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Current ANM schemes may be classified as centdlise

AbstractThe technical challenges imposed by increasing semi-coordinated and decentralised control strasegihe

connection of distributed generation (DG), Distribuion Network
Operators (DNOs) require new voltage control schense to
manage the networks in a more active manner. In aotiventional
centralised scheme, voltage regulation is primarilyperformed at
the substation according to the existing and predted load
downstream. However, this operation may leave otheparts of
the network where DG units are connected to expeniee
problems such as voltage rise. Among the range ofisting
active network management schemes, a decentralisedntrol
wherein a distributed generator performs appropriate control
actions at the point of connection to improve ovellanetwork
performance may be a useful option. Aimed at mininging the
impact of DG on the network’s voltage profile, this work
examines a decentralised control of DG. A power féar control—
voltage control (PFC-VC) technique is demonstratedhrough a
time-series analysis, considering firm and intermient power
generation. Results show that the proposed techniguis able to
effectively mitigate voltage rise.

Index Terms—Active network management, distributed

generation, distribution networks, voltage control.

.  INTRODUCTION

A large expansion in the connection of new disteéblu
generation (DG) capacity to the distribution netkgohas
been seen in the last decade, mainly driven by UKe
government’s targets and incentives. Renewable rggor
technologies, such as wind power, will typicallydmnected
to remote parts of medium aridw-voltage distribution
networks where they are particularly vulnerablehanges in
network conditions. This presents Distribution Nethv
Operators (DNOs) with several technical constraihég can
limit the connection capacity of new DG. One of thest
significant issues arising from the increasing gné¢ion of
DG is voltage rise [1], [2].

In a traditional voltage control arrangement, vgdta
regulation is mainly performed by an on-load tamrayer
(OLTC) at a transformer substation. In order nointerfere
with the existing voltage regulation, DG units ar@rmally
required by DNOs to operate within a power factange
(e.g., 0.95 leading/lagging), but due to commeroéasons,
DG owners commonly maintain a constant power facimse
(or equal) to unity. Being the generators unableitavide
voltage support, voltage problems are thereforevesbl
primarily by the OLTC transformers.

former provides voltage regulation from the sulistato the
rest of the network, potentially including a wideptbyment
of communication systems to coordinate differenvicks
(OLTC, voltage regulators, etc.). The semi-coortidaand
decentralised control strategies are, on the dihad, aimed
at locally controlling the DG unit in an active wayhile
coordinating it with a limited number of other netk
devices. These approaches can improve the ovezailonk
performance while limiting the need of large invasht on
communication systems. The OLTC at the substatiombee,
for instance, coordinated with the reactive powerhanges
between the DG units and the feeders to improve/titage
profile [3]. The optimal settings of the OLTC andher
network devices such as switched capacitors oicstér
compensators, can also be used to minimise therpoages
[4]. It has also been proposed, the use of geafgmrithms in
order to obtain the optimal voltage control stréed>5]. In
terms of only controlling the reactive power injeat or
absorption of DG units, a purely decentralised aaph was
presented in [6], where the network topology wasdut
calculate the reactive power needed to cancelmieffects
of the active power injection.

In this work, a decentralised voltage control tegha for a
single generator is proposed to mitigate voltage.rHere, at
normal conditions, the generator will operate imstant
power factor mode. Only at times when the voltageiates
above or below the statutory limits, the generatdt be
regulated to absorb or inject an amount of reagitweer that
suffices the voltage constraints at the connegtimint.

A simplified 3-bus 11kV distribution network withsangle
DG unit is studied. A time-series analysis (24 Isduis
considered for both the load and generation (firmd a
intermittent). Normal and contingency (loss of acait)
operation are investigated.

This paper is organised as follows. Section Il akd the
principle of the proposed technique. In Section tiie data
corresponding to the simplified network and the pdd
generation profiles are presented. Different DGeprations
are analysed. Finally, conclusions and future wanle
provided in Section IV.

Il.  VOLTAGE REGULATION AND DECENTRALISEDCONTROL

A range of active network management (ANM) SChemeSThe increasing connection of DG has created afgignt

have been proposed offering a feasible solution tam
mitigate the impact of DG connection, including tegie rise.

impact on the voltage profile of distribution netks,
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particularly, when operated under the traditionantcol
arrangement.

In passive distribution networks, voltages are aalgd by
an OLTC transformer where voltage targets are cairding
to, for instance, seasonality. Depending on locatichese
voltage limits may be flexible. Generally, the wsformer’s
tap setting is adjusted to ensure that voltagheaend of the
LV feeder does not exceed the lower limit. Noneths] the
presence of new generation can cause a signifialtage
rise in LV networks where lines are highly resistiv

A Power Factor Control-Voltage Control
technique is proposed here based on [7]. It comsbihe
behaviour of a generator’s operation in two moaesistant
power factor control (PFC) and voltage control (VD) PFC
mode, the P/Q ratio of a generator is kept constaith the
reactive power following the variation of the rgawer. In
most cases, DG owners will operate at power faattorse to
unity to ensure the availability of the generatoitdl real
power output. However, VC mode, where reactive poiwe
injected or absorbed to compensate for voltageatrari, can
potentially help maintaining the voltages withire tetatutory
limits. This is particularly helpful during certaidemand-
generation scenarios or even network configuratifmg.,
outage of a line). Consequently,
scheme combines the advantages of both operatidgsno

In the proposed PFC-VC scheme, it is assumed tteat
operating power factor of a DG unit is permitted viary,
although within its reactive power capabilities. NMghthe
latter depends on the size and type of the generat6.85
absorbing/injecting Vars is adopted in this workheT
PFC-VC operational scheme is illustrated in Figiwhen the
voltage at the connection point is within the sty limits,

the constant PFC mode is adopted. At times of gelta

deviating from the limits, the generator will besigmed to

VC mode.

l |

upper <V< Vlower J {V > Vupper orv< Vlower

R

Fig. 1. Diagram of the PFC-VC operational scheme.

I1l. CASE STUDY

In this section, firstly the characteristics of thealysed
network, including demand and generation, are ptese
Then, results obtained for the different caseslaeussed.

A Network Characterigtics

The simplified 3-bus 11kV distribution network uséd
this work is shown in Fig. 2. An OLTC transformdefss
down 33KkV at bus 1 to 11kV at bus 2. The impeddocéhe
line section 2-3 (double circuit) is 3.843442pu. For the
contingency analysis, i.e., considering the outafyene of

the parallel lines, the impedance becomes 1.90%21pu. A
DG unit and a single demand point are connectdai$o3.

L 2 R+jX 3 Ppg. Qg
33/11kV b o PL.Q,

Fig. 2. Simplified 3-bus 11kV distribution netwoi®,.s=100MVA.
B. Demand and generation profiles

(PFC-VC) Given that firm and intermittent DG are consideiedhis

study, profiles for combined heat and power (CHR) wind
power generation are adopted. Hourly demand andl win
speed data correspond to the area of central &dotla
measured in 2003 [8]. The wind data has been psedezsnd
applied to a generic wind power curve [8]. The 24xh
period of 14' August 2003 (shown in Fig. 3) was selected.
This specific summer day presented the highest \pimder
outputs during August, thus can be considered asoast
case scenario” with minimum demand and maximum
generation. The maximum and minimum demand dutiig t
24-hour period are 2.2 and 1.43MW, respectivelye Th
maximum demand in 2003 is 4,298.5MW (used to cateul

the proposed PEC-\p.u. values). Load power factor is equal to 0.9§giag

(absorbing reactive power).
t
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Fig. 3. Daily demand and generation profiles [8].

C. Reallts

The proposed control scheme will be applied to tihe
types of generation considering the 24-hour peroikt, the
normal operation (double circuit of line sectioRef DG is
studied, considering different levels of capacignetration.
The contingency case, where the outage of onelghliake
occurs during two hours, is investigated in theusege. The
methodology was developed in Python language and
simulated using PSS/E software.

In the analysis, the PFC-VC scheme was tested stghia,
constant power factor control mode (PFC) and tleetiee
power control approach (Q* control). The latter agaeh,
presented in [6], alleviates voltage rise probldmsnjecting
or absorbing an amount of reactive power calculaeda
function of the line impedance and the active poagput of
the DG unit (see the Appendix for further details).

Normal Operation

A CHP unit, representing a firm power output type o

generation, is analysed first. Different nominalagmum)
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capacities are examined, from 5 to 8MW, operatingraty unity power factor) were also analysed. Resultsstiat, as
power factor. As it can be observed in Fig. 4-@reéasing expected, the larger the wind farm (PFC mode) tlorem
MW output of the CHP unit operating in constant pow voltage rise problems (Fig. 5-a). When adopting @¢
factor mode (PFC) creates an unacceptable volté&ge rcontrol, similar results to that of the firm genéa are
particularly when the generator is larger than 6MWging obtained. The approach attempts to reduce thegeltae by
the Q* control, the generator absorbs an amounmtadtive absorbing reactive power. As seen in Fig. 5-b, \thitage
power that is beyond its reactive capability inesrtb reduce profile rapidly drops as a consequence. On therdthed,
the voltage rise (Fig. 4-b). This results in a smdrop of with the proposed PFC-VC, the voltage profile ipioved
voltage at which, in some cases, the voltage grafihy be and the upper voltage level is always maintainégl. 3-c).
worsened. The proposed PFC-VC scheme is able totamai  Focusing on the wind farm generating 7MW (Fig. 7),
the upper voltage level for any DG output (Fig.)4-c likewise, there is a change in the tap positionemwapplying

Comparisons of voltage profiles and tap positiomsthe PFC and Q* control approach while the PFC-VC scheme
6MW CHP unit with PFC, Q* control and PFC-VC argroduces zero tap change. This could be benefigfan
shown in Fig. 6. It can be seen that there is @nefse in considering a larger time interval, i.e. annual dechand
tapping actions when Q* control approach is usedemor wind profiles. Adopting the PFC-VC scheme coulduteq
PFC and PFC-VC, no tap change occurs. less tapping actions, extending the transformégtire.

Wind generation was considered for the intermittgpé of
DG. Different nominal outputs (from 5 to 8MW, opteng at

c-----Vmax -------Vmin no DG
co--Vmax  ------- Vmin no DG —6—5MW —%—6MW —a—7MW
—e—5MW —x—6MW —a— 7MW 1.12 —+—8MwW
1.12 —+— 8MW
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(© Fig. 5. Voltage profiles at bus 3 for increasingof the intermittent

Fig. 4. Voltage profiles at bus 3 for increasingWof the firm generation generation (wind turbine) operating with PFC (a),00ntrol (b) and
(CHP) operating with PFC (a), Q* control (b) anddP¥C (c). PFC-VC (c).
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Fig. 6. Comparisons of voltage profiles (a) angl pasitions (b) for each Fig. 7. Comparisons of voltage profiles (a) and pmsitions (b) for each

scheme at 6MW CHP.

Contingency Operation

Changes in the network configuration might produce

adverse effects on the voltage regulation strasegieviously
analysed. Here, the outage of one parallel lines @bus 3)
between 6-8am will be considered. For the firm gatien,

the 5MW CHP unit was studied. A sudden voltage step

change exceeding the upper limit during the lingage
period appears when using the constant power factatrol
mode (PFC, Fig. 8). The Q* control, on the othendja
produces a sudden decrease in voltage. As for B@\FC
scheme, the CHP unit is able to securely mitigagevibltage
step change due to the outage.

Similar results can be observed in the
generation analysis. As shown in Fig. 9, a sudd#tage rise
is detected during the line outage period (PFCjesponse to

scheme at 7MW wind farm.

-~ Vmax
no DG
—a—PFC-VC

--- Vmin
PFC
—<— Q* Control

1.12

1.08 -

1.04

V (pu)

0.96

0.92

l‘ 2 ‘ 3 ‘ 4‘ 5‘ IG‘ 7 ‘ 8‘ 9‘10‘11‘12‘13‘14‘15‘16‘17‘ 18‘19‘20‘21‘22‘23‘24‘
Time (hour)
Fig. 9. Voltage profiles at bus 3 of a double girmetwork for a SMW
wind farm operating with PFC, PFC-VC and Q* control

intermittent

V. CONCLUSIONS

In this study, a power factor control-voltage cohtr

this, the PFC-VC scheme acts to improve the network,,roach for DG was proposed in order to providelst

voltage profile and maintains the voltage thresheltereas
the Q* control approach causes a rapid decreas#hén
voltage level of the connection point.

--- Vmin
PFC
—o— Q* Control

1124

1.08 §

1.04 4

V (pu)

0.96

0.92

1‘ 2‘ 3‘ 4‘ 5‘ I6‘ 7‘ 8‘ 9 ‘10‘11‘12‘13‘14‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24‘
Time (hour)

Fig. 8. Voltage profiles at bus 3 of a double wiroetwork for a 5 MW

CHP unit operating with PFC, PFC-VC and Q* control.

voltage regulation strategy. Firm and intermittdigtributed
generation were considered under two key casesedred
penetration of DG and changes in the network tapolo
Simulations in a 24-hour analysis were carried ®ésults
show that the PFC-VC approach for DG is able tonta#
the network voltage within the statutory limits, evhas a
generator operating in constant power factor mode
contributed to voltages outside the desired rahgthe worst
cases when a large amount of power from DG is otede
the generator operated with constant power fagteated an
unacceptable voltage rise above the upper limitdewthe
PFC-VC responded efficiently to improve the netwsrk
voltage profile. Results from both scenarios alBows that
the use of Q* control approach could worsen thetags
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level. The PFC-VC scheme was able to restrain tiige
rise and maintain the network’s voltage profile.

Future work will concentrate on improving the DG-OL This work is supported through the EPSRC Supergen
coordination considering a more complex distribntioFlexNet Consortium. Full details are available on
network. The effect of DG units operating in diffat modes http://www.supergen-networks.org.uk/index.htm.
while situated close to each other will also be levqu. This work is also part-funded through the EPSRCeBggn
Intermittent generation considering different levebf V, UK Energy Infrastructure (AMPerES) grant in
variability of wind power output under various tirimeervals collaboration with UK electricity network operatormrking
will also be examined. The proposed decentraliggitaach under Ofgem’s Innovation Funding Incentive schemtill-
might represent a feasible solution particularly fwral details on http://www.supergen-amperes.org/.
networks where major investments required by sdighied
centralised schemes can not be justified.
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