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Abstract

We consider parameter inference for the class of models where the likelihood

function is analytically intractable as a result of a complicated normalising con-

stant. This means that an MCMC algorithm for drawing from the posterior of

the parameters of the model would involve evaluating an acceptance ratio con-

taining a ratio of unknown normalising constants. We propose to improve on

the recently proposed auxiliary variable MCMC by extending the variable space

of the auxiliary variable. Whereas the auxiliary variable MCMC may be con-

strued as a Metropolis-Hastings algorithm that estimates the acceptance ratio

in each iteration using simple importance sample based on only one observa-

tion, we show how the algorithm proposed here can be seen as substituting the

one-observation simple importance sample with the more efficient linked impor-

tance sampler (LIS). While retaining the properties of the Metropolis-Hastings

algorithm the use of LIS is generally applicable and allows flexibility in tuning

the mixing. In particular we show that the algorithm can be made to work for

some social network models for which Bayesian analysis has not previously been

feasible. While the auxiliary variable MCMC works for an Ising model it does

not work for other models, for which we show that we can achieve reasonable

mixing by using the tuning features of the proposed algorithm. The models

mentioned include a social influence model for correlated binary outcomes for

pupils in an Australian school class where sociometric data is available, and,

(curved) exponential family models for the collaboration network of partners

in a New England law firm.

Keywords: Linked importance sampler; auxiliary variable; Normalising con-

stant; Ising model; Social network; Influence model; Exponential family random

graph model (p-star)

1. Introduction

Markov chain Monte Carlo (MCMC) methods have proved a popular tool for

performing Bayesian inference since they only require that the posterior distribution
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is know up to a normalizing constant. There is however a large class of important

statistical models for which MCMC is not a viable option since the likelihood function

is not analytically tractable as a result of a complicated normalising constant in the

model density. We deal here with models for a variable x defined on a finite space X
with a probability mass function (pmf) of the form

p(x|θ) =
1

c(θ)
q(x; θ), (1)

where the normalising constant

c(θ) =
∑

y∈X

q(y; θ),

is a function of the parameter vector θ ∈ Θ ⊆ Rp that assures that the pmf sums to

unity. A basic premiss here is that q is easy to evaluate but that c(θ) is computation-

ally hard to evaluate. In principle this makes it straightforward to simulate from the

model using e.g. the Metropolis-Hastings algorithm (Hastings, 1970; Tierny, 1994;

Chib and Greenberg, 1995). That c(θ) is hard to evaluate is however a major obstacle

to Bayesian inference since although the normalising constant m(x) of the posterior

distribution

π(θ|x) =
p(x|θ)π(θ)

m(x)
∝

1

c(θ)
q(x; θ)π(θ), (2)

is only a function of data x, c(θ) is a function of the parameter vector. As a conse-

quence, in a Metropolis-Hastings sampler for drawing samples from π(θ|x), where a

move from θ to θ∗ is proposed from a distribution g(θ∗|θ) (henceforth, g denotes a

generic proposal density), the Hastings ratio in the acceptance probability min(1, H)

would be

H =
π(θ∗|x)
π(θ|x)

g(θ|θ∗)
g(θ∗|θ) =

q(x; θ∗)/c(θ∗)π(θ∗)

q(x; θ)/c(θ)π(θ)

g(θ|θ∗)
g(θ∗|θ) . (3)
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While the marginal likelihood, m(x), cancels in the Hastings ratio we are left with a

ratio

λ(θ∗, θ) =
c(θ)

c(θ∗)

of unknown normalising constants.

Models of the form (1) include those where the variable x represents the spin

configuration of particles on a binary m×n lattice (Besag, 1972); exponential family

random graph (ERGM) distributions for the adjacency matrix describing the social

interaction of individuals (Frank and Strauss, 1986; Snijders, Pattison, Robins, and

Handcock, 2006; Hunter and Handcock, 2006); or activation indicators of voxels in

functional magnetic resonance imaging data (Smith and Fahrmeir, 2007). The meth-

ods presented here do not rely on the assumption of X being finite but we limit our

treatment here to the more transparent, finite case.

Given that non-Bayesian estimation until recently largely relied on maximisation

of the pseudo likelihood (Besag, 1974, 1975; Strauss and Ikeda, 1990) rather than the

likelihood function it is perhaps a natural approach to perform Bayesian inference

using the pseudo likelihood rather than the true likelihood function as was done

in Heikkinen and Högmander (1994). This transforms the problem into a regular

inference issue and standard MCMC methods may be used but the distribution from

which one is sampling is not known. Another way of avoiding having to evaluate the

normalising constant is by limiting the analysis to finding a point estimate (Heikkinen

and Penttinen, 1999).

Since there are numerous efficient algorithms for numerically calculating (approx-

imating) the normalising constant (Gelman and Meng, 1998), MCMC schemes have

been proposed for models with intractable normalising constants where a MCMC ap-

proximation to the normalising constant in the likelihood is substituted for the exact

value. Normalising constants can be evaluated on a grid of parameter values and

stored (Green and Richardson, 2002) or estimated repeatedly in the course of the

MCMC (Berthelsen and Møller, 2003), using a sample from an importance distribu-
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tion that is stored off-line or regenerated on-line. Calculating approximations of the

partition function may be considerably harder when the parameter space is of higher

dimensions.

Common to the previously employed Bayesian inference schemes is that it is hard

to establish the properties of an MCMC procedure that relies on approximations

to distributions relative to that of the exact expression. The properties of MCMC

may not always carry over. The estimators of the normalising constant that are

currently available are mostly constructed to estimate individual constants (or ratios

of constants) and are not necessarily suited to repeated estimation. From the ergodic

theorem (Tierney, 1994), we know that the estimate gets close to its true value as

the number of iterations gets large, something we might not be able to allow for were

we to take an estimate in each iteration of the MCMC, and the required number

of iterations is likely to vary for different parameter values. Furthermore, while the

estimate of the normalising constant is simulation consistent, the estimate of the

acceptance ratio is not.

Møller, Pettitt, Berthelsen, and Reeves (2006) proposed the first truly “exact”

or “pure” MCMC algorithm, namely, the auxiliary variable method (AVM) MCMC

algorithm, for performing Bayesian inference for models with intractable normalising

constants. The idea is to simulate jointly from the posterior of θ and an auxiliary

variable density. Mixing is affected both by the posterior and the proposal distribution

for θ as well as the choice of auxiliary distribution. For the simple form of AVM, the

degree to which the mixing can be improved is limited to the choice of auxiliary

distribution. Berthelsen and Møller, (2004a,b, 2006, 2007) give examples of ways of

adopting the auxiliary distribution for a range of different models to improve mixing.

The dependencies between variables for some models used in social science cause the

AVM to mix so poorly as to prevent analysis. In particular the Bayesian analysis

of ERGMs suffers the consequence of complex interdependencies to the same extent

that non-Bayesian analysis does (Corander, Dahmström, and Dahmström, 1998, 2002;

Snijders, 2002; Handcock, 2002; van Duijn, Gile, and Handcock, 2008). Building on
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the advances of Møller et al. (2006) we propose a tunable MCMC sampler, the linked

importance sampler auxiliary variable (LISA) Metropolis Hastings. This extension

rests upon the observation that the poor mixing of the AVM that we see in the

case of a couple of important models in social network analysis can be understood

if AVM is formulated as a regular MCMC with an embedded importance sampler

that estimates the normalising constant in each step using only one sample point.

We suggest that this makes it natural to replace the one-sample simple importance

sample by more elaborate variations of the importance sampler that have proved

more efficient. As noted above, any sampler would not do. It turns out however, that

a specific importance sampler, the linked importance sampler (LIS) (Neal, 2005),

can be incorporated into the MCMC as an auxiliary variable when the space on

which the importance distribution is defined is considered to be an extended sample

space of the MCMC. This extended sample space is discrete but can be of high

cardinality. However, we need not consider the variable defined on the extended

state space explicitly in the sense that we need to save memory-consuming variables

- the part of the LISA that concerns the auxiliary variable reduces to taking an

importance sample. Anonymous reviewers alerted our attentions to a similar approach

to modifying the auxiliary distribution by Murray, Ghahramani, and MacKay (2006).

The rest of the paper is structured as follows. The first part reviews known

results that we feel are important for motivating and understanding the proposed

approach. First we shall give a brief review of the auxiliary variable method of

Møller et al. (2006) and its formulation as a Metropolis-Hastings algorithm with an

embedded importance sampler. We review the principles of some standard importance

samplers and show how the LIS is an attempt at combining the advantages of different

importance samplers. This is followed by the main result where we show how LISA

is constructed from combining LIS with the AVM. We then proceed to discuss the

performance of the proposed algorithm in the context of some illustrative examples,

namely using simulated data from an Ising model, fitting an influence model to data

for a school class, and fitting a curved exponential family graph model to a well
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known social networks data set. The last two models prove the main benefit of and

motivation for the proposed approach as compared to AVM, as the AVM does not

work for them.

2. The auxiliary variable method

To circumvent the need to evaluate λ(θ∗, θ) in (3) while retaining the properties of

the MCMC scheme, Møller et al. (2006) proposed to introduce an auxiliary variable

y, defined on the same state space X as x, and to set up the MH to produce a sample

(θ(k), y(k))Nk=0 from the joint posterior distribution of θ and y. By letting y have the

pmf q(y;ψ)/c(ψ) for ψ fixed, the Hastings ratio for the joint acceptance of (θ∗, y∗)

becomes

H =
q(x; θ∗)/c(θ∗)

q(x; θ)/c(θ)

q(y∗;ψ)/c(ψ)

q(y;ψ)/c(ψ)

g(θ, y|θ∗, y∗)
g(θ∗, y∗|θ, y)

π(θ∗)

π(θ)
.

While we see that the normalising constant c(ψ) in the pmf of y cancel, the problem

of evaluating λ(θ∗, θ) still remains. The trick employed in Møller et al. (2006) was

to firstly factorise the proposal density g(θ∗, y∗|θ, y) = g(y∗|θ∗)g(θ∗|θ) so that y∗ is

drawn conditional on the proposed new value θ∗. Secondly, the conditional proposal

distribution for y is set to q(y; θ∗)/c(θ∗) (for some models they employed more elab-

orate proposal distributions). Doing this, and inserting the proposal distributions in

the Hastings ratio we get

H =
q(x; θ∗)/c(θ∗)

q(x; θ)/c(θ)

q(y∗;ψ)

q(y;ψ)

q(y; θ)/c(θ)

q(y∗; θ∗)/c(θ∗)

g(θ|θ∗)
g(θ∗|θ)

π(θ∗)

π(θ)
,

where we see that the normalising constants c(θ∗) and c(θ) of the proposal distribu-

tions cancel the respective normalising constants in the target distributions

H =
q(x; θ∗)

q(x; θ)

q(y∗;ψ)

q(y;ψ)

q(y; θ)

q(y∗; θ∗)

g(θ|θ∗)
g(θ∗|θ)

π(θ∗)

π(θ)
, (4)
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and thus λ(θ∗, θ) disappears in the expression. Hence, using only a bit of algebra we

have done away with the need to evaluate the normalising constant. (Note that the

motivation for introducing an auxiliary variable differs somewhat from previous cases

in the literature, e.g. Higdon, 1998.)

Møller et al. (2006) give some heuristic motivations for the choice of auxiliary

density and observe that if the auxiliary distribution is poorly chosen the algorithm

will mix poorly or not at all. In particular the algorithm may appear to be mixing

well for many iterations before it gets stuck in one state for thousands of iterations

(something we shall see examples of in Section 5). Since we have to accept both θ and

y simultaneously in (4), the choice of distribution for y clearly is crucial to achieve

an acceptable acceptance rate but is not immediately clear how (4) relates to the

Hastings ratio (3).

For understanding AVM it is helpful to consider it in terms of importance sam-

pling. If we inspect the part in (4) that pertains to the auxiliary variable and write

λ(θ∗, θ; y∗, y) =
λ(θ∗, ψ; y∗)

λ(θ, ψ; y)
(5)

where

λ(θ, ψ; y) =
q(y;ψ)

q(y; θ)
, (6)

we see that λ(θ, ψ; y) is an estimator of λ(θ, ψ) in the sense that the expected value

Ey|θ {λ(θ, ψ; y)} =
∑

y∈X

[

q(y;ψ)

q(y; θ)

]

1

c(θ)
q(y; θ) =

c(ψ)

c(θ)
.

This is the principle of the importance sampler (e.g. Ott, 1979; Geyer and Thomp-

son, 1992; in the follwoing we use the acronym SIS, denoting “simple importance

sample”, to distinguish this standard importance sampler from other importance sam-

plers). More specifically, if y(1), . . . , y(M) is a sample from the importance distribution
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q(y; θ)/c(θ), the ergodic average

λ̄(θ, ψ) =
1

M

M
∑

m=1

λ(θ, ψ; y(m)) (7)

is the SIS estimator of λ(θ, ψ). The SIS estimator is simulation consistent in the

sense that λ̄(θ, ψ) tends to λ(θ, ψ) as M gets large. The AVM may then be seen as a

Metropolis-Hastings algorithm where an SIS is run with M = 1 in each iteration to

approximate the true Hastings ratio through estimation of (6) in (5).

3. Using bridging distributions in importance samplers for estimating ratios of

normalising constants

Even if the support of y under the different distributions defined by θ and ψ is

(loosely speaking) the same, that is, q(·; θ) is zero whenever q(·;ψ) is, it is common

for the supports of q(·;ψ) and q(·; θ) to be well separated in the sense that there is a

region in X that has a low probability under both q(·;ψ) and q(·; θ) that separates

the regions of high probability under the respective distributions.

In this situation, we rarely produce y from q(·; θ) with high probability under

q(·;ψ). This typically manifests itself in high or infinite variance for λ̄(θ, ψ). Note

however that this also applies to the less extreme cases whenever the “overlap” be-

tween distributions is too small. If we were to perform SIS repeatedly for many

different values of θ it would be hard to monitor how close the supports q(·;ψ) and

q(·; θ) are.

Assuming that there is a distribution indexed by a parameter θ1/2, whose support

overlaps those of q(·;ψ) and q(·; θ), we may use this as a bridging distribution. By

expanding λ(θ, ψ)

λ(θ, ψ) =
c(ψ)

c(θ)
=

c(ψ)

c(θ1/2)
× c(θ1/2)

c(θ)
, (8)

we may obtain a more stable estimate of λ(θ, ψ) by estimating the ratios of normalising
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constants to the bridging distribution (referred to as “bridge sampling” by Meng and

Wong, 1996, and the “acceptance ratio method” by Bennett, 1976). The rationale is

that if the overlap between q(·;ψ) and q(·; θ1/2), and q(·; θ) and q(·; θ1/2) is greater

than the overlap between q(·;ψ) and q(·; θ), then an estimator based on the expansion

(8) would have smaller variance than the corresponding SIS (Neal, 1993). In practice

we may be required to have more than one bridging distribution but the principle

remains unchanged.

Path sampling is a generalisation of bridged importance sampling that draws

on the principle of thermodynamic integration in statistical physics (Gelman and

Meng, 1998; Neal, 1993). Consider extending the number of bridging distributions to

“uncountably many” bridging distributions, indexed by parameters θ(t) for a smooth

mapping θ : [0, 1] → Θ, e.g. linear θ(t) = tψ + (1 − t)θ, that connects θ(0) = θ

and θ(1) = ψ. The estimator of the logarithm of LHS of (8) may then be derived

from the path sampling identity: log λ(θ, ψ) =
∫ 1

0
f(θ(t))T(dθ(t)/dt)dt; where f(θ) =

Ey|θ{d log(q(y; θ))/dθ}. MCMC sample equivalents of f(θ(t)), may then be averaged

over different values of t in the interval [0, 1], to obtain an estimate of log λ(θ, ψ) (as

in for example Hunter and Handcock, 2006).

3.1 Linked importance sampling (LIS)

Neal (2005) proposed a method he called linked importance sampling (LIS) that

combines the merits of the SIS (being unbiased) with the advantages of using bridg-

ing distributions while not requiring more than one independent realisation from an

importance distribution. The path sampler, though efficient, requires several inde-

pendent draws of y ∈ X . When we use MCMC to generate sample points in the

data space this translates into having to wait for the MCMC to burn in between each

sample point. LIS is best described as a sequence of MCMC samples as in Figure 1

(an applied example is given in connection with Figure 2), each with different target

distributions, that are linked (as in share realisations (b) and (c)) with each other.

The two schematically represented supports of distributions indexed by θ(0) and θ(2)
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both have overlap with the support of the bridging distribution θ(1). The state a is

a realisation from the distribution p(y|θ(0)). The Markov chains are generated using

MCMC conditional on the linking and initial states (with the difference from the

standard implementation being the need to simulate both forward in time from a as

well as backwards in time). The LIS is related to the annealed importance sampler

(Neal, 2001; Jarzynski, 1997), with the difference that the latter takes an initial sam-

ple point from the first distribution and then updates this according to a transition

kernel defined by the bridging distribution.

1

1

1

p(y|θ(0)) 

p(y|θ(1)) 

p(y|θ(2)) 

a 

b 
c 

d 

Figure 1: An illustration (based on Figure 1 in Neal, 2005) of LIS that starts in the vertex

a and ends in vertex d

3.1.1 The sample

To describe LIS in more detail, we begin by considering MCMC sampling into the

future and into the past. By assumption we may draw y from p(y|θ) using MCMC.

Denote by Tθ(y
(t), y(t+1)) the Markov chain transition probabilities that are used to

update a state y(t) to a new state y(t+1) in the standard implementation of producing

a Markov chain running forwards in time with target distribution p(y|θ).We may

also produce a Markov chain running backwards in time operating such that if the

present state is y(t), the next (or previous as it were) state y(t−1) is drawn using the

reverse transition probabilities T θ(y
(t), y(t−1)). For reversible MCMC, which includes
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the one-block Metropolis algorithm, T θ(y, x) = Tθ(y, x). For the Gibbs sampler with

systematic updates of coordinates, T θ(y, x) corresponds to updating the coordinates

in reversed order (Neal, 2005).

The LIS estimator is based on K sample points from Markov chains with m dif-

ferent target distributions (y
(1)
1 , . . . , y

(K)
1 ), (y

(1)
2 , . . . , y

(K)
2 ), . . ., (y

(1)
m , . . . , y

(K)
m ), drawn

using Metropolis-Hasting transition probabilities Tθ(t) and T θ(t), for a smooth map-

ping connecting θ and ψ as in path sampling (Gelman and Meng, 1998). A convenient

choice is to let θ(j) = (j − 1)/(m− 1)ψ + (1 − (j − 1)/(m− 1))θ.

The m samples are connected in points

µ1, . . . , µm and ν1, . . . , νm, µi, νi ∈ {1, . . . , K},

such that given µj and y
(1)
j , . . . , y

(K)
j , we let the state y

(νj+1)
j+1 := y

(µj)
j . In Fig-

ure 1, b is such a linking state, linking the first chain to the second. Given νj

and y
(νj)
j we create the chain y

(1)
j , . . . , y

(K)
j by simulating forward from y

(νj)
j using

Tθ(j)(y
(νj)
j , y

(νj+1)
j ), Tθ(j)(y

(νj+1)
j , y

(νj+2)
j ), etc., until we have produced y

(K)
j . We also

simulate backwards from y
(νj)
j using the reversed transition kernels T θ(j)(y

(νj)
j , y

(νj−1)
j ),

T θ(j)(y
(νj−1)
j , y

(νj−2)
j ), etc., until we have produced y

(1)
j . The implied pmf of a chain

yj = (y
(i)
j )Ki=1 conditional on the insertion point and the linking state is

P (yj|νj, y(νj)
j ) =

νj−1
∏

i=1

T θ(j)(y
(i+1)
j , y

(i)
j )

K
∏

i=νj

Tθ(j)(y
(i)
j , y

(i+1)
j ).

To choose which of the K sample points that should provide the link to the next

chain, we choose µj with probabilities

η(µj|yj) =
w(y

(µj)
j ; θ(j), θ(j + 1))

∑K
i=1w(y

(i)
j ; θ(j), θ(j + 1))

,
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where

w(y; θ, θ∗) = q(y; θ)−1/2q(y; θ∗)1/2 (9)

and insertion points νj are chosen uniformly on {1, . . . , K}. The initial state y
(ν1)
1 (a

in Figure 1) of the first chain is chosen according to p(y
(ν1)
1 |θ).

3.1.2 The estimator

Given a sample ω = (y, µ, ν), the LIS estimate of λ(θ, ψ) is given by

λLIS(θ, ψ;ω) =
m−1
∏

j=1

∑K
i=1w(y

(i)
j ; θ(j), θ(j + 1))

∑K
i=1w(y

(i)
j+1; θ(j + 1), θ(j))

. (10)

At this point we may stop to consider the form of the weights (9). These ratios are in

fact the square roots of the quantities λ(θ, θ∗; y) used in the simple importance sam-

pler. In this case, it derives from the implicit use of a geometric linking distribution

but Neal (2005) also suggests other possible forms for these weights.

The sampling scheme outlined above defines an unnormalised distribution

QF
θ,ψ(ω) = q(y

(ν1)
1 ; θ)

m
∏

j=1

1

K
P (yj|νj, y(νj)

j )η(µj|yj) (11)

on Ω ⊆ ∏m
j=1 XK × {1, . . . , K} × {1, . . . , K}. For each ω ∈ Ω we may also define the

algorithm in reverse, i.e. starting in y
(µm)
m , treating this as y

(ν1)
1 and proceeding as

above but swapping roles for ν and µ. In Figure 1, this corresponds to starting in b,

rather than a, and proceed “backwards”. This analogously defines an unnormalised

pmf

QB
ψ,θ(ω) = q(y(µm)

m ; θ)
m
∏

j=1

1

K
P (yj|µj, y(µj)

j )η(νj|yj). (12)

Inspecting the unnormalised forwards and backwards distributions, QF
θ,ψ and QB

ψ,θ, it

is clear that their normalising constants must be c(θ) and c(ψ) respectively. Further-

more, using a little algebra it can be shown (the details are given in Neal, 2005) that
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the LIS estimator (10) can be written

λLIS(θ, ψ;ω) =
QB
ψ,θ(ω)

QF
θ,ψ(ω)

. (13)

If we let P F
θ,ψ(ω) = QF

θ,ψ(ω)/c(θ), and ω be a variate from this distribution, then

λLIS(θ, ψ;ω) is the SIS estimator of the ratio of normalising constants for P F
θ,ψ(ω) and

PB
θ,ψ(ω) = QB

ψ,θ(ω)/c(ψ), namely λ(θ, ψ). As opposed to the SIS and the estimator

(7), LIS employs bridging distributions to span the supports corresponding to θ and

ψ, but in contrast to bridge sampling the variates from the bridging distributions are

generated dependent on each other.

4. Proposed approach

4.1 Combining importance sampling and auxiliary variable MCMC

The question is now whether we can improve on the performance of AVM by

getting a better estimate of λ(θ∗, ψ) than the SIS with M = 1? There are a few

aspects of the importance samplers presented that prevent immediate incorporation

in the AVM. For example, here λ̄(θ, ψ) → λ(θ, ψ) only as M gets large and we have

to get an estimate in every iteration. If the distributions indexed by θ and ψ have

little or no overlap there could be a severe bias or infinite variance. As we have

seen this can be remedied by introducing bridging distributions but in general when

an importance sampler is used to approximate the Hastings ratio H by Ĥ, while

Ey|θ∗{Ĥ} = H, we have that Ey|θ∗{Ĥ} > Ey|θ∗{min(1, Ĥ)}. Consequently, if we use

importance samplers with an approximation Ĥ inplace of H we may accept updates

in the Metropolis-Hastings with the wrong probabilities on average.

4.2 LISA - extended state space

In AVM we performed draws from the joint distribution of the parameters and

the auxiliary variable y ∈ X . Consider now as an auxiliary variable ω ∈ Ω, and a
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distribution PB
ψ,θ(ω) that depends on both θ and ψ. The linked importance sampler

(LISA) MCMC is a Metropolis-Hastings algorithm that performs draws from the joint

distribution

π(ω, θ|x) = PB
ψ,θ(ω)π(θ|x)

∝ QB
ψ,θ(ω)

q(x; θ)

c(θ)
π(θ).

It is straightforward to show that θ has the desired marginal distribution
∑

ω∈Ω π(ω, θ|x) =

π(θ|x). The Hastings ratio in the Metropolis updating step still contains the ratio

λ(θ∗, θ)

H =
q(x; θ∗)/c(θ∗)

q(x; θ)/c(θ)

QB
ψ,θ∗(ω

∗)

QB
ψ,θ(ω)

g(θ, ω|θ∗, ω∗)

g(θ∗, ω∗|θ, ω)

π(θ∗)

π(θ)
.

Assume now that we condition on θ∗ proposed from g(θ∗|θ), and use P F
θ∗,ψ(ω∗) to

propose ω∗. Substituting this pmf into the Hastings ratio we get

q(x; θ∗)/c(θ∗)

q(x; θ)/c(θ)

QB
ψ,θ∗(ω

∗)

QB
ψ,θ(ω)

QF
θ,ψ(ω)/c(θ)

QF
θ∗,ψ(ω∗)/c(θ∗)

g(θ|θ∗)
g(θ∗|θ)

π(θ∗)

π(θ)

where we see that λ(θ∗, θ) cancel against its reciprocal stemming from the ratio of

proposal distributions P F
θ,ψ(ω)/P F

θ∗,ψ(ω∗). Since q(·; θ) is easy to evaluate by assump-

tion and QB
ψ,θ and QF

θ,ψ consist of simple functions of q according to (11) and (12), we

are left only with known quantities for updating θ and ω.

In order to interpret this algorithm we may note that upon rearranging the Hast-

ings ratio it can be expressed in terms of estimates λLIS using the identity (13)

H =
q(x; θ∗)

q(x; θ)

λLIS(θ
∗, ψ;ω∗)

λLIS(θ, ψ;ω)

g(θ|θ∗)
g(θ∗|θ)

π(θ∗)

π(θ)
. (14)

As the number of sample points gets large (for more detailed results on asymptotics

onK, see Neal, 2005), (14) will approach the true (marginal) acceptance probability as

λLIS(θ
∗, ψ;ω∗) and λLIS(θ, ψ;ω) tend to their means so that λLIS(θ

∗, ψ;ω∗)/λLIS(θ, ψ;ω) →
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λ(θ, θ∗), the ratio of normalising constants in (3).

4.3 LISA in summary

We may now make the following observations regarding LISA. LISA is a Metropolis-

Hastings MCMC defined on Ω and Θ, where in each iteration we propose a move to

a new parameter value θ ∈ Θ and, conditional on this θ and a fixed ψ, an element

ω ∈ Ω is proposed from a distribution P F
θ,ψ. These proposed moves are either jointly

accepted or rejected with the Hastings ratio (14) corresponding to the joint target

distribution PB
ψ,θ(ω)π(θ|x). As seen in (14) there is no need to save or keep track of

the realisations ω. Since the LISA procedure is equivalent to a Metropolis-Hastings

for the target distribution π(θ|x) where we estimate the ratio λ(θ, ψ) using the LIS

estimator, we need only to save the estimate λLIS(θ, ψ;ω) for the current state θ.

The mixing of LISA may be tuned using the constants m and K, corresponding to

the number of bridging distributions and chain lengths respectively. The algorithm

of Møller et al. (2006) may be considered the special case K = 1 and m = 1, i.e.

when we only produce the initial state y
(ν1)
1 and there are no bridging states.

LISA is a one-block Metropolis-Hastings MCMC on the joint state space of Ω

and Θ for all choices of K and m as long as y
(ν1)
1 is an independent realisation. We

have made the assumption that we may produce draws from the model p(·|θ) using

MCMC but not explicitly that we may draw “directly” from p(·|θ). For some models

we may use MCMC to produce an “exact” sample (Propp and Wilson, 1996) from

p(·|θ) and in the cases where we may not, performing draws from p(·|θ) using MCMC

is so computationally efficient and cheap as to be equivalent to producing independent

draws to all intents and purposes.

5. Examples

We shall now proceed to illustrate the effects of different choices for the tuning

constants K and m and for the distribution, as defined by ψ, for some illustrative
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data sets. Neal (2005) provide some heuristics for the effect of different K and m

in the general case and some more detailed results for a specific model. An efficient

choice of ψ is likely to belong to a region with high mass in the posterior of θ but the

derivation of an optimal choice of ψ may be difficult (Møller et al., 2006). As we shall

see, K = m = 1, i.e. AVM, works for a model with a simple dependence structure,

as in the Ising model, but K and m have to be increased for models for data with

more complex dependences steming from realisic assumtions for individuals. In the

examples to come, improper constant priors were used (the conditions under which

the posteriors are well-defined are treated in Koskinen, Robins, and Pattison 2008b,

drawing on the results of Diaconis and Ylvisaker, 1979).

5.1 Ising model on binary 50×50 lattice

A well-known case of an autologistic model is the Ising model (Besag, 1972;

Cressie, 1993). This model was used for illustration of the AVM by Møller et al.

(2006) and we generate data according to some of the parameter specifications used

there in order to provide a comparison. Apart from the Ising model being a well

known model, it has a relatively simple dependence structure and allows for perfect

sampling of data. The Ising model on a binary u× n lattice has been used to model

how the charges of particles interact and in the simplest case it is assumed that the

particles can have either of two spins, up or down. Outside of statistical mechanics the

model has for example been used for modelling spatial autocorrelation in functional

magnetic resonance imaging of the brain (Smith and Fahrmeir, 2007) and related

models, e.g. the Potts, have been used in geographical modelling (e.g. Green and

Richardson, 2002). The spin of a given particle depends on the general tendency

towards spin up and the spins of its neighbours on the lattice. The neighbourhood of

a particle (i, j) is defined as {(k, ℓ) : |i − k| + |j − ℓ| = 1}. We define the model for

data x = (xij : i = 1, . . . , u, and, j = 1, . . . , n), where the element xij is equal to 1 or

−1, according to whether the corresponding particle has spin up or spin down. The
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Figure 2: A linked importance sample for the Ising model on a binary 50×50 lattice.

Traces for V0 (left) and V1 (right) for chains generated by Metropolis-Hastings for θ(1), ’−’,

θ(2), ’−−’, θ(3), ’−·’, θ(4), ’··’, θ(5), ’−’; where θ(1) = (0, 0.3)T and θ(5) = (0.1, 0.2)T.

Connections in µj and νj+1 indicated by circles

pmf is defined as in (1) with

q(x; θ) = exp(θ0V0 + θ1V1),

where

V0 =
u

∑

i=1

n
∑

j=1

xij, and V1 =
u−1
∑

i=1

n
∑

j=1

xijx(i+1)j +
u

∑

i=1

n−1
∑

j=1

xijxi(j+1)

When generating data according to the model we have to rely on MCMC since there

is no direct way of drawing data from an Ising model. In the case of the Ising model

it is possible to “sample perfectly” from the model, that is, to take as an output a

state that we know to have been produced after the Markov chain has converged to

the target distribution. Here we have used Wilson’s (2000) modification to the Propp

and Wilson (1996) algorithm, coupling from the past using a read once only source

of randomness (CFTPRO).

To illustrate how the chains (y
(1)
j , . . . , y

(K)
j ) are connected for j = 1, . . . ,m in the
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K = 1 K = 3000 K = 7000
m = 1 m = 5 m = 9

Posterior mean 0.201 0.105 0.199 0.105 0.199 0.105
Posterior std 0.021 0.014 0.022 0.014 0.022 0.015
Lag 50 SACF 0.646 0.512 0.526 0.362 0.460 0.313
Lag 100 SACF 0.434 0.329 0.292 0.195 0.201 0.109
ESS 451 645 526 662 1099 1351
Mean acc. prob 0.393 0.589 0.725
Prop. min(1,H) ≤ e−10 0.018 0.0006 0.0000

Table 1: Comparisons for LISA applied to a data set simulated from an Ising model with

θ = (.2, .1)T on a binary 50×50 lattice for different tuning constants K and m. The MPLE

was (0.196, 0.109)T

LIS part of LISA, we have plotted the sufficient statistics V0 and V1 for m = 5 chains

in Figure 2. The starting point y
(µ1)
j is generated (using CFTPRO) from an Ising

model defined by θ = (θ0, θ1)
T, with θ0 = 0 and θ1 = 0.3. A linear map is used with

θ(5) = ψ = (.1, .2)T. For the right hand panel, showing the traces of V1, we expect

the chains to progressively move downwards since the parameter θ1 corresponding to

the number of same spin sites is gradually lowered. The state connecting the first

chain with the second is y
(µ1=550)
1 , with V1 = 1716, which is then set as the initial

state y
(ν2=10)
2 , in the second chain etc. until the last chain is started in y

(ν5=714)
5 , whose

V1 = 1450 is considerably lower than the overall level of the number of same spin sites

in the first chains. Thus the bridging chains have managed to link the supports of

the two extreme distributions defined by θ(1) and θ(5).

To compare AVM with LISA and investigate the effect of different choices ofK and

m, we apply the estimation schemes to two simulated data sets, one with parameters

θ = (0.2, 0.1)T and the other with θ = (0, 0.3)T. The results for the first data set

are given in Table 1 and the second in Table 2. A bivariate normal distribution with

covariance matrix .005I centred on the current parameter vector was used as the

proposal for θ in all estimations and ψ was set to the maximum pseudo likelihood

estimate (MPLE) (Besag, 1974, 1975). A total of 100,000 iterations was used and the
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K = 1 K = 3000 K = 7000
m = 1 m = 5 m = 9

Posterior mean −0.004 0.300 −0.003 0.299 −0.003 0.299
Posterior std 0.007 0.011 0.008 0.012 0.008 0.011
Lag 50 SACF 0.309 0.470 0.181 0.335 0.110 0.199
Lag 100 SACF 0.182 0.354 0.096 0.205 0.045 0.067
ESS 877 214 1235 521 1852 1563
Mean acc. prob 0.250 0.343 0.421
Prop. min(1,H) ≤ e−10 0.0865 0.0203 0.0067

Table 2: Comparisons for LISA applied to a data set simulated from an Ising model with

θ = (0, .3)T on a binary 50×50 lattice for different tuning constants K and m. The MPLE

was (−0.005, 0.315)T.

figures in the tables are based on the un-thinned entire sample without any burnin

period.

If we compare the analyses from the three combinations of K and m, we may

first note that the posterior means are not markedly different across the different

tuning settings. The mixing does improve considerably when the tuning constants

are increased as reflected by the sample autocorrelation functions (SACF). Though

there are some differences in the lag 50 SACF, the real difference is seen in the lag 100

SACF. For K = 1 and m = 1 (AVM) the autocorrelation is still considerable at lag

100 for both parameters, roughly .43 and .33. These are reduced to .29 and .2 when

K is increased to 3000 and m to five, and then again to .2 and .11, for K = 7000 and

m = 9. The lag 100 SACF is hence reduced to a little less than a third for θ1 when

we compare AVM and LISA with K = 7000 and m = 9. The improvement in mixing

is also reflected in the autocorrelation time and the effective sample sizes (ESS)(ESS

is the total number of iterations divided by the autocorrelation time; autocorrelation

time was calculated according to Kass, Carlin, Gelman, and Neal, 1998).

The reason for the relatively slow mixing for small tuning constants is that the

Markov chain gets stuck in some states for long spells. From trace plots it looks as

if the chain is mixing well for a long period of time before it gets stuck. A symptom
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of this is that acceptance rate (“Mean acc. prob”, the average of min(1,H)) for AVM

looks reasonable but that the proportion of “extreme” proposals (“Prop. min(1, H) ≤
e−10”, the proportion of times the log probability of accepting a proposed move was

less than -10) is close to two per cent according to Table 1.

The increased mixing comes at a price however. To improve mixing we need

to increase the tuning constants and thus increase the number of iterations in the

Metropolis-Hastings on X . This increase may however be considered modest even for

K = 7000 and m = 9, since the extra Km iterations needed to calculate LIS has to

be compared to the number of iterations it takes to generate y
(ν1)
1 . For the MCMCs

in Table 1, an average of 5.6× 104 iterations were required by the perfect sampler to

generate y
(ν1)
1 , and in each of these iterations 5 chains are updated in tandem.

For the data in Table 2, the differences between point estimates are again small

but there is a great reduction in the lag 100 SACF. This is particularly the case for the

interaction parameter θ1 for which the lag 100 SACF decreases from .35 to .07. This

is also what we would expect when we compare the first data set with the second since

the second data set is generated from a model with higher spatial autocorrelation, a

larger θ1, and hence higher degree of deviation from independence of observations.

5.2 The social influence model

With the advent of multilevel models (e.g. Snijders and Bosker, 1999) it was recog-

nized that outcomes of respondents belonging to the same geographical units, having

the same institutional affiliations or being part of the same group cannot plausibly

be treated as independent observations. Multilevel models take the interdependence

between observations in the same units into account by incorporating random and

fixed effects into generalised linear models. Although a range of work has been done

on different kinds of interdependence such as crossed random effects and multiple

membership models (Rashbash & Browne, 2002), little attention has been paid to

incorporating dependencies stemming from social interaction (with some notable ex-

ceptions for multilevel modelling of the interaction itself, e.g. Snijders & Baerveldt,
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2003). For example, if one makes allowances for non-independence of pupils in a

school class it seems obvious that one should pay equal heed to the fact that some

pupils interact more than others. Two models that explicitly incorporates the struc-

ture of social interaction are the network effects model (Ebring & Young, 1979; Dor-

eian, 1982), for continuous response variables, and the social influence model (Robins,

Pattison, and Elliot, 2001), for binary response (Brock and Durlauf, 2001, describe

models where there is no dependence between the individual out-comes; for related

models for longitudinal data see Snijders, Steglich, and Schweinberger, 2007). There

are some obvious similarities between the social influence model and the Ising model.

For the former the interdependence structure is however given by empirical observa-

tions, which is not homogeneous and usually quite complicated (for a derivation and

motivation of the sufficient statistics see Robins et al., 2001).

Here we fit the social influence model to a data set for 106 pupils (all male) in

a school class in Australia (Lusher, 2006). We let x = (xi : i = 1, . . . , 106) be our

response variable where, for each of the 106 pupils, xi is equal to 0 if pupil i has

gender equity attitudes and, 1 if pupil i has male dominance attitudes. We have 4

covariates of substantial interest: dominant culture, vi1, which indicates if i has an

Anglo-Australian ethno-cultural background (1) or not (0); vi2, the socio economic

status of i’s household (as measured by standardised SES based on postcode); vi3,

the occupational score for the father of i (original range is 0 to 100 according to Jones

& McMillan, 2001, but here it is standardised); vi4, the occupational score for the

mother of i. Each of the pupils were furthermore asked to nominate who their friends

were and (after symmetrising) we have an adjacency matrix a = (aij : 1 ≤ i, j ≤ 106),

with elements aij equal to 1 if i has nominated j as his friend or if j has nominated

i as his friend, and 0 otherwise.

The model we fit is defined as in (1) with

q(x; θ) =

{

θ1

106
∑

i=1

xi + θ2

106
∑

i=1

106
∑

j=1

xiaij + θ3

106
∑

i=1

106
∑

j=1

xixjaij +
4

∑

k=1

θk+3

106
∑

i=1

xivik

}

.
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MPLE MCMCMLE Posterior
EST SE EST SE MEAN STD 95 HPD

Intercept, θ1 0.11 0.596 0.12 0.504 0.14 0.560 −1.15 1.45
Activity, θ2 −0.24 0.083 −0.13 0.046 −0.11 0.055 −0.23 0.02
Contagion, θ3 0.45 0.123 0.29 0.067 0.24 0.082 0.04 0.42
Dominant, θ4 −0.03 0.472 −0.39 0.427 −0.44 0.451 −1.44 0.57
SES, θ5 0.10 0.227 0.20 0.215 0.23 0.223 −0.27 0.72
Father, θ6 −0.16 0.220 −0.17 0.210 −0.19 0.219 −0.69 0.30
Mother, θ7 −0.05 0.224 0.08 0.206 0.08 0.215 −0.41 0.57

Table 3: Estimates for influence model fitted to Lusher’s (2006) 106 school data. Bayes

estimates based on LISA with K = 2000 and m = 7

The parameters θ4 through θ7 may be interpreted as in a regular logistic regression

model and θ1 as the intercept. The parameter θ2 corresponds to what is called the

activity effect, something which is meant to capture whether pupils with many ties

are more likely (θ2 > 0) to have the response 1. The activity parameter also acts as a

control for the “contagion effect” that is associated with the parameter θ3. The latter

is where the effect of social interaction on interdependency is taken into account and

the interpretation of a positive θ3 is that friends tend to have responses similar to

each other controlling for everything else.

For different choices of tuning parameters LISA is run to estimate the parameters

in the models, where in three cases ψ is set to the MPLE and in three cases set

to the MLE (obtained from an MCMC approximation of Fisher scoring: Geyer and

Thompson, 1992; Hunter and Handcock, 2006). The covariance matrix in the proposal

distribution for the parameters was set to .4/
√

1 + p times an estimate, Σ̂, of the

covariance matrix in the target distribution (this is roughly in accordance with the

guidelines offered by Tierney, 1994, and Roberts, Gelman and Giles, 1997). For LISA

based on the MPLE, Σ̂ was set to a diagonal matrix with diagonal elements being

the squares of the MPLE standard errors. For results based on the MLE, Σ̂ was set

to the inverse of the estimated Fisher information matrix. The MPLE and MLE and

their corresponding standard errors are found in Table 3. A total of 100,000 iterations
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of LISA were performed for all simulation settings. For the influence model it is not

straightforward to construct a monotonic chain such that we may implement a perfect

sampling scheme (such as CFTPRO) for drawing y
(ν1)
1 . Instead we have relied on the

rule of thumb for the length of burn in that is 100n, as suggested in Snijders (2002).

(Inspection of Markov chains with over-dispersed initial states for parameter vectors

in the tails of the posterior indicated that the burn in was sufficient.)

When ψ is set to the MPLE we see an improvement of the mixing in the trace

plots of the first three parameters (first three columns in Figure 3) as we increase

the tuning parameters but on the whole, judging by the histograms, these posterior

samples are of little practical use for analysis. The traces for K = 2000 and m = 7,

look reasonably good except for the run around iteration 40,000 where the sampler

remains in the same state for roughly 6,000 iterations. Whereas the chain with

K = m = 1 keeps within the confidence intervals for the MPLEs given in Figure 3

for all the 100,000 iterations, the chains increasingly move outside of the intervals as

the tuning parameters are increased.

When ψ is set to the MLE the chains (the third through 6th column in Figure 3)

with K = 200 and m = 5, and K = 2000 and m = 7, move freely in the parameter

space but the chain with K = m = 1 exhibits strange behaviour. The latter appears

to be mixing well for the first 20,000 iterations only to get stuck in a state close to

the MLE for more than 50,000 iterations. This happens when the current estimate

(13) is far from the true value (in the next section we shall see how the bias reduces

as a function of the tuning constants).

To some extent the effect of using the MPLE for ψ is explained by the fact that

these estimates are relatively different from the true MLEs (Table 3). In the case of the

AVM (K = m = 1) this means that most of the time the proposed auxiliary variable

will have low probability under the target distribution and hence the acceptance rate

will be small. As the tuning constants are increased the state space of the auxiliary

variable ω grows larger and the probability function becomes less sensitive to the

distance between the target distribution PB
ψ,θ and the proposal distribution P F

θ,ψ.
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Figure 3: The effect of choice of ψ and tuning constants on mixing for influence model

applied to Lusher’s (2006) 106 school data. First three columns give trace plots and his-

tograms for intercept, activity and contagion parameters for different choices of K and m

when ψ is set to MPLE. Columns 4 through 6 give trace plots and histograms for intercept,

activity and contagion parameters for different choices of K and m when ψ is set to MLE.
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The most striking differences between the MPLEs and the MLEs are found for θ2

and θ3, something which echoes similar result for higher-order stars and triangles in

exponential family models for random graphs (Snijders, 2002; for the social influence

model, previously estimation has relied only on the MPLEs, Robins et al., 2001). The

MLE and the Bayes estimates are similar on the other hand. If we were to compare the

conclusions drawn by using Wald’s test, on one hand and using .95 highest posterior

density intervals (95 HPD) on the other, these would agree except for θ1.

5.3 Curved exponential family models for networks

A (symmetric) network with n actors may be represented by an n × n binary

adjacency matrix, x, the elements xij of which are 1 or 0 according to whether actors

i and j are relationally tied to each other or not (see for example Wasserman and

Faust, 1994). We shall refer to the elements xij as tie-variables since they indicate

the presence of ties between pairs of nodes (actors) in the sociogram (Moreno, 1934)

implied by the adjacency matrix. We employ the convention that ties from one actor

to him/herself are not meaningful wherefore the diagonal of x is 0. Hence, for a

network with n actors we make observations on n(n− 1)/2 tie variables.

In a seminal paper, Frank and Strauss (1986) introduced a family of distributions

for random graphs called Markov graphs. Markov graphs improved on the previ-

ous exponential family distributions proposed by Holland and Leinhardt (1981) and

Fienberg and Wasserman (1981) in that it allowed for more elaborated dependencies

between the tie variables. More specifically, building on results in spatial statistics

(Besag, 1974), a dependence graph D was defined for the tie variables with edges in

D between variables xij and xkℓ if and only if the intersection {i, j}∩ {k, ℓ} is non-

empty. This has the interpretation that two tie variables are conditionally dependent

(given everything else) if they pertain to the same actor or node. Given some as-

sumptions regarding permutation invariance and model parsimony, the dependence

assumptions imply an exponential distribution on adjacency matrices with a vector

z(x) of sufficient statistics. The Markov graphs have since been extended (Wasserman
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& Pattison, 1996; Pattison & Wasserman, 1999; Robins, Pattison, and Wasserman,

1999; Snijders et al., 2006; Hunter and Handcock, 2006) and they are collectively

referred to as exponential family random graph models (ERGM) or p∗ because they

generalise the p1 model of Holland and Leinhardt (1981).

Here we are going to analyse the collaboration network of n = 36 partners in a

New England law firm (Lazega, 2001). There is a tie between partner i and j, xij = 1,

if i collaborates with j and 0 otherwise. In addition to the adjacency matrix there

are 4 covariates: the seniority of i in terms of rank (divided by maximum rank) vi1;

a binary indicator of whether i is working in corporate law vi2 = 1, or litigation,

vi2 = 0; whether i is female (male) vi3 = 1(vi3 = 0); the location of the office of i,

vi4 = 1, 2, 3 for Boston, Hartford and Providence, respectively.

The general form of an ERGM is according to (1) with

q(x; θ) = exp

{

p
∑

k=1

θkzk(x)

}

,

where the statistics zk(x) may also include functions of the covariate values. We shall

analyse two different models (previously fitted to the same data set by Snijders et al.,

2006, and, Hunter and Handcock, 2006), the first one is a dyad-independent model

but the second one assumes a more elaborate form of dependence. We include the

number of edges in the graph z1(x) =
∑

i<j xij as a baseline effect, which we will

refer to as density. The statistics z2 and z3 represent the main effects of seniority and

practice
∑

i<j xij(vik + vjk), for k = 1, 2. The following 3 statistics are the homophily

effects of practice, sex and office, with statistics
∑

i<j xij1{vik = vjk}, where 1 is the

indicator function, for k equal to 2, 3 and 4 respectively.

As the tie variables are independent of each other in the first model, the model

reduces to what is computationally equivalent to a logistic regression of x on the

statistics. In the social networks literature this type of model is often (particularly for

directed networks) referred to as a dyad-independent model (Holland and Leinhardt,

1981; Fienberg and Wasserman, 1981; Wong, 1987; dependence may however be
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Figure 4: MCMC diagnostics for LISA applied to Lazega’s lawyers with dyad independent

model. From left to right: (a) Expected error λLIS(θ∗, ψ;ω∗)−λ(θ∗, ψ) (�) and mean square

error (◦) with respect to PFθ∗,ψ(ω∗)q(θ∗|θ)π(θ|x), and mean square error of log λLIS(θ, ψ;ω)−
log λ(θ, ψ) with respect to π(θ, ω|x) (△); (b) distributions of log λLIS(θ∗, ψ;ω∗)−log λ(θ∗, ψ)

for different K and m; (c) SACF for θ1 at lag 50 (×) at lag 100 (⋆); acceptance rate (+);

(d) probability of extreme proposal (∇).
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introduced in dyad-independent models using random effects as in van Duijn et al.,

2004, or Hoff, 2002). Because of the independence of observations we can easily

calculate c(θ) exactly as

c(θ) =
∏

i<j

{

1 + exp

[

p
∑

k=1

θk∆ijzk(x)

]}

,

where ∆ijzk(x) is the change in the corresponding statistic when the (i, j)th element

of x is changed from 0 to 1, all other elements equal to those in the original matrix.

Additionally, drawing from p(x|θ) is straightforward so that we can generate y
(ν1)
1

without the aid of MCMC.

Some MCMC diagnostics are provided in Figure 4 for posteriors obtained using

LISA with ψ set to the MLE for different choices of K and m. When we inspect

the error errK,m = log(λLIS(θ
∗, ψ;ω∗)) − log(λ(θ∗, ψ)) as a function of the tuning

constants we see that not only does the mean square error decrease with increasing

tuning constants but also that there is a considerable systematic error for small K

and m (Figure 4 (a)). Looking at the distributions of errK,m, we also see that they

are shifted and considerably skewed to the left for small K and m (Figure 4 (b)).

This explains why the chains tend to get stuck in some states, namely if λLIS(θ, ψ;ω)

happens to be an overestimate, then the probability of generating a pair (θ∗, ω∗)

with equally high λLIS(θ
∗, ψ;ω∗) is relatively low. That this tendency to get stuck

tends to decrease with increasing tuning constants is reflected in the probability of an

extremely small acceptance probability (Figure 4 (d)). As a result of the decreasing

variance of errK,m, the mixing improves as measured by the autocorrelation and the

acceptance rate (Figure 4 (c)). Note that while λLIS(θ, ψ;ω) is unbiased for fixed ψ

and θ, the same is not necessarily true for log λLIS(θ, ψ;ω) when θ varies. There seems

to be a dramatic drop in the autocorrelations when Km is about halfway between 1

and 2 × 104 (the marker for K = 1000, m = 7, Km = 7000) and 10000 (K = 2000,

m = 5). Summary measures for the posteriors are given in Table 4.

Snijders et al. (2006) proposed to extend the class of Markov models by general-
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MCMCMLE Bayes MCMCMLE Bayes
MLE se Mean STD MLE s.e. Mean STD

Popularity −6.501 0.727 −6.593 0.725 −6.510 0.637 −6.763 0.650
Main effect
seniority 1.594 0.324 1.618 0.326 0.855 0.235 0.931 0.252
practice 0.902 0.163 0.910 0.157 0.410 0.118 0.474 0.130
Homophily
practice 0.879 0.231 0.882 0.236 0.759 0.194 0.751 0.201
sex 1.129 0.349 1.161 0.359 0.704 0.254 0.765 0.277
office 1.654 0.254 1.671 0.249 1.146 0.195 1.211 0.206
Clustering
GWEPS 0.897 0.304 1.006 0.338
log(λ) 0.778 0.215 0.694 0.206

Table 4: Estimates for ERGM fitted to Lazega’s (2001) New England Lawyers. Bayes

estimates based on LISA with K = 7000 and m = 11 (dyad independent model) and

K = 3000 and m = 7

ising the dependence graph D to allow for partial dependence among the variables.

One of the new statistics they arrived at (the statistics may also be motivated from

the point of view of model fit, see Hunter, Goodreau, and Handcock, 2008) was the

alternating k-triangle

3t1(x) −
t2(x)

λ
+ · · · + (−1)n−3 tn−2(x)

λn−3

which captures multiple clustering, where λ is a positive smoothing parameter and

tk(x) counts the number of pairs of connected nodes that are connected to the same k

other actors. Hunter and Handcock (2006) suggested that λ (which is typically arbi-

trarily chosen by the analyst, Robins & Morris, 2007) should be treated as yet another

parameter to be estimated. In order to estimate λ, they reformulated the alternating

k-triangle statistic in terms of shared partner statistics and set up the correspond-

ing curved exponential family random graph model (CERGM) with the implied set

of canonical parameters. Using well-known properties of curved exponential families

(Efron, 1975) they proposed an importance sampler MCMC procedure for calculating
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K = 1 K = 3000 K = 7000
m = 1 m = 5 m = 9

SACF 50 θ1 0.9554 0.7893 0.6370
SACF 100 θ1 0.9232 0.6441 0.4314
acceptance rate 0.0462 0.1278 0.3240
ave. min(1,H) 0.0468 0.1274 0.3230
Prop. min(1,H) ≤ e−10 0.5025 0.1830 0.0248

Table 5: Some MCMC summaries for LISA applied for Model II to Lazega’s lawyers

the MLE based on Geyer and Thompson (1992). Using their reparametrisation we

fit the above previously dyad-independent, model with the additional shared partner

statistics to Lazega’s lawyers using LISA. When λ is estimated jointly with the alter-

nating triangle parameter we refer to the latter as the geometrically weighted shared

partner statistic (GWESP).

The MCMCMLE was obtained using the algorithm in Hunter and Handcock

(2006). The MLE was used as ψ and the proposal covariance matrix set to .22/
√

1 + p

times the inverse Fisher information matrix. For the CERGM, CFTPRO cannot be

implemented (the algorithm of Corcoran and Tweedie, 2002, applies in principle but

is too ineffective to be of practical use) and the time to convergence may vary a great

deal depending on the parameter values. Instead of setting the burnin period accord-

ing to some predetermined fixed value we used a variation on CFTPRO where the

distances |zk(ya) − zk(y
b)| are used as indicators of approximate coalescence. This

has the interpretation of running parallel chains with over-dispersed initial states em-

ploying a deterministic stopping criterion but where the restarts rid the chain of the

dependence between the stopping time and the out-put state (details may be had

from the authors upon request; in this case, the results are unaltered if a fixed burnin

of 100n(n− 1)/2 iterations, as recommended by Snijders, 2002, is used).

The chain run with K = m = 1 has high autocorrelation and low acceptance

rate (Table 5) primarily because of several runs, the longest of which lasts 30,000

iterations. With tuning constants K = 7000 and m = 9 the autocorrelation is still
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Figure 5: Posterior distributions for ERGM fitted to Lazega’s (2001) Lawers. Posterior

predictive distributions for the number of shared partners and the degree distribution for

dyad-independent model (Model I) and full CERGM (Model II), against observed counts

(·−). On right-hand side the joint posterior distribution of the GWESP parameter (θ7) and

the “smoothing” parameter (θ8 = log(λ)) with .95 HPD region (· · · )

considerable but the acceptance rate is good. The former can to a large degree be

put down to slightly too low proposal variance. The improvement in mixing as the

tuning constants are increased is also reflected in the proportion of extremely low

acceptance probabilities (“Prop. min(1,H) ≤ e−10”). When half of the proposed

moves have a probability of being accepted less than exp{−10}, as in the case of

the AVM (K = m = 1), the chain gets stuck and the acceptance rate becomes low.

The acceptance rate and the proportion of extreme proposals is greatly improved

for K = 3000 and m = 5 but it is only for K = 7000 and m = 9 that we have a

performance comparable to that of the simpler Ising models in Section 5.1.

Comparing the MCMCMLE with the corresponding Bayes estimates (Table 4)

there is little difference for the first 6 parameters. For the GWESP and θ8 = log(λ),
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the differences are more noticeable. Part of this has to do with the shape of the joint

posterior of θ7 and θ8 (Figure 5) and the fact that the modal point in the (marginal)

joint posterior clearly is different from the mean.

Because of the relative complexity of CERGMs, simulation of data from models

has been proposed as a means of understanding different aspects of the model (Sni-

jders, 2002; Robins, Pattison, and Woolcock, 2005; Hunter et al., 2008). When we

have a draw from the posterior distribution of the parameters it is natural to use

these parameters to make draws from the posterior predictive distributions. Recall

that y
(ν1)
1 in ω is generated from the model defined by the current parameter θ. Hence,

marginally the graphs y
(ν1)
1 constitute a sample from the distribution

∫

p(y|θ)π(θ|x)dθ,
and a draw from the posterior predictive distribution is thus readily available at the

termination of LISA.

Some examples of posterior predictive distributions are given in Figure 5. The ad-

dition of GWESP improves the fit to the data (in part due to the re-parametrisation,

see Hunter and Handcock, 2006) of the distribution of shared partners (Figure 5,

top two left panels). Note that while Hunter et al. (2008) proposed using predic-

tive distributions conditioned on the MLEs to asses goodness of fit, using the pos-

terior predictive distributions has the advantage that these take the uncertainty of

the parameter estimates into account, effectively marginalising with respect to the

parameters.

The importance of the so called degree distribution is something that frequently

has been brought up in recent years (Frank and Strauss, 1986; Snijders et al., 2006;

Goodreau, 2007) and Hunter et al. (2008) also suggest that one should investigate

how well the estimated model reproduces the degree distribution. While the dyad

independent model does a reasonable job of reproducing the observed degree distri-

bution, the model that includes GWESP does an even better job as is seen in Figure

5.
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6. Concluding remarks

We have proposed an MCMC algorithm, LISA, for Bayesian inference for distribu-

tions where the likelihood function is analytically intractable because of a normalising

constant. We have furthermore demonstrated its use in the case of three different

types of data structures and models. LISA has the dual interpretation that it may

either be considered a Metropolis algorithm that employs an importance sampler in

each iteration to estimate the acceptance probability or simply a standard Metropolis

algorithm on an extended state space. The cardinality of the extended state space

may analogously be interpreted in terms of the tuning constants (K and m) that may

be set arbitrarily to adjust the mixing of the chain. The auxiliary variable method

MCMC introduced by Møller et al. (2006) may be considered a special case of LISA.

The principle behind LISA is also surprisingly simple and the algorithm is easy to

implement since it mostly only relies on sampling in the data space using MCMC.

As compared to the auxiliary variable method, the increase in computation time

is almost negligible as the extra number of iterations due to K,m > 1 is small in

comparison to the number of iterations needed to generate one realisation y
(ν1)
1 ∈ X .

Compared to approximations such as those used by for example Smith and Fahrmeir

(2007) however, the difference is big. The auxiliary distribution may also be talilored

to specific models to increase efficiency (Berthelsen and Møller, 2004a,b, 2006, 2007).

For ERGMs the computational complexity of ML fitting increases with network size

(c.f. Goodreau, 2007; Hunter et al., 2008), mostly to do with the computational

burden of generating independent draws from the model, and we would expect this

to also be the case for LISA (LISA has thus far been successfully been implemented

for directed ERGMs on as many as 106 actors). It is hard however to see how the

accuracy of the inference drawn from approximations can be checked in a way other

than by using an algorithm like LISA.

LISA opens up the possibility of using arbitrary prior distributions in the analysis

to the extent that the performance of the algorithm is not adversely affected by
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“bad” prior distributions in similar fashion to how the choice of ψ affects the mixing as

illustrated in Figure 3. When applying LISA to an ERGM with latent class Koskinen,

Robins and Pattison (2008a) use partially informative prior distributions to control

label switching and partial model degeneracy (Handcock, 2002).

Among the future challenges is the question of how well LISA performs for models

not investigated here. The approach is generally applicable and should apply with

minor modifications to e.g. spatial smoothing for fMRI (Smith and Fahrmeir, 2007)

and geographical autocorrelation (Green and Richardson, 2002) as well as CERGMs

with more complex dependence structures. Other challenges are developing perfect

sampling for in the case where this is not yet available and to develop methods

for model selection. For the latter, in addition to the use of posterior predictive

distributions a further extension could be to look at e.g. the posterior mean of the

likelihood (Dempster, 1974), which requires only the additional computation of c(ψ),

or the posterior distribution of the deviance, which requires much future work.
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