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We investigate natural supercoherent approximations to an otherwise exact representation of the ground state of an anharmonic
oscillator. The truncated wavefunctions are neither normalisable nor unique. Quite different such wavefunctions can give very
accurate estimates for the energy eigenvalue, which are always finite. Possible parallels in quantum optics are drawn.

The coupled cluster method (CCM) [1-3] is
widely recognised as providing one of the most
broadly applicable and most accurate of all currently
available formalisms to deal with the quantum many-
body problem. It has been applied to a diverse range
of condensed matter problems including finite nu-
clei [4], nuclear matter [5], the one-component fer-
mion Coulomb plasma (or “electron gas™) [6], and
systems in quantum chemistry [7,8]. In each such
case the results are at least as accurate as those ob-
tained by any other method, except for the intrin-
sically exact Green function Monte Carlo or other
stochastic simulation techniques that provide the
benchmark results. The CCM is now also beginning
to be applied with some considerable success to
problems drawn from quantum field theory [9]. In
view of this impressive corpus of successful appli-
cations it is interesting to study the fundamental
properties of the method itself, and it is from this
starting-point that the present study originated.

For present purposes we restrict the discussion only
to the ground-state (g.s.) version of the so-called
“normal” version of the CCM. As explained more
fully below, this formalism is based on a very general
“supercoherent” representation - the so-called
exp(S) representation - of the exact ground state of
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the quantum system, with respect to some appro-
priate model or reference state. Similar supercoh-
erent states are also of particular topical interest in
quantum optics [10,11] as possible generalisations
of the one-photon Glauber coherent states and two-
photon or squeezed coherent states [12]. We return
to this analogy at the end. The exp(S) representa-
tion was invented to incorporate fully the linked
cluster theorem of Goldstone [3], and correspond-
ingly to eliminate the unlinked diagrams of many-
body perturbation theory that scale incorrectly with
particle number, and whose appearance thereby leads
to the so-called size-extensivity problem [13]. For
applications to many-body or field-theoretical prob-
lems, this feature is crucial for practical implemen-
tation of the method.

Another feature of the CCM is that it is very
strongly tied to the Schrédinger equation. In partic-
ular, the g.s. energy for example may thereby be cal-
culated other than as the direct expectation value of
the hamiltonian. Furthermore, and related to this,
the requirement of normalisability of the exact
ground state is never explicitly imposed. Normally
in solving for the bound states of a quantum-me-
chanical hamiltonian, one knows that the require-
ment of normalisability of the states plays a key role
in uniquely determining them and their eigenergies.
The question may thus be raised as to the possibility,
at least in principle, of the CCM leading to non-nor-
malisable and non-unique states. It is the purpose of
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this Letter to address this latter question as of in-
terest in its own right and extending beyond the con-
fines of the CCM itself.

To this end we step back from many-body appli-
cations and study instead the very simple but im-
portant one-body model of the one-dimensional
quartic anharmonic oscillator as a concrete example
with which to elaborate on the above points. We first
introduce the usual (oscillator or bosonic) creation
and destruction operators a' and a respectively,
which obey the usual canonical commutation rela-
tion [a, a*]=1, and the corresponding “bare” vac-
uum state |0), defined by 4|0 =0. The model
hamiltonian is then given as,

H=}+a'a+}iA(a+a’)4 1>0. (1)

Its exact ground state |y> and corresponding g.s. en-
ergy E are given by the Schrédinger equation

Hly)=Ely) . (2)

A useful first step is to perform a Bogoliubov
transformation to a new set of canonical operators b
and b7,

b=(1-1*)""*(a-ta"), jt|<1. (3)

While not essential for the basic CCM procedure de-
scribed below, an optimal choice of the parameter ¢
in this change of basis can greatly accelerate the con-
vergence of the resultant CCM equations relative to
their counterparts built from the original operators
a and a’. This is particularly true for large values of
the coupling constant A. The new operators obey the
same basic commutation relation [b, b']=1 for ar-
bitrary real parameter ¢ with —1<t<1, and have a
new vacuum state [¢> such that 4|¢) =0. One can
show that the corresponding relation between the two
(normalised) vacua is,

| =(1—1*)~""*exp(41a'?) |0} . (4)

Hence |¢)> is a squeezed vacuum state. It corre-
sponds to a gaussian wavefunction in configuration
space with a width distorted from that of the bare
vacuum |0). The so-called Hartree or gaussian ap-
proximation is now obtained by choosing ¢={ such
that the variational estimate Eq=Ey(t)=<{o|H|p)
for the g.s. energy is minimised. With this choice of
parameter ¢ one can further show that the hamilton-
ian of eq. (1) may be re-expressed in normal-
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ordered form in terms of the new operators as,
H=Ey(Y+o(ObTh+y(): (b+b1)*: , (5)

with easily derived expressions for the constants Ej,
w and y which we do not quote.

The g.s. CCM now exactly parametrises the ground
state |y) of H in the supercoherent form,

vy =exp($)103, = T 5,(5M)", (6)

and the solution of the Schrodinger equation (2) is
reduced to determining the (c-number) correlation
coefficients {S,}. We note that with the symmetric
hamiltonian of eq. (1), the fact that |y is a parity
eigenstate allows us to impose the constraint that all
coefficients S, with n odd vanish. We also point out
that we could choose, as in ref. [14], to carry out a
more general calculation in which the amplitudes .S,
with 7 odd are not set to zero at the start. In this case
we would find for such spatially symmetric hamil-
tonians as that of eq. (1), that the resultant CCM
equations discussed below trivially permit the so-
lution with the odd amplitudes identically zero. This
must obviously be true in the exact (untruncated)
formalism, but it is also true at every level in the
practical SUB#n truncation scheme discussed below.
We should also note that, in principle, other (non-
parity-conserving) solutions could exist, but for
present purposes we restrict ourselves from the out-
set 10 parity eigenstates.

The g.s. energy E and the non-vanishing (even-in-
dexed) coefficients S, are formally determined by
projecting eq. (2) onto the complete basis of states
(0|b"exp(-S), n=0, 1, 2, ...,

(ple~SHeS|¢)> = (¢9|HeS|p)> =E, (7)
(p|b" e SHeS\9p> =0, n=2,4,... (8)

Use of the nested-commutator expansion for the fac-
tor e~SHe® and the explicit form of eq. (5) for H,
leads easily to the expression for the g.s. energy,

E=Ey(D)+12p(H)(S2+28,), (9)

and, after a lengthy calculation, to the infinite sys-
tem of coupled finite-order multinomial equations’
for the coefficients {S,},
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St (n+1)(n+2)(n+3)(n+4)S,,4
+4n(n+1)(n+2)S,.-
+nlw@)/y(D+6(n=1)1S,+4(n=2)S,_,
+ ;J'k{[20'—1)0—2) +30-1)(k-1)

+2(k—1)(k—=2)10j+kns+a+6(+k—2)0j1k n+2
+66]+k.n}SjSk
+2 ';ljkl[ U+k+1-3)01 141 n+a

ik

+2054 ka2 18568,
+ Y JkIM iy khsemn+a SiSiSiSm

Sk dm

=0, n=24,.., (10)

where the summations over j, k, [ and m run over the
even positive integers.

The exact solution for the set of coefficients {S,}
to the coupled system of equations (10) would thus
produce both the exact (unique and normalisable)
g.s. wavefunction of H via eq. (6), and the exact g.s.
energy E viaeq. (9). In practice however the infinite
system of equations (10) must be approximated by
truncation. A natural way to do this, referred to as
the SUB# approximation scheme, is simply to set all
S;=0 for i> n, and to solve the remaining equations
numerically. It has been shown elsewhere [14,15]
that this scheme is capable of giving extremely pre-
cise results for E for even quite low values of the
truncation index (nz6) for all values of the cou-
pling constant A. For n=6, for example, the accuracy
is better than about 0.01% for all A.

If the operator S is not truncated, the wavefunc-
tion of eq. (6) is certainly an exact representation of
any state not orthogonal to |¢ >, and the untruncated
equations (10) must have the exact {S,} as a solu-
tion for the exact |y). Whether this is the only so-
lution is not clear, but it seems unlikely in view of
the fact that the requirement that the norm of |y)
be finite has not been imposed. At finite SUB# trun-
cations the situation is even more interesting since
for all (finite) n>2 the SUBn-truncated wavefunc-
tion has infinite norm. Indeed even the SUB2-trun-
cated wavefunction is normalisable only for |S,| <4
(cf. eq. (4)).
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It must be emphasised that this non-normalisa-
bility of the truncated CCM wavefunctions is of no
concern when calculating the energy E via eq. (9),
since the method of derivation via eq. (7) has
avoided taking an expectation value of H. We point
out that there also exist techniques [16] for calcu-
lating the expectation values of arbitrary operators
within the CCM which likewise can remain finite
even when the norm is undefined. Thus, we do not
regard this lack of normalisability of the SUB#z-trun-
cated wavefunctions as being at all serious in this
context. In particular there exist large classes of bra
vectors in the dual Hilbert space whose scalar prod-
ucts with the SUBn-truncated ket vector are com-
pletely well-defined and convergent. In practice the
CCM is so arranged as to deal only with such finite
expressions. Nevertheless, the SUBn-truncated sys-
tem of equations (10) can, in principle, have a mul-
tiplicity of different solutions. We may regard such
non-unique solutions as a manifestation of the non-
normalisability and the fact that we are thus working
not in the usual Hilbert space but in some appro-
priately enlarged space.

We have described elsewhere [14] a numerical
method of solution for the SUBn-truncated equa-
tions (10). For the hamiltonian of eq. (1) we de-
fined a so-called “standard” solution with the
following properties: (i) the g.s. energy E is gener-
ated very accurately; (i1) the convergence of E with
increasing truncation index # is initially very rapid,
although the rate of convergence slows appreciably
beyond some value of n which depends on 4 [14];
(ii1) the coefficients S,, decrease rapidly in magni-
tude with increasing index m, at least for m not too
high; and (iv) small variations in the coupling pa-
rameter A and incremental changes in the truncation
index n produce smooth variations in the approxi-
mate solutions {S,,}. Our standard solution is also
the thermodynamically stable solution as discussed
by Kaulfuss and Altenbokum [15] in this context.
We also presented in ref. [14] a single example of a
second (“non-standard™) solution in the specific case
of SUB18 approximation and for A=0.1.

We have since explored several specific numerical
procedures which generate many more examples of
such alternative non-standard solutions, both for
various values of the truncation index and over the
whole range of coupling constants (as well as for an-
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harmonicities more general than quartic). The so-
lutions thus generated are typically ill-mannered with
respect both to small changes in the potential and to
incremental changes in the truncation index. This
behaviour is indicative of the co-existence of several
branches of solutions, especially when coupled with
the fact that these non-standard solutions are usually
quite difficult to obtain numerically (both in terms
of finding them at all and with respect to numerical
convergence ). Furthermore these alternative solu-
tions for {S,,} decrease much more slowly in mag-
nitude with increasing index m, than is the case for
the corresponding standard solution. However, these
solutions very often have the striking feature that the
corresponding g.s. energy E, calculated from eq. (9),
is close to the exact result. Indeed sometimes the re-
sult is extremely accurate. Conversely, only rarely is
it a poor approximation.

We compare in table 1 the non-standard solution
obtained in ref. [14] for the case A=0.1 in SUB18
approximation, with both the corresponding stan-
dard solution and a further new non-standard so-
lution obtained by a different iterative procedure on
the truncated CCM equations. While the three es-
timates for the g.s. energy E are all quite close to the
exact value of 0.55915, the three solutions for the g.s.
wavefunction are seen to be very different.

We show further results in table 2 for the new non-
standard solution for the case A=100, and again

Table 1

Comparison of ground state correlation coefficients {S;} for
SUBI18, with 4=0.1, for the quartic anharmonic oscillator. Case
1 results are for the standard solution, case 2 results are for the
non-standard solution of ref. [14] and case 3 results are for a
new non-standard solution. The respective errors produced in F
are —5.5X10~7%, 0.03% and — 3.99%.
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i S;
case 1 case 2 case 3

2 1.60x10-3 -1.75x10-3 -4.02x10-2
4 —2.89x10-3 —2.45%10-3 -5.92x102
6 7.41%10-3 1.42%x10-* 3.10x10-2
8 —2.65%10-°¢ —4.64x107* 2.29%x10-3
10 1.09x 107 —3.96x10-° ~2.66x1073
12 -4.90x10-° 4.12x10-% 3.54x10*
14 2.32x10-1° —-6.12%10°¢ —1.99%10~¢
16 —1.08x10-" -2.15x10~7 8.84x10~°
18 3.58x10-"3 1.19x10-7 —8.08x10-¢
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compare with the standard solution. The sensitivity
of the results on the SUB»n truncation is also dis-
played for both solutions. We note from table 2 that
as the truncation index # is increased, at least the
lowest few correlation coefficients S, for the non-
standard solution seem to be approaching those of
the standard solution. On the other hand, the actual
convergence properties of the coefficients {S,,} for
even the standard solution, as the SUBn truncation
index n is increased without bound, are still far from
clear. Although of interest in its own right, this prob-
lem is not of direct concern to us here however.

In conclusion, it seems that the non-normalisabil-
ity of the SUB#-truncated supercoherent wavefunc-
tions results in the non-uniqueness of the
approximate representation for the wavefunction.
The number of possible such solutions grows with-
out bound as 7 is increased. Furthermore, at least
some of this class of solutions for a given potential
and at a fixed level of approximation, give very sim-
ilar results for the corresponding eigenvalue E. We
may conjecture that as n—-oco we arrive at an infinite
set of different solutions for |}, only one of which
is normalisable, but all of which give the same (ex-
act) energy E when calculated via the CCM proce-
dure of eq. (7).

Finally we remark that the use of such superco-
herent states may also find applications in quantum
optics. For example the SUB1 and SUB2 states are
respectively just the usual Glauber coherent states
and, for |S,| <4 the squeezed coherent states [12].
For these two cases our supercoherent states may also
be represented as an appropriate unitary (displace-
ment or squeezing) operator acting on the vacuum
|¢>. Such a unitary mapping of the state |¢> of
course preserves its norm. Conversely, in SUBn
truncations with n> 2 (or with | S;| > 1 for n=2) our
supercoherent states are not normalisable and such
unitary operators cannot be defined. It is only within
such a unitary framework that D’Ariano et al. [11]
have proved the impossibility of naively generalising
the squeezed (n=2) two-photon coherent states to
normalisable (n>2) multi-photon coherent states.
We have seen that while the CCM is not a manifestly
norm-preserving (unitary) transformation from the
model wavefunction |¢), physical quantities are
nevertheless well-defined and finite. We hope to re-
turn in a later publication to possible applications of
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Table 2
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Comparison of standard (S) and non-standard (N) solutions for the quartic anharmonic oscillator, with A= 100, in various SUB»
approximations. The last line shows the respective percentage errors in the energy E.

i S,'
SUB18 SUB20 SUB22
N S N S N S
2 9.56x10~2 6.99%10"? 9.60x10~* 8.91x107* 9.66x10~? 9.53%x10-*
4 -7.33%1073 —5.86x1073 —7.34x1073 —6.61x107* ~7.37x107? -7.03x10-3
6 3.97x107* 4.17x107¢ 3.93x10°* 3.05%10°* 3.90x10°* 3.19%10*
8 —2.90x10-° —-1.67x10"* -2.72x107? ~6.92x107° ~2.40x10-° —3.49%x10-°
10 2.64x10-¢ 3.54x10~3 2.40%x10-¢ 1.76x10-* 1.76 X 10~¢ 8.31x10-°
12 —2.64x10-7 -2.71x10°¢ -2.74x1077 -2.20x10-° —2.38x1077 -1.33x10-°
14 2311078 —2.61x10~7 3.09x10-8 5.48%10°® 3.88% 1078 1.04x10°7
16 —1.47x10~* 8.12x108 -2.73x107° 2.54x 108 —4.83x10~° 2.12x107°
18 5.27x10-" ~6.97x10~° 1.67x1071° —4.34%10~° 4.24x10°1° —1.55x107°
20 —5.76x10"2 2.95x10-1° —-2.55x10-" 1.90%x10-'°
22 8.82%x10-" —1.08%x10-!!
% 4.94x10-3 0.391 2.92x107? 0.197 —-4.16x107? 0.085

the present approach to define multi-photon coher-
ent states.
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