0.2509 | 0.0701
Bates
i MC 50152 | 3.0794 | 1.7277 | 0.8753 | 0.3964 | 0.1649 | 0.0615
MCHIS | 50174 | 3.0583 | 1.6931 | 0.8489 | 0.3835 | 0.1561 | 0.0580
Variance | MC | 324943 | 215437 | 123510 | 6.1418 | 26990 | 1.0523 | 03754
MCHIS | 143138 | 8.9745 | 4.7930 | 2.1609 | 0.8268 | 0.2723 | 0.0798

Table 5: Monte Carlo (MC) and Importance Sampling (MC+IS) price and variance of price for
basket, best-of, and worst-of options based on three underlying assets under the Heston model and
the Bates model.

3 Greeks for Multi-Asset Options

We begin with an option price under QQ defined as

P(t,z) = /OOO..-/OOO e TG (S (T), -, Sp(T)) flay, - an)dey -

where ¢ (S1(T), -+ ,S,(T)) is the payoff function and f(z1,--- ,xz,) is the joint risk-neutral prob-

ability density function.

12

dx,




Next, consider, delta A, the first derivative of the option price with respect to S7(0)

o e
A = m/o /O Bo(S1(T), -, Su(T) (1, 2n)dwr - - davn

ﬁm.f‘(wh“' ,l’n)

f(ml,... ’xn)

| [ Batsim) sy flar, - aa)dan - da,

a
—r(T—t) and 951 (0) f(@1,,mn)

where B = ¢ flz1,xn)

is the likelihood ratio. By Sklar’s Theorem there exists

a copula C' such that
F(xlv"' axn) :C(Fl (1‘1),-" 7Fn(xn)) :C(ulv"' aun) (5)

In [13], we showed that the cumulative distribution function (CDF) and the probability density

function (PDF) for both the Heston model and the Bates model can be obtained as

Fi(z1) = Pr(Si(T)<z)= % B 711-/000 Re {exp (—iw hz(‘(fl)) P (w) do
Fy (x1 + Ax) — Fy (z1)

fi(z1) = A

where 9 is the characteristic function. Taking n*" order differentiation of (5) gives an expression

for the joint density.
fl@r, - m) = Hfi (zi) e(ur, -+, upn)
i=1

" C(u1, ,un)

Foree . In order to estimate the Greeks we will use an analytical
1°°0Un

where ¢ (uy,- -+ ,up) =
copula as an approximation of copula in (5). The same procedure as above can be followed to

compute the other Greeks.

3.1 Numerical Examples

In this section, we present delta, A, and gamma, I', of the multi-asset Heston model and the multi-
asset Bates model calculated using Likelihood Ratio Method (MC) and Likelihood Ratio Method
combined with importance sampling (MCHIS). We consider basket call option described in Section
2.1.2. As an approximation of the joint PDF for the Heston model we will use the t-copula with

62 degrees of freedom and correlation matrix

1 04 02
04 1 05 (6)
02 05 1

13



As an approximation of the joint PDF for the Bates model we will use the t-copula with 30 degrees
of freedom and the correlation matrix given by (6). For both models the correlation matrix and
the number of degrees of freedom were estimated using maximum likelihood.

Table 6 presents results for delta and gamma, respectively, of a basket call option for the multi-
asset Heston model. On average importance sampling reduces the variance of delta and gamma

by factor of 2.

% Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3
el MC | 0.4850 | 0.4572 | 0.4070 | 0.3346 | 0.2500 | 0.1678 | 0.1005
MCHIS | 0.4832 | 0.4528 | 0.4005 | 0.3290 | 0.2499 | 0.1702 | 0.1045
, MC | 2.9080 | 2.0993 | 1.4687 | 0.9938 | 0.6445 | 0.3937 | 0.2223
) Variance e ST 10176 | 11636 | 0.6470 | 03326 | 02544 | 0.1250 | 0.0439
o | MC__| 0:0009 | 0.0025 | 0.0048 | 0.0071 | 0.0084 | 0.0083 | 0.0067
MC+IS | 0.0026 | 0.0039 | 0.0060 | 0.0079 | 0.0089 | 0.0086 | 0.0071
, MC | 0.0378 | 0.0201 | 0.0217 | 0.0157 | 0.0108 | 0.0070 | 0.0042
Variance [0 1S 100262 | 0.0174 | 0.0107 | 0.0061 | 0.0033 | 0.0018 | 0.0009
elta MC | 0.2873 | 0.2671 | 0.2329 | 0.1870 | 0.1366 | 0.0906 | 0.0524
MCHIS | 0.2865 | 0.2673 | 0.2365 | 0.1910 | 0.1352 | 0.0874 | 0.0501
Vasiance | MC | 78665 | 5.3811 | 3.4908 | 2.1202 | 12105 | 0.6341 | 0.3048
, MCHIS | 6.5965 | 4.1291 | 2.3213 | 1.1894 | 0.6826 | 0.2735 | 0.0868
Gamma | MC__| 00115 | 0.0093 | 0.0077 | 0.0065 | 0.0054 | 0.0042 | 0.0027
MC+IS | 0.0169 | 0.0144 | 0.0120 | 0.0100 | 0.0079 | 0.0055 | 0.0036
Vasiance | MC | 03224 [ 0.2279 | 01536 | 0.0977 | 0.0581 | 0.0322 | 0.0164
MCHIS | 0.2865 | 0.1852 | 0.1098 | 0.0587 | 0.0298 | 0.0127 | 0.0046
el MC | 0.1886 | 0.1728 | 0.1506 | 0.1219 | 0.0897 | 0.0583 | 0.0340
MCHIS | 0.1932 | 0.1789 | 0.1593 | 0.1315 | 0.0995 | 0.0689 | 0.0430
Vasiance | MC | 54444 | 3.6204 | 22803 | 13568 | 0.7634 | 0.4083 | 0.2102
MCHIS | 4.0029 | 2.3606 | 1.2534 | 0.6082 | 0.2816 | 0.1127 | 0.0388
3 o | MC__| 0:0082 | 0.0063 | 0.0047 | 0.0086 | 0.0020 | 0.0024 | 0.0020
MC+IS | 0.0103 | 0.0081 | 0.0062 | 0.0047 | 0.0034 | 0.0025 | 0.0017
Vasiance | MC | 01204 | 0.0883 | 0.0576 | 0.0360 | 0.0218 | 0.0130 | 0.0078
MC+IS | 0.0928 | 0.0554 | 0.0301 | 0.0150 | 0.0079 | 0.0032 | 0.0011

Table 6: Likelihood Ratio Method (MC) and Likelihood Ratio Method with Importance Sampling
(MC+IS) Greeks (delta, variance of delta, gamma, and variance of gamma) for a basket call under
the Heston model.

Table 7 presents results for delta and gamma, respectively, of a basket call option for the multi-
asset Bates model. On average importance sampling reduces the variance of delta and gamma by

factor of 2.
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% Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3
belta MC | 0.4845 | 0.4567 | 0.4066 | 0.3347 | 0.2512 | 0.1706 | 0.1044
MCHIS | 0.4769 | 0.4489 | 0.3976 | 0.3202 | 0.2488 | 0.1722 | 0.1092
, MC | 2.8944 | 2.1049 | 1.4874 | 1.0193 | 0.6713 | 0.4182 | 0.2421
) Variance = 1S T 1.0074 | 11758 | 06710 | 0.3565 | 0.1826 | 0.0906 | 0.0463
Gamma | MC__| 00028 | 0.0040 | 0.0060 | 0.0080 | 0.0091 | 0.0087 | 0.0071
MC+IS | 0.0040 | 0.0055 | 0.0071 | 0.0089 | 0.0100 | 0.0094 | 0.0078
, MC | 0.0379 | 0.0295 | 0.0223 | 0.0163 | 0.0114 | 0.0076 | 0.0047
Variance oA S T 0.0242 | 0.0168 | 0.0105 | 0.0063 | 0.0036 | 0.0020 | 0.0011
el MC | 0.2933 | 0.2708 | 0.2342 | 0.1862 | 0.1364 | 0.0906 | 0.0529
MCHIS | 0.2812 | 0.2598 | 0.2284 | 0.1803 | 0.1296 | 0.0833 | 0.0477
Vasiance | MC__| 78325 | 5.3818 | 3.5098 | 21576 | 1.2400 | 0.6602 | 0.5245
) MCHIS | 6.5213 | 4.1040 | 2.3413 | 1.2146 | 0.5691 | 0.2377 | 0.0889
Gamma | MC | 00174 | 0.0142 | 0.0115 | 0.0093 | 0.0072 | 0.0053 | 0.0033
MCHIS | 0.0227 | 0.0109 | 0.0163 | 0.0132 | 0.0098 | 0.0072 | 0.0048
Vasiance | MC | 03207 | 0.2204 | 0.1565 | 0.1009 | 0.0608 | 0.0340 | 0.0175
MC+IS | 0.2523 | 0.1679 | 0.1049 | 0.0561 | 0.0279 | 0.0123 | 0.0051
el MC | 0.1722 | 0.1588 | 0.1390 | 0.1136 | 0.0831 | 0.0543 | 0.0317
MCHIS | 0.1701 | 0.1611 | 0.1442 | 0.1206 | 0.0939 | 0.0655 | 0.0404
Variance | MC | 52603 | 3.4916 | 2.1043 | 13011 | 0.7289 | 0.8872 | 0.1981
, MCHIS | 3.8632 | 2.2887 | 1.2276 | 0.6000 | 0.2648 | 0.1058 | 0.0389
Camma | MC__| 00096 | 0.0071 | 0.0050 | 0.0035 | 0.0025 | 0.0019 | 0.0014
MC+IS | 0.0094 | 0.0075 | 0.0057 | 0.0041 | 0.0032 | 0.0021 | 0.0013
Variance | MC__| 01184 | 0.0801 | 0.0515 | 0.0315 | 0.0185 | 0.0105 | 0.0059
MCHIS | 0.0781 | 0.0472 | 0.0258 | 0.0129 | 0.0061 | 0.0026 | 0.0009

Table 7: Likelihood Ratio Method (MC) and Likelihood Ratio Method with Importance Sampling
(MC+IS) Greeks (delta, variance of delta, gamma, and variance of gamma) for a basket call under
the Bates model.

4 Importance Sampling for Heston with Stochastic Interest

Rates

Here, we consider models with stochastic volatility and stochastic interest rates. The dynamics
of the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model under the risk neutral

measure Q is given by

dS; = 7Sidt + /v Sy dW

dve = k(U —v)dt + v/ o dWY
dry = X0y —ry)dt +nridw]

where (dW7dWY) = pgodt, (dWFdW]) = pg,dt, and (dW{dW}) = 0. S, is the stock price,

ry is the risk-free interest rate, v is the variance, x is the variance mean-reversion rate, v is the
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long-term variance, « is the volatility of volatility, A is the interest rate mean-reversion rate, 6, is
the long-term interest rate, 7 is the volatility of interest rate, pg , is the correlation between stock
returns and changes in the variance, and ps,, is the correlation between stock returns and changes
in the interest rate. If p = 0, we have the Heston-Hull-White model and if p = 0.5, we have the
Heston-Cox-Ingersoll-Ross model.

In matrix notation, the model dynamics is

dXy =b(X¢)dt + a(Xy)dn (7)

where 7; is a 3-dimensional Q-Brownian motion and

St
dX; = vy
Tt
rs
blz) = k(D —v)
)\(Gt — T)
Vus 0 0
a(z) = Wpse Y[V (1 - p%ﬂ)) 0
nrPps. mpm nrey /1 — (p2 + p%,v’;%,r)
’ (1*/)%,”) Sy 1-r5,
Wy
nt = Wt’u
wy

Following Fouque and Tullie (2002), we derive the optimal change of measure for the Heston-Hull-

White model and the Heston-Cox-Ingersoll-Ross model. First, we introduce the martingale
T 1 [T
H, = exp / R (s, Xs)dns + 5/ 17 (s, X5)|)* ds (8)
0 0

where AT denotes the transpose of h. Next, we define a new probability measure denoted by Q

which is equivalent to Q by its Radon-Nikodym derivative

—= = (Hr)™!
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By the Girsanov theorem, the process

t
e =M +/ h (s, Xs) dns
0

is a 3-dimensional Q-Brownian motion. Using 7, (7) and (8) can be written as

dXt = (b (Xt) —a(Xt)h(t,Xt))dt—l—a(Xt) df]t
T 1 T
H, = eXp< hT (s, Xs)dify — 5/ [|h(s, Xs)||*ds
0 0

Using the analogous derivation to that presented in [13], the optimal choice of h for which the

variance of the Monte Carlo estimator under Q is minimized is

h(t, X;) = —ﬁa(t, X,)TVP(t, X;) (9)

From (9), under the fast mean-reversion expansion, h is given by

oP
1 sy/v2Esun

h=—
Prur 0

where Ppjr is the option price under the classic geometric Brownian motion dynamics with

volatility /.

5 Multi-Level Monte Carlo with Importance Sampling

Multi-Level Monte Carlo is a Monte Carlo simulation with different number of time steps h; = 27!T
on each level [ = 0,1,---, L. For detailed discussion of Multi-Level Monte Carlo we refer to the
Appendix. To illustrate the performance of Multi-Level Monte Carlo with the importance sampling,
we will use the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model described in
the previous section. We compare the performance of the Multi-Level Monte Carlo with the
importance sampling (MLMC+IS) and without importance sampling (MLMC) for the European
call option against the semi-analytical solution (HHW/HCIR). The parameters are set as follows:
k=2,7=0.06, v9o =0 =004, X = 0.05, 7o = 6 = 0.07, n = 0.01, Sy = 100, ps, = —0.3,
ps, =02,T =1 Weset e=0.01 and L =8. We consider five strikes: 60, 80, 100, 120, and 140.
Table 8 presents the price, variance, and relative error of the European call. The relative error is

measured against the semi-analytical solution.
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Strike 60 80 100 120 140
Heston-Hull-White
HHW 44.0682 26.0077 11.5943 3.7583 0.9221
Price MLMC 44.0918 26.0258 11.6100 3.7636 0.9219
MLMC+IS | 44.0879 26.0256 11.6085 3.7648 0.9229
MLMC 413.4086 | 379.9792 | 238.5803 | 90.0735 | 23.6667

Variance

MLMC+IS | 44.9006 157.6493 | 124.6953 | 31.2749 | 3.4079

. MLMC 0.05 0.07 0.13 0.14 0.02

Relative error (%)
MLMCH+IS 0.04 0.07 0.12 0.17 0.08
Heston-Cox-Ingersoll-Ross

HCIR 44.0686 25.9996 11.5668 3.7296 0.9071
Price MLMC 44.0724 26.0067 11.5696 3.7320 0.9037

MLMC+IS 44.0769 26.0045 11.5693 3.7326 0.9041
MLMC 413.1371 | 379.8149 | 238.3690 | 90.1313 | 23.6259

Variance
MLMC+IS 43.8495 159.4084 | 121.6297 | 29.2775 3.5179
. MLMC 0.01 0.03 0.02 0.06 0.37
Relative error (%)
MLMCH+IS 0.02 0.02 0.02% 0.08 0.33

Table 8: Multi-Level Monte Carlo (MLMC) and Importance Sampling (MLMC+IS) price, vari-
ance of price, and relative error for a European call under the Heston-Hull-White model and the

Heston-Cox-Ingersoll-Ross model. Relative error is measured against the semi-analytical solution
(HHW/HCIR).

Given the nature of the Multi-Level Monte Carlo, we observe that it is possible to use impor-
tance sampling on all levels or some levels. We will refer to the former as full importance sampling.
We note that the first level, where [ = 0, is the coarsest, because there is only one step at this level
with step size T. Variance at level | decreases as [ increases because both P,_; and P, accurately
approximate P as they are obtained using the same Brownian path. Therefore, as an alternative
to the full importance sampling, we will consider importance sampling on the first level only.

Figure 1 plots the effective performance against strikes for the different simulation schemes.
Effective performance is defined as the ratio of variance reduction to speed. Speed itself is defined
as the ratio of computational time of the Multi-Level Monte Carlo with the importance sampling
to computational time of the Multi-Level Monte Carlo without importance sampling. Figure 1
compares Multi-Level Monte Carlo with full importance sampling, Multi-Level Monte Carlo with
the importance sampling on the first level only, and Multi-Level Monte Carlo without importance
sampling. The results indicate that the Multi-Level Monte Carlo with the importance sampling
is more efficient than Multi-Level Monte Carlo without importance sampling. In addition, Multi-
Level Monte Carlo with the importance sampling on the first level only is much more efficient than
both Multi-Level Monte Carlo without importance sampling and Multi-Level Monte Carlo with
full importance sampling. The performance improvement, compared to the Multi-Level Monte

Carlo full importance sampling comes from two sources. The first one is variance reduction from
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importance sampling; the second is reduced computational time. This is due to the fact that the
number of sample paths at level [ which is given by (13) depends on the variance at level I. Since
importance sampling reduces the variance at the first level, the required number of sample paths

at this level is less, compared to the Multi-Level Monte Carlo without importance sampling.

40 ‘ ‘
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35k HHW (first level)| |
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Figure 1: Effective performance for different strikes.
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So far, we have demonstrated that importance sampling improves the efficiency of both basic
Monte Carlo and Multi-Level Monte Carlo. It has been also shown by Giles (2008) that Multi-Level
Monte Carlo is more efficient than basic Monte Carlo. To complete the picture, we compare basic
Monte Carlo with Importance Sampling and Multi-Level Monte Carlo with Importance Sampling.
Figure 2 compares the computational cost associated with the desired accuracy, €, for basic Monte
Carlo with Importance Sampling (MC+IS) and Multi-Level Monte Carlo with Importance Sam-
pling on the first level (MLMC+IS). For Multi-Level Monte Carlo, the computational cost, C, is
defined as the total number of time steps on all levels. For each sample path at level [ > 0, there

is one fine path with 2! time steps and one coarse path with 2/~ time steps. Hence,

L
C =Ny + ZNI (2l + 2171)
=1

The computational of the basic Monte Carlo is calculated as

L
C* = Z Nl*2l
=0

where N = 2¢72Var [¢; (S)] so that the variance of the basic Monte Carlo estimator is also 2.
Figure 2 shows that for a given accuracy, Multi-Level Monte Carlo with Importance Sampling on
the first level has lower computational cost compared to the basic Monte Carlo with Importance

Sampling. For Multi-Level Monte Carlo, €2C is roughly constant which is consistent with theory

2

that predicts computational cost of order e 2. For basic Monte Carlo, ¢2C is approximately

proportional to e !, which is in line with the theoretical cost of order e3.
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Figure 2: Computational cost associated with the desired accuracy (¢) for basic Monte Carlo with
Importance Sampling (MC+IS) and Multi-Level Monte Carlo with Importance Sampling on the
first level (MLMC+IS).
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6 Greeks for Multi-Level Monte Carlo

It is also possible to use the Likelihood Ratio Method to estimate the Greeks in a Multi-Level
Monte Carlo. Let us consider the first derivative of the Multi-Level Monte Carlo estimator (10)

with respect to Sy.

0
A = éTS‘OE [¢L (S)]
0 Loy
= TSOE [P0 (S)] + 1:21 (TS‘OE (01 (S) — ¢1—1 (9)]
0o o)
— —r(T—t) 8750‘7(’( ) dx +
/, 0O Ty SO
L )
o f(x)
+ e "(T=1) s) — 1 (s5)]) 220 z)dx
> (161(5) = 611 () 222 )
where %f"(igx) is the likelihood ratio which can be obtained from the characteristic function as in
[13].

Table 9 reports delta and gamma computed by the Likelihood Ratio Method with the impor-
tance sampling (IS) and without importance sampling (L) for European option under the Heston-
Hull-White model and the Heston-Cox-Ingersoll-Ross model. On average importance sampling

reduces the variance of delta 8 times and the variance of gamma 7 times.

Strike | 60 [ 80 [ 100 [ 120 [ 140
Heston-Hull-White
Delt MLMC 0.9595 | 0.9187 | 0.6691 | 0.3227 | 0.1068
elta
MLMC+IS | 0.9621 | 0.9172 | 0.6690 | 0.3235 | 0.1058
. MLMC 8.5492 4.7461 2.5166 1.1986 0.4324
Variance
MLMC+IS | 4.3355 | 1.1883 | 0.2358 | 0.0869 | 0.0379
MLMC 0.0001 | 0.0042 | 0.0165 | 0.0175 | 0.0092
Gamma
MLMC+IS | 0.0001 | 0.0042 | 0.0164 | 0.0174 | 0.0092
. MLMC 0.0569 | 0.0370 | 0.0219 | 0.0119 | 0.0055
Variance
MLMCHIS 0.0264 | 0.0108 0.0035 0.0011 0.0005
Heston-Cox-Ingersoll-Ross
Delt MLMC 0.9570 | 0.9179 0.6698 | 0.3231 0.1062
ena MLMCHIS | 0.9577 | 0.9195 | 0.6686 | 0.3224 | 0.1057
. MLMC 8.6794 | 4.8099 | 2.5586 | 1.2152 | 0.4403
Variance
MLMCHIS | 4.4050 | 1.2070 | 0.2374 | 0.0861 | 0.0350
MLMC 0.0001 | 0.0041 | 0.0165 | 0.0176 | 0.0092
Gamma
MLMCHIS 0.0002 0.0042 0.0164 | 0.0175 0.0091
. MLMC 0.0591 | 0.0383 | 0.0227 | 0.0123 | 0.0057
Variance
MLMC+IS | 0.0271 | 0.0112 | 0.0036 | 0.0011 | 0.0005

Table 9: Likelihood Ratio Method (MLMC) and Likelihood Ratio Method with Importance Sam-
pling (MLMC+IS) Greeks (delta, variance of delta, gamma, and variance of gamma) for a European
call under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model.
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7 Multi-Level Monte Carlo with Importance Sampling for

Multi-Asset Options

Finally, we will use the Multi-Level Monte Carlo to price basket call on three underlying assets. We
will use the same parameters as in Section 2 and A = 0.05, ro = 6 = 0.05, n = 0.01, pg, = —0.3,
ps,r =02, pr, =0. We set e =0.05 and L = 8. We note that a combination of Multi-Level Monte
Carlo and hybrid stochastic volatility model such as Heston-Hull-White or Heston-Cox-Ingersoll-
Ross is particularly suitable for pricing variable annuities which are in principle long-dated basket
put options.
Table 10 reports the results for Multi-Level Monte Carlo with the importance sampling (MLMCHIS)

and without importance sampling (MLMC) for a basket call on three underlying assets under the
Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. On average importance sam-

pling reduces the variance 3 times compared to the Multi-Level Monte Carlo without importance

sampling.
Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3
Heston-Hull-White

Price MLMC 17.9506 13.2379 9.1427 5.8453 3.3797 1.7681 0.8636
MLMC+IS 17.9671 13.2424 9.1135 5.7541 3.3249 1.8456 0.9217

Variance MLMC 123.9666 | 114.0966 | 94.7747 | 68.4085 | 43.3949 | 24.5796 | 12.3358
MLMC+IS 41.6504 40.1116 33.2675 | 22.6223 | 12.5556 6.4589 2.4066

Heston-Cox-Ingersoll-Ross

Price MLMC 17.9789 13.2578 9.2080 5.8265 3.3508 1.7697 0.9293
MLMC+IS 17.9381 13.1990 9.0608 5.7880 3.3921 1.8451 0.9390

Variance MLMC 123.7446 | 114.3640 | 95.0163 | 68.7593 | 43.3255 | 24.1792 | 12.3348
MLMC+IS 41.3532 40.3292 33.2685 | 22.9515 | 12.6570 6.1357 2.5758

Table 10: Multi-Level Monte Carlo (MLMC) and Importance Sampling (MLMC+IS) price and
variance of price for a basket call under the Heston-Hull-White model and the Heston-Cox-Ingersoll-
Ross model.

Tables 11 and 12 report delta and gamma of each underlying asset computed by the Likelihood
Ratio Method with the importance sampling (IS) and without importance sampling (L) under
the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. On average importance

sampling reduces the variance of delta and gamma by factor of 3.
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% Moneyness 0.7 0.8 0.9 1 1.1 1.2 1.3
Heston-Hull-White
Delta MLMC 0.3564 | 0.3421 | 0.2985 | 0.2464 | 0.1807 | 0.1122 | 0.0639
MLMC+IS | 0.3562 | 0.3256 | 0.2956 | 0.2404 | 0.1776 | 0.1201 | 0.0680
! , MLMC 2.1769 | 1.5899 | 1.1284 | 0.7723 | 0.4973 | 0.3056 | 0.1876
Varlance [0 CHS | 13601 | 0.8669 | 0.5247 | 0.3050 | 0.1676 | 0.0910 | 0.0362
Delta MLMC 0.5109 | 0.4553 | 0.3840 | 0.3004 | 0.2275 | 0.1624 | 0.1099
, MLMCHIS | 0.5040 | 0.4634 | 0.3802 | 0.2979 | 0.2200 | 0.1608 | 0.1174
A MLMC | 11.6235 | 85318 | 6.0153 | 4.2465 | 2.8220 | 1.7758 | 1.1957
Variance [0 ICHIS | 85810 | 57738 | 3.7107 | 2.0393 | 1.1347 | 0.6621 | 02517
el MLMC 0.9084 | 0.8531 | 0.7083 | 0.6401 | 0.4732 | 0.3304 | 0.2159
MLMCHIS | 0.8841 | 0.8444 | 0.7431 | 0.6094 | 0.4847 | 0.3504 | 0.2311
3 , MLMC | 38.4584 | 31.8220 | 25.7602 | 16.5950 | 15.8343 | 11.4764 | 8.1404
Variance [0 ICHIS | 224692 | 13.6315 | 12.6515 | 5.0691 | 3.3503 | 2.6281 | 0.6424
Heston-Cox-Ingersoll-Ross

MLMC 0.3658 | 0.3407 | 0.3069 | 0.2444 | 0.1787 | 0.1158 | 0.0769
, Delta T MCTIS | 03542 | 03327 | 03008 | 0.2462 | 0.1831 | 0.1182 | 0.0779
, MLMC 2.2403 | 1.6174 | 1.1399 | 0.7857 | 0.5084 | 0.3250 | 0.1949
Varlance [0 CHS | 15789 | 08831 | 05337 | 0.3191 | 0.1751 | 0.0910 | 0.0530
Delta MLMC 0.5209 | 0.4610 | 0.3938 | 0.3160 | 0.2363 | 0.1538 | 0.1066
MLMC+IS | 0.5021 | 0.4704 | 0.3833 | 0.3010 | 0.2218 | 0.1693 | 0.1113
2 , MLMC | 11.9420 | 8.9477 | 6.1634 | 4.3160 | 2.8600 | 1.6796 | 1.0906
Variance [0 CHS | 8.6689 | 59153 | 3.7445 | 21748 | 11615 | 05881 | 0.3708
Delta MLMC 0.9053 | 0.8298 | 0.7488 | 0.6466 | 0.4987 | 0.3463 | 0.2317
MLMCHIS | 0.9361 | 0.8567 | 0.7586 | 0.5951 | 0.5186 | 0.3498 | 0.2279
3 Varianee | MIMC | 303150 | 20.1621 | 22.8414 | 16.5218 | 10.2047 | 5.8761 | 3.4462
MLMCHIS | 19.0239 | 14.6707 | 12.4880 | 3.7593 | 3.6790 | 0.7555 | 0.4583

Table 11: Likelihood Ratio Method (MLMC) and Likelihood Ratio Method with Importance
Sampling (MLMC+IS) Greeks (delta and variance of delta) for a basket call under the Heston-
Hull-White model and the Heston-Cox-Ingersoll-Ross model.
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i Moneyness 0.7 0.8 0.9 1 [ 11 [ 12 [ 13
Heston-Hull-White
G | MIMC | -0.0208 | -0.0147 [ -0.0096 [ -0.003 [ 0.0007 [ 0.0022 [ 0.0023
MLMCHIS | -0.0219 | -0.0158 | -0.0089 | -0.0034 | 0.0007 | 0.0026 | 0.0022
! , MLMC | 0.0190 | 0.0144 | 0.0110 | 0.0079 | 0.0053 | 0.0035 | 0.0025
Varlance =0 CHS | 0.0111 | 0.0075 | 0.0047 | 0.0030 | 0.0018 | 0.0010 | 0.0005
MLMC | 0.0078 | 0.0145 | 0.0157 | 0.0195 | 0.0190 | 0.0157 | 0.0135
) Gamma eS| 00073 | 00157 | 0.0162 | 0.0173 | 0.0183 | 0.0174 | 0.0135
Varianee | MIMC | 04305 | 03349 | 0.2444 | 0.1860 | 0.1268 | 0.0882 | 0.0640
MLMCHIS | 0.2910 | 0.2022 | 0.1398 | 0.0784 | 0.0477 | 0.0302 | 0.0117
MLMC | 0.2474 | 0.2027 | 0.1676 | 0.1338 | 0.0959 | 0.0687 | 0.0449
Gamma eS| 02430 | 02081 | 0.1605 | 0.1269 | 0.0970 | 0.0718 | 0.0481
3 Varianee | MLMC | 29352 | 10736 | 15644 | 0.7162 | 0.4576 | 0.8758 | 0.1866
MLMCHIS | 0.7470 | 1.2402 | 0.8445 | 0.1511 | 0.0870 | 0.0505 | 0.0206
Heston-Cox-Ingersoll-Ross

G | MIMC ] -0.0205 | -0.0156 [ -0.0091 [ -0.0088 [ 0.0007 [ 0.0029 [ 0.0030
) MLMCHIS | -0.0212 | -0.0154 | -0.0086 | -0.0032 | 0.0008 | 0.0023 | 0.0037
Variance | MLMC | 00204 | 0.0148 | 0.0111 | 0.0081 | 0.0057 | 0.0038 | 0.0025
MLMC+IS | 0.0112 | 0.0078 | 0.0049 | 0.0031 | 0.0019 | 0.0010 | 0.0010
Camma | MLMC [ 0.0104 | 0.0150 | 0.0166 | 0.0197 | 0.0211 | 0.0163 | 0.0125
) MLMC+IS | 0.0082 | 0.0165 | 0.0197 | 0.0171 | 0.0178 | 0.0170 | 0.0145
Varianee | MLMC | 04728 | 03633 | 0.2544 | 0.1871 | 0.1365 | 0.0780 | 0.0546
MLMCHIS | 0.2982 | 0.2181 | 0.1403 | 0.0890 | 0.0502 | 0.0256 | 0.0223
e | MLMC [ 02529 | 0.2013 | 01657 | 0.1364 | 0.0953 | 0.0777 | 0.0465
, MLMC+IS | 0.2488 | 0.2099 | 0.1667 | 0.1265 | 0.1011 | 0.0683 | 0.0523
Varianee | MLMC | 2248 | 18205 | 1.3654 | 1.2104 | 0.4645 | 0.3050 | 0.1075
MLMCHIS | 0.9539 | 0.4543 | 0.2702 | 0.2800 | 0.0928 | 0.1580 | 0.0188

Table 12: Likelihood Ratio Method (MLMC) and Likelihood Ratio Method with Importance
Sampling (MLMC+1IS) Greeks (gamma and variance of gamma) for a basket under the Heston-
Hull-White model and the Heston-Cox-Ingersoll-Ross model.

8 Conclusion

We have presented an application of importance sampling with stochastic change of drift to multi-
asset options. We have illustrated the use of importance sampling with spread, absolute, composite,
quotient, basket, best-of, and worst-of options as examples. Based on our results, importance
sampling reduces variance of multi-asset options by a factor of 3-13 on average.

The paper has also provided an extension of the Likelihood Ratio Method to multi-asset options,
and combined it with the importance sampling to reduce the variance of the Greeks. Based on our
results, importance sampling reduces variance of the Greeks of multi-asset options by a factor of 2
on average.

We applied importance sampling in a Multi-Level Monte Carlo and have demonstrated that

applying importance sampling on the first level significantly improves its effective performance. For
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the European option in the Multi-Level Monte Carlo with full importance sampling the effective
performance is on average almost 3 times better than that of the Multi-Level Monte Carlo without
importance sampling. For the same option in the Multi-Level Monte Carlo with the importance
sampling on the first level only the effective performance is on average almost 19 times better
than that of the Multi-Level Monte Carlo without importance sampling. We have also used the
Likelihood Ratio Method to estimate the Greeks in a Multi-Level Monte Carlo, and combined
it with the importance sampling to reduce the variance of the Greeks. Based on our results,
importance sampling reduces variance of the Greeks by a factor of 7-8 on average for the European

option and by a factor of 3 for a basket option.
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Appendix A. Multi-Level Monte Carlo

Multi-Level Monte Carlo is a Monte Carlo simulation with different number of time steps of size

h; = 27'T on each level [ = 0,1,---, L. For example, when [ = 0, there is only one time step of

size hg =T. When | = 1, there are two times steps each of size hy = % Finally, when [ = L, there
T

are 2° times steps each of size hy, = 5T

Let P denote the true derivative price
L
P=E[p.(5)] =Elgo () + Y _E[p: (S) — ¢1-1(S)] (10)

=1

where ¢; (s) denotes the payoff on level [. The Multi-Level Monte Carlo estimator is given by
L
P=y R
1=0

Py is an estimator for E [0 (9)] calculated as a mean of N; independent sample paths

The variance of the combined Multi-Level Monte Carlo estimator on level [ is given by

Ny

@) — é (50)

i=1

Var []51} = Var

= ]\}? ; Var (¢ (5i) — ¢1—1 (54)]

4
Ny

Thus, the variance of the combined Multi-Level Monte Carlo estimator is
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where V) = Var [¢; (S) — ¢y—1 (S)]. Furthermore,

Vi = Var[¢i(S) = di-1(5)]

Var (¢ (S)] + Var [¢i1-1 (S)] — 2Cov [¢1 (S) , p1-1 (5)]

so the higher the correlation between ¢; (S) and ¢;_; (S), the lower the variance of the Multi-Level
Monte Carlo estimator.

In order to minimize the variance of the Multi-Level Monte Carlo estimator for a given compu-
tational cost C' = ZlL:O N, hzl, it is possible to use the Lagrange multiplier method. The Lagrangian

is given by
Lo LT
L= —Vi+ A N——-C 11
Z N, + (Z "Iy > (11)
1=0 1=0
Differentiating (11) with respect to N; and applying the first order condition shows that the variance

« Vily
Ne =37 (12)

With such choice of N; the variance of the combined Multi-Level Monte Carlo estimator becomes

is minimized at

L L
Var [P} :Z]\LVZZZ Wh);T

By Theorem 3.1 in Giles (2008), Var [P} <

Using the definition of A in (12) this becomes

L
Ni > 22 /Vil <Z wZ)
=0 ' ™

Therefore, the optimal number of sample paths for level [, in order to minimize the variance of the

Multi-Level Monte Carlo estimator for a given computational cost C, is

()

Overall, Monte Carlo has computational cost proportional to e 3, whereas that of the Multi-Level

Monte Carlo is proportional to €2 (log 6)2 due to reduced variance.
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