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Abstract
We explore the interaction between oculomotor control and language com-
prehension on the sentence level using two well-tested computational ac-
counts of parsing difficulty. Previous work (Boston, Hale, Vasishth, & Kliegl,
2011) has shown that surprisal (Hale, 2001; Levy, 2008) and cue-based mem-
ory retrieval (Lewis & Vasishth, 2005) are significant and complementary
predictors of reading time in an eyetracking corpus. It remains an open
question how the sentence processor interacts with oculomotor control. Us-
ing a simple linking hypothesis proposed in Reichle, Warren, and McConnell
(2009), we integrated both measures with the eye movement model EMMA
(Salvucci, 2001) inside the cognitive architecture ACT-R (Anderson et al.,
2004). We built a reading model that could initiate short “Time Out re-
gressions” (Mitchell, Shen, Green, & Hodgson, 2008) that compensate for
slow postlexical processing. This simple interaction enabled the model to
predict the re-reading of words based on parsing difficulty. The model was
evaluated in different configurations on the prediction of frequency effects
on the Potsdam Sentence Corpus. The extension of EMMA with postlexi-
cal processing improved its predictions and reproduced re-reading rates and
durations with a reasonable fit to the data. This demonstration, based on
simple and independently motivated assumptions, serves as a foundational
step toward a precise investigation of the interaction between high-level lan-
guage processing and eye movement control.
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1. Introduction

In language comprehension research, most of the evidence about the cognitive pro-
cesses involved comes from the study of eye movements in reading. As the reader’s eyes
move through a sentence, the sequence of fixations and their durations reflect the reader’s
allocation of attention and the processing effort necessary to combine the words incremen-
tally into a coherent structure. The specific linking between fixation patterns and the
underlying cognitive processes is, however, not trivial: Fixations are determined not only
by immediate low-level processes like word recognition but also by more complex operations
such as structural parsing decisions, contextual integration, and non-linguistic oculomotor
constraints. In recent years, a number of computational models have emerged that help
understanding the reading process in detail (e.g., Bicknell & Levy, 2010; Engbert, Longtin,
& Kliegl, 2002; Engbert, Nuthmann, Richter, & Kliegl, 2005; Legge, Hooven, Klitz, Mans-
field, & Tjan, 2002; Reichle, Pollatsek, Fisher, & Rayner, 1998; Nilsson & Nivre, 2010;
Reichle, Pollatsek, & Rayner, 2006; Reilly & Radach, 2006). The two most developed mod-
els of this kind are E-Z Reader (Reichle et al., 2006) and SWIFT (Engbert et al., 2005).
These generate predictions based on lexical variables like word frequency, word length, and
cloze predictability. Although they differ fundamentally in their core assumptions about
the nature of the reading process (E-Z Reader shifts attention serially while SWIFT allows
for parallel word processing guided by an attentional gradient), both models make very
accurate predictions about when and where the eyes move. However, since these models
rely on word-level information, their predictions are limited to rather simple sentences that
do not induce severe interruptions of the reading process.

Postlexical processes like structural and semantic integration operate on a higher
level and can only be uncovered by studying more complex sentences that contain long-range
dependencies, ambiguities, or contextual inconsistencies. Challenging the sentence processor
in this way reveals memory operations, structural and semantic predictions, and repair
processes. In particular, there has been an abiding interest in identifying spatio-temporal
distributions of short- and long-range regressions (backward saccades) in psycholinguistic
literature (Van Dyke & Lewis, 2003; Frazier & Rayner, 1982; von der Malsburg & Vasishth,
2011, 2012; Meseguer, Carreiras, & Clifton, 2002; Mitchell et al., 2008; Weger & Inhoff,
2007). In most established eye movement models, however, inter-word regressions are caused
either by incomplete lexical processing (e.g., SWIFT) or due to motor error (e.g., older
versions of E-Z Reader). An exception is the model of Bicknell and Levy (2010), which
explains regressions as the result of a rational strategy guided by Bayesian inference on the
sentence level. The postlexical level of sentence processing has been captured by a range
of computational models (e.g., Binder, Duffy, & Rayner, 2001; Elman, Hare, & McRae,
2004; Hale, 2011; Just & Carpenter, 1992; Konieczny & Döring, 2003; Budiu & Anderson,
2004; Lewis & Vasishth, 2005; MacDonald & Christiansen, 2002; Spivey & Tanenhaus,
1998; Vasishth, Bruessow, Lewis, & Drenhaus, 2008). These models predict word-by-word
difficulty, which can be correlated with aggregated eyetracking measures but abstracts away
from individual fixations.

In order to understand how postlexical difficulty and eye movements interact, it is
necessary to combine both classes of computational models and investigate the link between
high-level language processes and oculomotor control. In a recent approach, Reichle et al.
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(2009) introduced a postlexical integration stage into E-Z Reader 10, that interacts with
eye movement control through regressions. Whenever the integration stage takes too long,
a regression is triggered in order to buy time for the integration process to finish. Although
Reichle and colleagues did not integrate a computational account of postlexical processing,
they showed a suitable way toward studying the link between parsing and eye movements.

In the work presented here, the cognitive architecture ACT-R (Anderson et al., 2004)
is used to combine an eye movement control model with a parser in a similar way as Reichle
et al. (2009) did. However, we incorporate two well-tested computational accounts of pars-
ing difficulty that capture memory retrieval and structural prediction, respectively: (1) The
syntactic retrieval account of Lewis and Vasishth (2005) builds on independently motivated
assumptions about memory access and has been implemented as a fully specified parser in
ACT-R; (2) Surprisal (Hale, 2001; Levy, 2008) defines difficulty in terms of disconfirmed
structural predictions. The combination of both metrics in one model is motivated by
empirical evidence and statistical modeling: Experimental results suggest a complemen-
tary relation between expectation-based and working-memory-based accounts (Demberg &
Keller, 2008; Konieczny, 2000; Vasishth & Drenhaus, 2011; Staub, 2010), and corpus studies
show that surprisal and retrieval are independent predictors of processing difficulty (Boston
et al., 2008, 2011; Patil et al., 2009; Vasishth & Lewis, 2006). The use of ACT-R has several
advantages. First, ACT-R implements cognitive principles that are valid in distinct domains
and enables the development of models for various tasks. Second, it integrates all levels
of cognition from visual and motor processes that interact with a virtual outside world
to rule-based reasoning. Third, ACT-R is a model of real-time processing, which makes
its predictions directly comparable to eyetracking data in milliseconds. As eye movement
model we use the ACT-R-integrated EMMA (“eye movements and movement of attention”,
Salvucci, 2001), which is in principle a simplified and domain-independent version of E-Z
Reader.

The goal of this paper is to demonstrate the feasibility of integrating a computational
account of postlexical difficulty with an eye movement control model. For that purpose we
avail ourselves of a framework which is simplifying in some respects but exhibits enough
flexibility for further development and extension. In order to provide a general assessment
which is comparable to earlier studies (Reichle et al., 1998, 2009; Salvucci, 2001), we perform
a qualitative examination of the framework on a suitable eyetracking corpus. Although E-Z
Reader and EMMA were evaluated on the Schilling Corpus (Schilling, Rayner, & Chumbley,
1998), we used the German Potsdam Sentence Corpus (Kliegl, Grabner, Rolfs, & Engbert,
2004) because measures of parsing difficulty are readily available for the latter. Section 2
will introduce EMMA in detail. In Section 3, we present a replication of (Salvucci, 2001)
on the English Schilling Corpus, which is necessary because ACT-R has developed further
since Salvucci’s evaluation of EMMA in 2001, and EMMA itself has been re-implemented.
The successful replication provides the basis for an extension of the model with parsing
theory which will be described in Section 4. Finally, Section 5 presents six simulations on
the German Potsdam Sentence Corpus that assess a range of model configurations that
integrate EMMA with surprisal and retrieval.
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2. The EMMA/ACT-R reading model

EMMA’s basic assumptions were inspired mainly by E-Z Reader. The main charac-
teristics of the model are a dynamic calculation of word encoding time and a distinction
between overt eye movements and covert shifts of attention. Attention is allocated serially
and proceeds usually ahead of the eye movement. This enables the model to produce skip-
ping and refixations. The programming of saccades consists of a labile stage, i.e., a stage
that can be canceled by upcoming attention shifts, and a non-labile state, after which the
saccade preparation has passed a point of no return leading to an eye movement inevitably.
Below we describe the version of EMMA that we used for our simulations in the environment
of ACT-R 6.0.

The core function of EMMA calculates the encoding time of an object based on its
frequency of occurrence and its eccentricity from the current viewing location. The resulting
duration represents attention shift and word identification in one step. The encoding time
Tenc is calculated in the following way:

Tenc = K(− log fi)ekεi (1)

where K (visual encoding factor) and k (encoding exponent) are scaling constants, εi is the
eccentricity of the object (i) to be encoded, and fi is the object’s corpus frequency normal-
ized to a range between 0 and 1 (word occurrence per one million words divided by one
million). The saccade preparation time Tprep has been estimated in Salvucci’s simulations
to 135 ms.1 The non-cancelable stage Texec consists of 50 ms for saccade programming,
20 ms for saccade execution and additional 2 ms per degree of visual angle of the saccade
length. The model introduces variability to Tenc, Tprep, and Texec by randomly drawing
from a uniform distribution2 with a standard deviation of one third of the actual value.
Also, landing point variability of a saccade is defined by a Gaussian distribution with a
standard deviation of 0.1 times the intended saccade distance. For empirical motivations
for the choice of distributions, see Salvucci (2001).

Salvucci presented three evaluations of his EMMA/ACT-R model on empirical data
from equation-solving, visual search, and reading. In the case of reading, which is the
application of interest here, EMMA was interfaced with a simple ACT-R model that worked
in the following way: Each cycle begins with the initiation of an attention shift to the
nearest object to the right. EMMA then initiates the encoding of the target object using the
provided frequency values and, at the same time, starts the preparation of the corresponding
eye movement. Once the visual encoding has finished, the model performs a lexical retrieval
of the input word and starts the next cycle by shifting attention to the next word. The
lexical retrieval had a fixed duration and, thus, did not contribute to the predictions in a
relevant way. Salvucci tested EMMA on the 48 sentences of the Schilling Corpus (Schilling
et al., 1998) and showed that the model reproduced well-known empirical effects of word-
frequency on a range of eyetracking measures.

1In ACT-R 6.0, the planning time for motor processes amounts to 0, 50, 100, or 150 ms depending
on feature-based similarity with the previous movement. However, for our simulations we used Salvucci’s
original definition of a fixed preparation time.

2A uniform distribution is the ACT-R 6.0 default for random time generation. In Salvucci’s original
model a Gamma distribution was used.
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Table 1
Frequency classes used in the analyses of the Schilling Corpus (SC) and Potsdam Sentence
Corpus (PSC)

SC PSC
Class Freq. in 1M Words Mean Words Mean

1 1–10 77 3 186 3
2 11–100 87 50 173 41
3 101–1000 71 333 200 335
4 1001–10,000 92 5067 207 5020
5 >10,000 112 41976 84 2399

3. Replication of Salvucci 2001

3.1. Data

The Schilling Corpus (SC) contains fixation data of 48 American English sentences
with 8-14 words each, read by 48 students. For evaluating the model performance, Salvucci
(2001) used data compiled by Reichle et al. (1998). They had calculated the means of six
eyetracking measures for five logarithmic frequency classes (see Table 1). The frequency
values available in the SC were obtained from Francis and Kucera (1982). In order to avoid
confounds, the first and the last word of each corpus sentence was removed. Since the
model did not produce regressions, trials that contained inter-word regressions (64%) were
excluded from the analysis.

3.2. Model

Our ACT-R model consisted of four productions: find-next-word (search for the
nearest object to the right), attend-word (initiate an attention shift and encoding by
EMMA), integrate-word (start memory retrieval), and stop-reading (when the sentence
is finished). The integrate-word rule did not do anything in this model apart from adding
50 ms to the processing time. It was used in later simulations, however, to initiate the
parsing process. All simulations presented here were carried out in ACT-R 6.0. We used
EMMA version 4.0a1 (with some minor adjustments by us) as it has been re-implemented by
Mike Byrne and Dan Bothell in order to be fully integrated in ACT-R 6.0. All parameters
except for those shown in Table 2 were kept at their default values. This is particularly
important for the default action time, which is the firing duration assigned to each ACT-R
production rule. Salvucci (2001) set it to 10 ms, but in ACT-R 6.0 it defaults to 50 ms.

3.3. Analysis

One simulation consisted of 10 complete model runs through the 48 sentences of the
Schilling Corpus. Fixations times were recorded for each word. The analysis was carried
out in the R statistics software (R Core Team, 2012). Following the analysis of Reichle et
al. (1998) and Salvucci (2001), we excluded first and last words from the sentences and all
trials that contained inter-word regressions. Then we divided the corpus words into five
logarithmic frequency classes (see Table 1) and calculated the means for each class for six
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Table 2
Fit and parameter estimates for all simulations

Parameters Fit
K Tprep F P Rearly Rlate RMSD %reg

no regr. Salvucci (2001) 0.006 0.135 0.97 0.362 0
1 SC replication 0.002 0.135 0.96 0.303 0
2a PSC 0.003 0.120 0.86 0.326 0

PSC all 2b EMMA 0.003 0.120 0.91 0.38 0.638 0
3 +s1 0.002 0.115 0.0030 0.93 0.39 0.645 0
4 +r 0.002 0.110 0.2 0.90 0.86 0.201 18
5 +s2 0.003 0.115 0.0200 0.92 0.87 0.229 15
6 +rs1 0.003 0.115 0.2 0.0005 0.92 0.88 0.257 12
7 +rs2 0.003 0.115 0.1 0.0150 0.90 0.91 0.206 23

Notes: K = EMMA encoding factor, Tprep = EMMA saccade preparation time, F = ACT-R retrieval
latency factor, P = scaling factor for surprisal. The fit was calculated for means of 5 frequency classes for
each eyetracking measure. Rearly = correlation coefficient between observed and predicted values for early
measures (gaze, FFD, SFD, skip, onefix, and refix). Rlate = correlation coefficient for late measures (RPD,
TFT, RRT, FPREG, and reread). The last two columns show the total normalized root-mean-square
deviation and the percentage of simulated trials that contained regressions.
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Figure 1 . Replication of Salvucci (2001) on the Schilling Corpus. Effects of word frequency
on gaze, first, and single fixation duration, and on the rate of skipping a word, fixating it
once and fixating it more than once. Grey solid lines represent experimental data, black
dotted lines show Salvucci’s simulation results, and black dashed lines show the replication
results. Lexical frequency is divided into classes 1 (lowest) to 5 (highest).



SYNTACTIC PROCESSING AND EYE MOVEMENT CONTROL 7

fixation measures: gaze duration (the time spent on a word during first pass, including
immediate refixations), first fixation duration (FFD, duration of the first fixation on a
word during first pass), single fixation duration (SFD, fixation duration on a word if it is
fixated only once during first pass), the skipping rate of a word (skip), the probability of
fixating a word exactly once (onefix), and the probability of fixating a word more than once
(refix). This analysis was done with both the experimental data and the model output. We
quantified the goodness of fit between the model predictions and the data using the Pearson
product-moment correlation coefficient R and the root-mean-square deviation (RMSD).
RMSDs were normalized by the standard deviation of the observed data in the same way
as it was done in Reichle et al. (1998) and Salvucci (2001). A precise definition is given in
the Appendix. The parameter optimization procedure was carried out by first identifying
a number of parameter configurations with R values near the maximum and then, among
these, choosing the one with the smallest RMSD. In this way, the optimization represented
a priority for the quality of effects while also taking quantity into account.

3.4. Results

We re-estimated the encoding factorK and the saccade preparation time Tprep in order
to compensate for the changes in the ACT-R environment. See Table 2 for a summary of
the simulation results including estimated parameter values. The parameter fitting resulted
in a decrease of K, which should mainly be due to the increased default action time of 50 ms
in ACT-R 6.0. Fig. 1 shows the predictions of the model (dashed lines) for six fixation
measures as a function of frequency class. Besides the corpus data (grey solid lines), we
also plotted the results of the original study (dotted lines) as reported in Salvucci (2001)
for comparison. The main trends in the data are that high-frequency words are read faster
and skipped more often than low-frequency words. These trends and the overall pattern
of the data were reproduced by the model with a close fit to the original predictions. The
mean correlation R with the data was 0.96 and the mean RMSD was 0.303.

3.5. Discussion

The EMMA/ACT-R model, as re-implemented in ACT-R 6.0, reproduces frequency
effects on fixation durations and probabilities in the Schilling Corpus with a performance
comparable to that of the original simulation of Salvucci (2001). Despite the different
environment, a small adjustment to the encoding time was sufficient to replicate the results.
The successful re-evaluation of EMMA in its current version is essential for the next steps
that will extend the model with accounts of parsing theory.

4. The extended EMMA/ACT-R model

In order to augment the EMMA/ACT-R model with postlexical processing, we take
a similar approach as Reichle et al. (2009). The integration stage of E-Z Reader 10 operates
in parallel to eye movement control but can interrupt the reading process for two reasons:
Either integration of a word wn just fails (“rapid integration failure”) or the integration
process takes too long (“slow integration failure”), which means that integration of word
wn does not finish before identification of word wn+1 is completed. In either case the eyes
are directed back to word wn or wn−1 with a certain probability. Reichle and colleagues
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demonstrated the applicability of their model by re-configuring the model parameters for
three cases of parsing difficulty: clause wrap-up, semantic violations, and garden paths.

Our goal is to evaluate a model which works in a similar way but uses a computational
implementation of sentence comprehension to generate its predictions. Since in ACT-R only
one retrieval request can be handled at a time, it follows naturally that retrieval of word wn
has to be completed before the integration of word wn+1 can start. Once initiated, retrieval
operates in parallel to cognition and eye movement planning. As long as the difficulty is
low and retrieval completes fast, the reading process is uninterrupted. The possibility that
retrieval fails completely (rapid integration failure) is not included in the model for now.
Similar to E-Z Reader 10, when identification of word wn+1 finishes before the complete
integration of word wn, our model initiates a regression back toward the previous word.
Once word integration is complete, the model continues with normal reading. This type
of regressions has been proposed by Mitchell et al. (2008). They called them “Time Out
regressions” because their assumed function is to provide additional time for the sentence
processor before taking up new input.

The above described concept of interrupting the “normal” reading process by time
outs should not be misunderstood in the way that making regressions is not normal. We
assume that these interruptions by the parser belong to normal reading as they happen quite
regularly and are not under conscious cognitive control. A quite different case are active
reanalysis mechanisms where the reader is aware of an inconsistency (syntactic or semantic)
and has to make long-range regressions. However, although the presented framework can
be used to study this kind of behavior, we restrict our study to the simplest case for now.

For simulating postlexical processing, we use two complementary explanations of
parsing difficulty: cue-based retrieval (Lewis & Vasishth, 2005) and syntactic surprisal
(Hale, 2001; Levy, 2008).

4.1. Retrieval

In sentence processing, in order to create structural dependencies (e.g., between verbs
and their arguments), items in memory have to be accessed; the success and duration of
these access events are modulated by, inter alia, the distance between the dependents and
the amount of interference from other items (Just & Carpenter, 1980, 1992; Gibson, 2000;
Grodner & Gibson, 2005; Bartek, Lewis, Vasishth, & Smith, 2011). Lewis and Vasishth
(2005) developed a computational model of parsing difficulty that adopts ACT-R’s memory
principles of fluctuating activation, decay over time, and similarity-based interference. The
model was implemented in ACT-R as a fully-specified left-corner parser that incrementally
builds a structural representation, following X-bar rules. The constituents of the tree struc-
ture are stored as chunks in ACT-R’s declarative memory (related to each other by features
like specifier, comp, and head). In order to integrate an input word into the current struc-
ture, the parser carries out the following steps: (1) Access the corresponding lexical entry in
the lexicon in declarative memory; (2) Based on syntactic expectations, specify the features
of a matching constituent and initiate a retrieval; (3) Create a new syntactic constituent and
attach it to the one retrieved. Using the model’s predictions of parsing duration, Lewis and
Vasishth (2005) explained effects of distance and structural interference in sentence process-
ing in terms of independently motivated principles of working memory access. The retrieval
model has found further applications in accounts of anti-locality (Vasishth & Lewis, 2006),
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negative polarity constructions (Vasishth et al., 2008), reflexive binding (Patil, Vasishth,
& Lewis, n.d.), and impaired sentence comprehension in aphasia (Patil, Hanne, Vasishth,
Burchert, & De Bleser, n.d.).

To summarize, the sentence processing model of Lewis and Vasishth is a fully-specified
parser the actions of which can be transparently measured in milliseconds. It relies on
domain-independent memory principles, and it is well-tested by a number of applications.
This kind of model is exactly what is needed in order to investigate the interaction between
parsing and eye movements in detail. We connect this parsing model to EMMA via Time
Out regressions.

4.2. Surprisal

Surprisal (Hale, 2001; Levy, 2008) formalizes the idea that unexpected structures
cause processing difficulty (Konieczny, 2000). Hale defined the surprisal of a word as a
function of the probability mass of all derivational options that have to be disconfirmed
at that point in the sentence. The surprisal of a word wi is the negative logarithm of the
transition probability from word wi−1 to wi. The lower the probability of a word given its
preceding context, the higher its surprisal. While Hale assumed a complete knowledge of
the grammar to define the surprisal value, there are also different accounts of calculating
surprisal, e.g., using a neural network (Frank, 2009) or using a rationally bounded parallel
dependency parser (Boston et al., 2011).

Although the difficulty associated with surprisal stems from building low-probability
structures, it is not clear that the cause of the difficulty must be located in postlexical
processing. Given the conceptual distinctness of surprisal and retrieval together with ex-
perimental evidence locating expectation effects earlier than memory effects (Staub, 2010;
Vasishth & Drenhaus, 2011), we hypothesize that the source of these two types of difficulty
may lie at different points in the processing time course. Theoretically, it is legitimate to
assume that the contextually pre-activated high-probability structures (or parsing steps)
would also pre-activate lexical items belonging to the according categories. In that case,
at every point in the sentence the activation of specific lexical items receives a boost by
its structural context. This would directly affect the speed of the word identification pro-
cess. That means, although the source of surprisal difficulty is undoubtedly a “high-level”
postlexical process, the actual realization of that difficulty could happen “low-level” at the
stage of word identification.

The following simulations test both assumptions, surprisal affecting the high-level
and affecting the low-level. The high-level variant is implemented by additively modulating
the duration of the integration stage by a scaled surprisal value. For simulating surprisal
affecting the low-level we include the surprisal values in EMMA’s core equation of word
encoding time. The resulting equation for Tenc will be shown in the next section.

5. Simulations on the Potsdam Sentence Corpus

In this section, we present six simulations that were carried out on the Potsdam Sen-
tence Corpus (PSC, Kliegl et al., 2004). The PSC was used because Boston et al. (2008)
and Boston et al. (2011) provide retrieval and surprisal values for all corpus words. Sim-
ulation 2 evaluated EMMA on the PSC in order to compare the results with the model
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performance on the Schilling corpus. Besides assessing how well the model can be general-
ized to another corpus in a different language, this study pursued the goal to establish the
basis for augmenting the EMMA/ACT-R model with postlexical processing. The other five
simulations tested EMMA in different configurations that include and combine retrieval (r),
low-level surprisal (s1), and high-level surprisal (s2): EMMA+s1, EMMA+r, EMMA+s2,
EMMA+rs1, and EMMA+rs2 (see Table 2 for an overview).

5.1. Data

Potsdam Sentence Corpus. The Potsdam Sentence Corpus contains eyetracking
data from 144 simple German sentences (1138 words) with 5 to 11 words per sentence, read
by 229 readers. The corpus contains values of printed word frequency obtained from the
CELEX database, a corpus of about 5.4 million words (Baayen, Piepenbrock, & van Rijn,
1993). Kliegl et al. (2004) report effects of frequency on reading times and probabilities
using the same logarithmic frequency classes that were used in Salvucci (2001) (see Table
1). The trends are comparable to those in the Schilling Corpus: Higher frequency correlates
with shorter reading times and higher skipping rates, although the trend is not as strong
in first and single fixation durations.

We integrated retrieval and surprisal information in the corpus data that provided
the input for the EMMA/ACT-R model.

Retrieval. There are handcrafted ACT-R parsing rules available for a number of
psycholinguistically interesting sentence constructions; however, not enough to cover the
whole PSC. For this corpus-based benchmarking evaluation carried out here, we therefore
used pre-calculated values from Boston et al. (2011). These retrieval values were calculated
using a parallel dependency parser and approximately represent the duration a retrieve-
and-attach cycle would require in the ACT-R parser. Each step of the dependency parser
(SHIFT, REDUCE, LEFT, RIGHT) was assigned a duration of 50 ms — the default action time
in ACT-R that it takes one production to fire. The duration of retrieving an item from
memory was calculated using ACT-R equations, including a simplified version of similarity-
based interference. The parser was assessed at different levels of parallelism, i.e., the number
of alternative derivations to be pursued at the same time. The retrieval values obtained at
the highest level of parallelism (100 parallel analyses) were the most significant predictors in
Boston et al. (2011). These values (M = 357.8 ms, SD = 122.16 ms) were used in our model
to imitate the parsing process. The values were scaled with the ACT-R-internal retrieval
latency factor F .

Surprisal. For the present purposes, we used surprisal values (M = 2.9 bits, SD =
2.06 bits) from Boston et al. (2008), which were generated with a modified version of the
probabilistic context-free phrase-structure parser3 from Levy (2008).

5.2. Model

For the following simulations, the model used in the replication of Salvucci (2001)
was modified in the way described in the previous section. After encoding word wn, the
integrate-word rule starts the parsing actions and attention is shifted to the next word
to the right. For the current study, the parsing duration was imitated by a timer set to

3The parser is publicly available at http://nlp.stanford.edu/∼rog/prefixparser.tgz
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the corresponding retrieval value from Boston et al. scaled by F . As long as the timer is
running, no other word can be integrated.

In order to establish a link between cognition and eye movement control, two ACT-R
production rules were added to the model: time-out and exit-time-out. Their function
is as follows: When integration of word wn is still in progress while the encoding of word
wn+1 has already completed, time-out initiates an attention shift to the word to the left of
the currently fixated one (Time Out regression). Once integration of word wn has finished,
the exit-time-out rule returns the model into the state of normal reading. For reasons of
simplicity, no special assumptions are made about the reading process just after a Time Out
regression, except for the fact that word wn will not need to be integrated again. However,
word wn and wn+1 will go through the identification process again after leaving Time Out
mode because word encoding is part of every attention shift carried out by EMMA. A more
realistic model would probably not fully re-encode a word already identified.

Note that a Time Out regression can be initiated from word wn or wn+1 depending
on how fast the encoding process of word wn+1 is in relation to the saccade execution to
that word. The regression always targets the word to the left of the current fixation. This
means, the regression target can either be word wn or wn−1. However, the preparation of
a regression can be canceled before its execution in the case when the integration process
completes before the non-cancelable state of motor preparation. In this case, the time out
would show itself in the form of a refixation on wn or wn+1. In case this refixation is also
canceled because encoding was fast, a saccade to the next word is planned and the time out
only causes an increased fixation duration.

Finally, we included the two versions of surprisal described above. We equipped ACT-
R with a surprisal scaling constant P . For simulating surprisal at the high level, the values
scaled by P were added to the duration of the integration stage in milliseconds. In order
to modulate the low-level word encoding process directly by surprisal, we added surprisal
in EMMA’s word encoding time equation as shown in Equation 2:

Tenc = (K[− log f ] + Ps)ekε (2)

where s is the surprisal value of the corresponding word, and P is the surprisal scaling
constant.

5.3. Results

Simulation results are summarized in Table 2. Each model was evaluated on the pre-
diction of frequency effects similar to the evaluation of the previous simulation (see Table
1 for the frequency classes used in the PSC simulations). However, in addition to the six
early fixation measures, we also evaluated the models on the following so-called late mea-
sures: regression path duration (RPD, also called go-past duration, the sum of all fixations
including previous locations beginning from the first fixation on a word until leaving it to
the right), total fixation time (TFT, sum of all fixation on a word), re-reading time (RRT,
time spent on a word after leaving it and returning to it), first-pass regression probability
(FPREG, the probability of regressing from a word in first pass), and the probability of
re-reading a word after leaving it to the right (reread). Note that first-pass regression prob-
ability is not literally a late measure. However, we call it late here because in our model all
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Figure 2 . Predictions of Model 2 (EMMA, dotted lines) vs. Model 7 (EMMA+rs2, dashed
lines) vs. experimental data (grey solid lines) for the Potsdam Sentence Corpus. The figure
shows means of early (first row) and late measures (second row) as a function of frequency
class. Each row shows reading time durations on the left and probabilities on the right side.
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regressions are caused by late processes. Except for Simulation 2a, all models were fit and
evaluated on the full dataset that contained trials with regressions. Like in Simulation 1,
the first and the last word of each sentence were excluded from the analysis. Following the
corpus study in Kliegl et al. (2004), we removed words with first fixation durations longer
than 1000 ms and words with gaze and total fixation durations greater than 1500 ms from
empirical dataset. This reduced the corpus by a number of 79 words. The results shown in
the table were obtained by running 100 iterations on the PSC with the respective parameter
sets. For each model the best fit was determined in the way described in Simulation 1.

5.3.1. PSC vs. SC

Simulation 2 was carried out on the PSC using the pure EMMA model without
retrieval or surprisal information. For comparing the model performance on the PSC versus
the Schilling Corpus, row 2a in Table 2 shows the model performance when trials containing
inter-word regressions (40%) were not considered in the analysis. For this case, only early
measures were compared. Encoding factor K and Tprep were re-estimated. The predictions
have a good correlation with the observed frequency effects (Rearly = 0.86). Numerically,
the predictions deviate more from the data than for the Schilling Corpus, but the RMSD
is still reasonable with a value of 0.326. Note that RMSDs are not directly comparable
between corpora. RMSDs for the PSC are generally a bit lower because the standard
deviations used for normalization are higher than in the Schilling Corpus.

5.3.2. Influence of parsing difficulty

In Table 2 the PSC simulations are sorted by goodness of fit as defined by the total
correlation R, which is the mean of Rearly (correlation for the early measures) and Rlate
(correlation for the late measures). It shows that the model performance on predicting
frequency effects gradually improves through the extension with measures of surprisal and
retrieval. In order to provide a baseline for the EMMA+ models, Simulation 2 was analyzed
again on the complete dataset including trials that contained regressions (see row 2b). The
results of 2b show that the fit for late measures (Rlate) is very low, which results in a total R
of 0.67. That is expected because three of the late measures (RRT, FPREG and reread) are
not predicted at all by the model due to the lack of regressions. Note that although Model
2 did not produce Time Out regressions, some backward saccades happened due to motor
error. These did, however, not produce enough data to report mean RRTs over frequency
classes: only six words out of 85,000 (850 analyzed corpus words times 100 simulations)
were re-read.

For the following simulations, the parameters F and P were estimated if the model
used retrieval or surprisal, respectively. In Simulation 3 (EMMA+s1), the fit for the early
measures improves (Rearly = 0.93), but here still no time outs were produced, as s1 is only
modulating word encoding time. In contrast, in Model 4 (EMMA+r), Time Out regressions
were produced as a consequence of retrieval difficulty in 18% of the trials. That, of course,
improved the prediction of late measures considerably, resulting in an Rlate of 0.86. Note,
however, that Rearly (0.90) is not as good as with EMMA+s1. Simulation 5 (EMMA+s2)
used high-level surprisal that interacts with the model through time outs just like retrieval.
Interestingly, it produced a slightly better fit than EMMA+r, especially in early measures
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(Rearly = 0.92). Combining retrieval and low-level surprisal in Simulation 6 (EMMA+rs1)
results in about the same fit as Simulation 5. However, the combination of retrieval and
high-level surprisal in Simulation 7 (EMMA+rs2) improves Rlate even more and results in
a total R of 0.91, with a fairly good RMSD of 0.206.

Fig. 2 compares the performance of pure EMMA (Simulation 2) with that of the best
model, EMMA+rs2 (Simulation 7). In the early probability measures (upper right panel),
one can see that EMMA+rs2 produces more refixations, which is also the reason for the
prediction that gaze durations are generally longer than first and single fixation durations
(upper left panel), which was not quite captured in pure EMMA. The predictions for late
duration measures (lower left) show a good fit of TFT and RPD in the complex model up
to frequency class 4 with a disproportionate drop in class 5. Also the RRT means are well
correlated with the data, whereas the simple model did not predict RRT values at all. It
looks similar for late probabilities (lower right): While pure EMMA does not predict any
regressions, EMMA+rs2 shows a nearly perfect fit for reading proportions up to frequency
class 4 and a little low but well correlated mean proportions of first-pass regressions.

As an additional assessment of surprisal and retrieval effects, we did a linear regression
analysis for selected eyetracking measures using the predictors log frequency, length, log
retrieval, and surprisal. This was done to see which of the six EMMA models produce
variance that is explainable by surprisal and retrieval values. In order to ensure that the
incorporation of surprisal and retrieval information does not just add random or redundant
variance to the simulation results, the linear regression models should have sensible estimates
for both predictors. This means that, ideally, surprisal effects should be significant in
the output of simulations that included surprisal (EMMA+s1, EMMA+s2, EMMA+rs1,
and EMMA+rs2), retrieval effects should be significant for EMMA+r, EMMA+rs1, and
EMMA+rs2, and none of the two predictors should be significant for the pure EMMA
simulation. Overall, the regression analysis confirmed these expectations. More details
about the analysis can be found in the Appendix.

5.4. Discussion

The results show that the extension with surprisal and retrieval information consid-
erably improves EMMA’s predictions for fixation measures. The interaction of postlexi-
cal processing with EMMA through Time Out regressions enables the model to predict
regression-related measures. The best model was EMMA+rs2, which combines retrieval
with high-level surprisal, both interacting with EMMA through time outs. Compared to
low-level surprisal, the high-level version improves the model much more. The main im-
provement, however, is due to the possibility of making regressions, which is not possible
in EMMA+s1. A fairer comparison between both surprisal versions is between EMMA+rs1
and EMMA+rs2, which both have the ability for Time Out regressions. When we compare
each of these two models with EMMA+r, it shows that s1 improves the prediction of both
early and late measures a bit and that s2 improves only the prediction of late measures but
more so than S1 does. This means that both surprisal versions might be complementary
and could be combined in one model. In any case, surprisal, whether high-level or low-level,
seems to have more effect on early measures than retrieval when we compare EMMA+s1
and EMMA+s2 with EMMA+r. This is interesting because it is consistent with the results
of experimental and corpus studies reported above.
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6. General Discussion

The primary goal of the current work was to make two contributions: First, we
replicated the EMMA reading simulation of Salvucci (2001) in a more recent ACT-R envi-
ronment and extended it with simulations on the German Potsdam Sentence Corpus, thus
evaluating EMMA on two different languages. Second, we presented an approach of aug-
menting EMMA with computational measures of postlexical processing. The results showed
that a combination of retrieval and surprisal substantially improves EMMA’s predictions of
fixation measures. The implementation of Time Out regressions (Mitchell et al., 2008) in a
way similar to E-Z Reader 10 enabled the model to predict regression rates and re-reading
time. The simulation results also corroborate the assumption that retrieval and surprisal
are complementary in their influence on eye movements. This can be concluded from the
fact that a combination of both predictors results in a better model than using just one of
them, and that surprisal has more effect on early measures than retrieval has. The frame-
work’s components (ACT-R, EMMA, parser) were chosen with the aim for flexibility and
expandability. The simulations presented here were intended as a general demonstration
and should serve as a step toward a further precise investigation of the interaction between
eye movements and language comprehension. The use of the general modeling architecture
ACT-R allows for an easy integration of the model with other sorts of linguistic or psy-
chological factors. Also, all existing simulations that used the cue-based retrieval parsing
architecture (e.g., Lewis & Vasishth, 2005; Patil, Vasishth, & Lewis, n.d.; Patil, Hanne, et
al., n.d.; Vasishth & Lewis, 2006; Vasishth et al., 2008) can be further investigated by using
the published parsing rules seamlessly with the eye movement control model.

6.1. Comparison with E-Z Reader

The EMMA/ACT-R model makes some simplifying assumptions with respect to eye
movement control and its interaction with parsing. EMMA is a simplified eye movement
model, designed for application in various cognitive domains. However, reading is undoubt-
edly a very specialized and highly trained task that involves enormous complexity. An
example of the training aspect is that in E-Z Reader a forward saccade is automatically
programmed after a first stage of lexical identification and before the attention shift. In
EMMA, saccade programming always starts at the same time as the attention shift and
word recognition. As a consequence, most of the word recognition in EMMA happens
through preview and often finishes before the eyes have moved to the respective word. For
that reason, most Time Out regressions are already initiated when the eyes are still fixat-
ing on word wn (the word with postlexical difficulty) and therefore target word wn−1. In
contrast, regressions triggered by slow integration failure in E-Z Reader would be initiated
most of the time from wn+1, at least that seems to be suggested in Reichle et al. (2009).
However, this difference might not be a problem for the EMMA model, at least as far as
qualitative predictions are concerned. In fact, in the three experiments that are modeled
in Reichle et al. the most relevant regression-related predictions are regressions out of the
target region. In the following, these three experiments shall be briefly described including
a short discussion of EMMA’s capabilities with respect to according predictions.

The first experiment simulated clause wrap-up effects (Rayner, Kambe, & Duffy,
2000). The critical observations and model predictions for clause-final words were an in-
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creased number of refixations and an increased regression probability from these words
toward the previous region. In order to predict clause wrap-up effects in EMMA, further
assumptions would have to be incorporated into the parsing model, because it does not con-
tain specific processes related to the end of a clause. But, assuming that wrap-up operations
increase the length of the integration stage, EMMA would be expected to make the correct
predictions. The second experiment was about the effects of plausibility and possibility
violations (Warren & McConnell, 2007). Possibility violations are detected early, observed
as increased first fixation durations. The effect of implausibility appears later, increasing
gaze durations and the probability of regressing out of the target word. As our extension of
EMMA concerned only syntactic processing, the model does not predict semantic effects. A
hypothetical version of EMMA could include a model of world knowledge similar to Budiu
and Anderson (2004) that processes the result of syntactic integration, adding extra time to
the integration stage. However, for a process model to account for the time-course difference
between plausibility and possibility, the detection of both has to occur in distinct stages.
An explanation for the earlier detection of possibility violations might be that such words
are highly unexpected (and unfrequent) in the respective context so that predictability or a
lexicalized version of surprisal could account for the effect. Assuming surprisal affects word
recognition (as in the model EMMA+rs1), it would produce an early effect for possibility
violations. Finally, the third experiment discussed in Reichle et al. (2009) can be mod-
eled by EMMA straightforwardly. This experiment examined the effects on disambiguating
words in constructions that violate the principles of late closure and minimal attachment
(Frazier & Rayner, 1982), so-called garden path sentences. In these sentences, on encoun-
tering the disambiguating word, the reader realizes that the syntactic structure built up
to that point has to be revised. This again shows up as increased fixation durations and
regressions out toward an earlier region. On the disambiguating word, the retrieval parser
by Lewis and Vasishth (2005) would perform additional retrievals in order to reattach the
ambiguous word to the correct node. This would lengthen the integration stage with the
consequence of inflated fixation times and first-pass regressions. However, garden paths that
lead to reanalysis are detected very early (effects show up in first fixation duration), which
is not predicted by Time Out regressions or slow integration failure. Other than normal
retrieval processes, a reanalysis is the consequence of a detection of an integration failure.
This motivates the assumption that ongoing integration processes are canceled as soon as
the error is detected. Hence, the case of reanalysis is a good candidate for the application of
what Reichle et al. (1998) call rapid integration failure, which cancels postlexical processing
and initiates a regression. This would predict early effects and first-pass regressions in the
disambiguating region in a garden path.

6.2. Future prospects

The restriction of the current framework to syntactic processing is obviously a sim-
plification. It is undeniable that higher cognitive levels like semantics and context play an
important role in sentence processing. A relevant cognitive model in this context is the
work of Budiu and Anderson (2004), who modeled contextual effects on sentence processing
in ACT-R using a compositional semantic representation of propositions. In principle, the
EMMA/ACT-R model could be augmented in a similar way. The tree structure built by
the Lewis and Vasishth (2005) parser encodes basic relations necessary to understand a
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proposition, which in principle makes it possible to derive semantics from the tree. For
the moment, however, we concentrate on syntactic effects. Our next step (this is work in
progress) is to investigate the modeling of concrete examples of parsing difficulty. For the
corpus study presented here, we used pre-calculated values for retrieval and surprisal. In
future studies, the actual parsing architecture of Lewis and Vasishth (2005) will be used in
runtime. As exemplified above, simulating explicit parsing processes at runtime enables the
modeling of rapid integration failure in, e.g., garden paths. Furthermore, it makes it possible
to use linguistic information to define saccade targets. Short one-word regressions like the
time outs modeled here are very frequent and explain some of the variance in eye movement
data. However, more complex regression patterns triggered by reanalysis have also been
found (e.g., Frazier & Rayner, 1982; von der Malsburg & Vasishth, 2011, 2012; Meseguer et
al., 2002). Readers often make long-range regressions in order to find the ambiguous region
where the wrong attachment decision was made. Important questions regarding the eye-
parser connection are to what degree are these long-range regressions guided by linguistic
information and what is their exact function (e.g., Booth & Weger, 2013; Inhoff & Weger,
2005; Mitchell et al., 2008; Weger & Inhoff, 2007). In combination with the explicit ACT-R
parsing model, EMMA can be used for studying these questions. Ultimately, expectation
should also be modeled as a runtime process instead of being pre-calculated like surprisal.
This will help to understand the nature of expectation-related effects. A possible transla-
tion of surprisal in terms of an ACT-R parser would be that rare combinations of parsing
rules are executed slower than more common sequences. Such an approach would ground
surprisal in procedural preferences trained by reading experience.

To conclude, the presented simulations are a first step toward more advanced models
that specify a concrete link between high-level cognitive processes and eye movements. The
simulations show that predictions of parsing models contribute to the explanation of variance
in an eyetracking corpus not only statistically but also in an explicit computational model
of eye movement control. With the presented framework we plan to examine the individual
contributions of surprisal and retrieval to the behavior at certain points of difficulty and
the factors that guide long-range regressions.
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Appendix A
Root-mean-square deviation

The root-mean-square deviation (RMSD) is used to estimate the relative goodness of fit
between predicted and observed data. Reichle et al. (1998) and Salvucci (2001) normalized
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the RMSD to be comparable between different scales (milliseconds and probabilities) by
dividing the difference between observed and predicted values by the standard deviation
of the observed values. In their Appendix, Reichle et al. state that this normalization was
done after squaring the difference. However, the actual RMSD values in Reichle et al.
(1998) and Salvucci (2001) were obtained by first dividing the difference by the standard
deviation and then squaring it.4 For the reason of comparability we also used the latter
definition. For each model, we calculated the RMSD for the frequency statistic over all
fixation measures and frequency classes as defined below:

RMSD =

√√√√ 1
N

N∑
k=1

(
datak −modelk

SDk

)2
(3)

where datak, modelk, and SDk range over all fixation measures and frequency classes.

Appendix B
Linear regression analysis

In order to assess the contributions of surprisal and retrieval in the model, we performed
a linear regression analysis. Simply reporting means in the same way as it was done for
frequency effects would not be informative for surprisal and retrieval as their effects ex-
hibit much interaction with other factors. We fit linear models on the output of all six
EMMA simulations for four selected dependent measures in the statistics software R (R
Core Team, 2012). The models contained the predictors log frequency, length, log retrieval,
and surprisal. See Equation 4 for an example.

FFDi = β0 + β1log(freqi) + β2leni + β3si + β4log(ri) + εi (4)

For each predictor, β is the coefficient to be estimated. Each of the predictors was addition-
ally centered around zero. Fig. B1 plots estimates and 95% confidence intervals for surprisal
and retrieval. It shows that surprisal and retrieval are significant predictors in almost all
EMMA models that incorporate them but not in others, with some exceptions: Surprisal
is not significant for FFD in model EMMA+rs1 but is significant in model EMMA+r for
RPD and FPREG. It seems that retrieval here subsumes some of the variance that would
also be caused by surprisal. Indeed, both predictors are slightly correlated with r = 0.15.
The fact that surprisal is not significant in model EMMA+s1 for first-pass regressions, on
the other hand, is expected, because this model did not produce any regressions. Retrieval
estimates are always significant where it would be expected. They are, however, also sig-
nificant in model EMMA+s2 for RPD and FPREG which, again, points toward a certain
correlation with surprisal. The linear modeling results are in accordance with the results
on human data reported in Boston et al. (2011). Boston and colleagues fit linear mixed
effects models on the PSC data and reported significantly positive coefficients for both sur-
prisal and retrieval when predicting SFD, FFD, RPD, TFT, and FPREG. Table B1 shows
surprisal and retrieval coefficients of regression models on the output of EMMA+rs2 and,
where available, the corresponding human data as reported in Boston et al. (2011). Note
that the coefficients estimated here and those estimated in Boston et al. (2011) are not

4We concluded this by a recalculation of their values and personal communication with Dario Salvucci.
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Table B1
Linear regression results for predictors retrieval and surprisal

Model EMMA+rs2 Data (Boston et al., 2011)
Measure Predictor Coef. SE t / z Coef. SE t / z

SFD Retrieval 0.102 0.056 1.8 0.00015 0.00001 18.2
Surprisal 0.034 0.013 2.7 0.04384 0.00200 21.9

FFD Retrieval 0.136 0.051 2.7 0.00016 0.00001 21.1
Surprisal 0.065 0.009 7.1 0.05209 0.00179 29.0

Gaze Retrieval 0.258 0.049 5.3
Surprisal 0.141 0.009 16.0

TFT Retrieval 0.439 0.047 9.4 0.00008 0.00001 8.0
Surprisal 0.202 0.008 23.8 0.04588 0.00239 19.2

RPD Retrieval 0.422 0.048 8.9 0.00010 0.00001 9.3
Surprisal 0.241 0.009 28.0 0.05530 0.00253 21.8

FPREG Retrieval 0.224 0.020 11.4 0.00026 0.00008 3.5
Surprisal 0.141 0.004 37.7 0.16890 0.01767 9.6

Notes: For FPREG z-values are shown, otherwise t-values. FPREG was modeled with a generalized linear
model with a binomial link function for EMMA and a generalized linear mixed model by Boston et al.
(2011). For all other dependent measures a linear model was used for EMMA’s predictions and a linear
mixed model by Boston et al (2011).

directly comparable because the linear models used are different. Boston et al. (2011) used
more complex linear mixed models including besides surprisal and retrieval word length,
word predictability, unigram frequency, and bigram frequency. Item and participant varia-
tion were included as random intercepts. Accounting for individual differences is necessary
in the case of human data. In our simulations, however, the variance caused by different
simulation runs is negligible, which makes the use of mixed models unnecessary. Without
accounting for item and participant variation in the human data, however, retrieval effects
in particular could not be detected (note the small coefficients for retrieval in the Boston
et al. models).
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Figure B1 . Coefficients and 95% confidence intervals for predictors surprisal and retrieval
estimated by linear regression. Predictors were log frequency, length, log retrieval, and sur-
prisal. Coefficients are plotted along the y-axis for surprisal on the left side and retrieval on
the right side. Regressions were carried out on the simulated data of all six EMMA models
(shown on the x-axis). 95% confidence intervals that do not cross 0 indicate statistical
significance at α = 0.05.


