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This paper validates the novel concept of utilising piezoelectric vibration energy harvest-
ing (PVEH) beams as a tuned mass damper (TMD)—which suppresses a particular
vibration mode of a generic host structure over a broad band of excitation frequencies.
The proposed device comprises a pair of bimorphs shunted by a resistor, capacitor and

performance is established through Den Hartog's theory for the optimal damping of a
classical TMD. Experimental results demonstrate that such optimal damping is equiva-
lently generated by the PVEH effect for appropriately tuned circuitry. These results
correlate reasonably well with the results of a theoretical analysis introduced in a
previous paper. The proposed TMD beam device combines the relative advantages of
the classical (‘mechanical’) TMD and the shunted piezoelectric patch (‘electrical’ vibration
absorber), presenting the prospect of a functionally more readily-adaptable class of
‘electromechanical’ tuned vibration absorbers. Moreover, with further development, this
dual PVEH/TMD beam device holds the potential of simultaneous energy storage.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A tuned vibration absorber (TVA), in its most generic form, is an auxiliary system whose parameters can be tuned to
suppress the vibration of a host structure. The auxiliary system is commonly a structure that is equivalent to a spring-mass-
damper system, in which case the TVA is referred to here as a ‘mechanical’ TVA. This device can be used in two distinct
ways, resulting in different optimal tuning criteria and design requirements [1]: (a) as a vibration neutraliser (undamped
vibration absorber) [2,3]; (b) as a tuned mass damper (TMD) [4]. The present paper is concerned with the latter application,
wherein the device is used to suppress (dampen) the vibration contributed by a specific troublesome natural mode of
frequency ΩT of the host structure over a wide band of excitation frequencies ω. Following the classical theory of Den Hartog
[1,4], apart from the optimal tuning of the device's frequency ωa, the TMD requires the prescription of an optimal level of
damping.

As discussed in [5], the practical implementation of the correct amount of damping in a TMD makes its design more
challenging relative to the neutraliser and, once implemented, such damping may be difficult to adjust in response to a
variation in the system parameters. The requirement for damping means that simple, compact and readily tuneable beam-
like designs, that are popular with neutralisers [2,3], are relatively difficult to realise for TMDs. Beam-like (cantilever-type)
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Nomenclature

�ð Þ; ð Þ dð Þ=dt; dð Þ=dx
∼ð Þ complex amplitude of quantity

(dimensionless)
a constant, defined below Eqs. (12), (13)
A viscous damping constant of bending moment

(N ms)
b width of piezoelectric beam (m)
B flexural constant of bending moment (Nm)
ca viscous damping coefficient of equivalent

2-degree-of-freedom model of short-circuited
TMD (Ns/m)

camb ambient viscous damping coefficient per unit
length of beam (Ns/m2)

C external capacitor (F)
Cp capacitance of each piezo layer (F)
d31 piezoelectric coefficient (m/V)
DðωÞ dynamic stiffness matrix, Eqs. (10), (11)
DmechðωÞ dynamic stiffness matrix of electrically

uncoupled beam, Eq. (11)
f constant defined below Eqs. (12), (13)
f force/moment vector of beam element,

Eq. (10)
F force at interface between TMD and host (N)
Fext external excitation force on host (N)
F0, Fl forces at ends of beam element (N)
GðωÞ function defined in Eq. (11)–(13)
hp thickness of piezo layer (m)
hpc distance between mid-surface of one piezo

layer and neutral surface (m)
Hhost

€yAFext
ðωÞaccelerance of host linking €yA and Fext

(ms−2 N−1)
HhostþTMD

€yAFext
ðωÞ accelerance of host plus TMD linking €yA
and Fext (ms−2 N−1)

i(t) current produced by one piezoelectric
beam (A)

k wavenumber, Eq. (17)
ka stiffness of equivalent 2-degree-of-freedom

model of short-circuited TMD (N/m)
K Tð Þ
A stiffness of modal model of host at A at

targeted mode (N/m)
l overhanging length of each piezoelectric

beam (m)
L inductor of external circuit (H)
m mass per unit length of beam (kg/m)
ma total mass of TMD (as per demarcation in

Fig. 1) (kg)
ma,eff, ma,red effective and redundant parts of ma (kg)
M Tð Þ

A mass of modal model of host at A at targeted
mode (kg)

n ratio of C to Cp

rhostyAFext
ðωÞ receptance of host linking yA and Fext (m/N)

rhostþTMD
yAFext

ðωÞ receptance of host plus TMD linking yA and
Fext (m/N)

rTMD
yAF

ðωÞ receptance of TMD linking yA and F (m/N)
R resistor external circuit (ohms, denoted by Ω)
RijðωÞ term in ith row, jth column of receptance

matrix D−1ðωÞ
R effective mass fraction of TMD
s generic mode number of host
T number of targeted mode of host
u response vector of beam element, Eq. (10)
u displacement at a generic point on TMD beam

element (m)
u0, ul displacements at ends of beam element (m)
v tð Þ voltage developed across a TMD beam (V)
x distance along beam from clamped end (m)
yA targeted degree of freedom (Fig. 1) (m)
Yp Young modulus (N/m2)
ZðωÞ impedance of external circuit (Ω)
αvF ðωÞ frequency response function linking v and

F (V/N)
αvFext ðωÞ frequency response function linking v and

Fext (V/N)
εs33 permittivity of piezo at constant strain (F/m)
ζ1 viscous damping ratio of fundamental mode of

a short-circuited TMD beam under clamped–
free conditions

ζa viscous damping ratio of equivalent 2-degree-
of-freedom model of short-circuited TMD

ζaopt optimal value of ζa, Eq. (6)
θ0, θl rotations at ends of beam element (rad)
ϑ electromechanical coupling constant in

Eq. (11)
μ ratio of effective mass of TMD to host, Eq. (8)
ϕ̂

sð Þ
A mass-normalised mode shape of host struc-

ture (kg−0.5)
ω excitation frequency (rad/s)
ω1 undamped natural frequency of fundamental

mode of a short-circuited TMD beam under
clamped–free conditions (rad/s)

ωa tuned frequency of TMD under short-circuit
conditions (rad/s)

ωaopt optimal value of ωa, Eq. (5), (rad/s)
Γ0; Γl moments at ends of beam element (Nm)
Ωs generic eigenfrequency of host (rad/s)
ΩT targeted eigenfrequency of host (rad/s)
ΩT

0 modified targeted eigenfrequency of host,
Eq. (7) (rad/s)
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TMDs proposed and/or patented in [6,7] apply a constrained layer viscoelastic damping treatment to the beam, which has
several disadvantages relative to the piezoelectric shunt damping method discussed in the next paragraph [5].

In the “electrical TVA” the auxiliary system is a piezoelectric patch directly bonded to the host structure and shunted by
appropriate circuitry [8–13]. When shunted by an external inductor, resistor circuit and appropriately tuned, the patch is an
electrical analogue of the TMD, targeting one mode [8–11]. The use of more complex shunt circuits and control strategies
allows the targeting of more than one mode simultaneously by a single patch [12,13]. The electrical TVA is essentially an
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Fig. 1. Schematic of electromechanical TMD attached to a host structure [5].
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advantageous alternative to conventional viscoelastic damping treatments [5,8–11]. However, when compared to the
mechanical TMD, it is of limited application. Whereas the mechanical TMD can be used to suppress any vibration at a point,
regardless of its cause, the piezoelectric patch is only effective against vibration arising from flexure of the host [5].
Moreover, whereas the mechanical TMD is readily applicable to any arbitrary host structure (the only data required are the
frequency and mass of the targeted mode [1,4,5]), the analysis required to optimise the electrical TVA is not tractable to
complex generic host structures [5].

A recent paper by the authors [5] introduced the novel concept of utilising a piezoelectric vibration energy harvesting
(PVEH) beam as a TMD, thereby realising an “electromechanical” TMD. Such a TMD combines the relative advantages of the
mechanical and (single-mode) electrical TVAs, apart from having the advantageous beam-like design. Fig. 1 shows the
electromechanical TMD: it comprises a pair of piezoelectric beams (bimorphs) shunted by a resistor, capacitor and inductor
connected in various alternative circuit configurations (the double-cantilever arrangement minimises rotational effects at
the attachment point, as in practical realisations of beam-like TVAs [2,3]). The optimal damping required by this TMD is
generated by the PVEH effect of the bimorphs. The concept was inspired by the largely overlooked fact that PVEH beams are,
in many practical applications, mechanical absorbers of the vibration of the structure to which they are attached, as
observed by the authors in [14]. The paper in [5] presented the theoretical basis of this dual PVEH/TMD beam device and
verified the theory by two independent analytical methods [14]: the analytical modal analysis method and the dynamic
stiffness method. The simulation results demonstrated that the benchmark degree of vibration attenuation, as defined by
Den Hartog's classical theory [1,4], can be achieved through appropriate tuning of the circuitry for a device whose effective
mass is less than 2 percent of the equivalent modal mass of the host structure.

The purpose of the present paper is to experimentally validate the concept and theory of the electromechanical TMD.
As in [5], the piezoelectric beams in Fig. 1 are either separately connected across identical impedances (“separate circuits”
configuration) or both connected across the same impedance (“single circuit” configuration). In each case the impedance is
either a parallel arrangement of a capacitor, inductor and resistor (C∥L∥R), or a capacitor in parallel with a series
combination of an inductor and resistor (C∥(L−R)).

For completeness, the theory developed in [5] is represented in a concise form using exclusively the dynamic stiffness method
(DSM) for the electromechanical analysis. The theory is further developed to predict the frequency response function of the voltage
generated by the TMD, which was not studied in [5], and which is also experimentally investigated in this paper.

It is noted that, although the electromechanical TMD performs simultaneously the two functions of TMD and PVEH, the
latter function can only be of any practical use if there is a means of energy storage. However, this would require nonlinear
AC–DC rectification devices [15] and the analysis of such systems is outside the scope of this paper.

It is also noted that a similar observation on the vibration absorbing effects of energy harvesting devices was made by
another author in a recent paper [16]. In that paper, a vibration absorber composed of a corrugated sheet of piezoelectric
material shunted by a pure resistance load and surmounted by a top plate was proposed and used to suppress flexural
vibrations of a plate while simultaneously harvesting energy. Unlike the research of the present paper, the optimisation of
that device was not done with reference to a benchmark. Moreover, just like in the present paper, the electricity generated
(“harvested”) was not stored.

The following section (Section 2) presents the theory. The experimental design and procedure is described in Section 3.
The experimental and theoretical results are presented and discussed in Section 4.
2. Theory

The purpose of a TMD is to dampen the targeted resonance peak of the frequency response function (FRF or receptance)
connecting the response at the attachment point yA to the external excitation Fext on the host structure i.e.
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jrhostþTMD
yAFext

ðωÞj≪jrhostyAFext
ðωÞj for the range of excitation frequencies ω over which the targeted host structure mode is dominant,

where rhostþTMD
yAFext

ðωÞ, rhostyAFext
ðωÞ are defined as the complex ratio ~yA=

~F ext, with and without the TMD attached respectively, for
harmonic functions yA ¼ Ref ~yAejωtg, Fext ¼ Ref ~F extejωtg (similar notation will be used throughout for other time-varying
quantities). Fig. 1 illustrates the boundaries of the host structure and the TMD. Neglecting the damping in the original host
structure, its receptance is given by [17]

rhostyAFext
ðωÞ ¼ ∑

∞

s ¼ 1

fϕ̂ðsÞ
A g

2

Ω2
s−ω2

(1)

where Ωs is the circular frequency of the sth mode and ϕ̂
ðsÞ
A the corresponding mass-normalised mode-shape at the degree of

freedom being targeted (the vertical displacement at A in Fig. 1). It is noted from host/TMD demarcation in Fig. 1 that the
modal parameters in Eq. (1) should include the effect of the attachment block and that part of the bimorphs is held inside
the block. The mode to be targeted by the TMD is denoted as the Tth mode (s¼ T), of frequency ΩT . Without loss of
generality, taking Fext to be located at the targeted degree of freedom, it can be shown that the point receptance of the
modified structure is given by

rhostþTMD
yAFext

ðωÞ ¼
rhostyAFext

ðωÞ
1þ rhostyAFext

ðωÞ=rTMD
yAF

ðωÞ (2)

where rTMD
yAF

ðωÞ ¼ ~yA=
~F , is the attachment point receptance of the TMD and F is the force at the interface between the TMD

and the host structure. The tuned frequency ωa of the TMD is defined as its lowest undamped natural frequency with its
base (point of attachment to the host structure) fixed; this frequency coincides with the lowest anti-resonance in rTMD

yAF
ðωÞ

(under undamped conditions) [2,5]. When ωa is roughly in the region of ΩT , the effect of the inclusion of the TMD, in the
absence of any damping in it, is to split the original resonance peak at ω¼ΩT in rhostyAFext

ðωÞ into two peaks separated by an
anti-resonance at ω¼ωa. With reference to Eq. (2), an optimised adjustment of the TMD's electrical parameters (and hence
rTMD
yAF

ðωÞ) then allows the replacement of the twin peaks and anti-resonance in rhostþTMD
yAFext

ðωÞ by a plateau, thereby achieving
the desired suppression. Such an optimisation requires a benchmark (target). The establishment of the benchmark is
outlined in Section 2.1. The subsequent Section 2.2 will outline the derivation of rTMD

yAF
ðωÞ for given R, L, C circuitry, with a

view to optimise rhostþTMD
yAFext

ðωÞ via the adjustment of the electrical parameters. Section 2.3 derives an expression for the
voltage developed by the TMD. The analysis assumes that the TMD beams are symmetrically disposed about the clamp and
that rotational effects at the clamp are negligible. As in previous energy harvesting works e.g. [14,18,19], it is assumed that
the electrodes bracketing the upper and lower surfaces of each piezoelectric layer of either beam (Fig. 1) are infinitely thin,
flexible, have negligible resistance and run along the whole width b and overhanging length l of the beam.

2.1. Establishing the benchmark

The benchmark performance for the electromechanical TMD is derived by applying Den Hartog's classical TMD theory [4]
to the proposed TMD in Fig. 1 under purely mechanical (electrically uncoupled) conditions (achieved by short-circuiting the
bimorphs). This derivation requires two steps [5]: (a) reduction of the distributed-parameter beam structure of the TMD into
an equivalent two-degree-of-freedom (2-dof) model; and (b) adaptation of Den Hartog's analysis [4] to the system formed
by the combination of the 2-dof TMD model and the targeted modal component of the host structure. The parameters of the
equivalent 2-dof model of the short-circuited electromechanical TMD are

ka ¼ma;effω
2
a ; ca ¼ 2ζama;effωa; ma;eff ¼ Rma; ma;red ¼ ð1−RÞma (3a–d)

ma is the total mass of the TMD (comprising the two overhanging portions of the bimorphs) and ma;eff , ma;red are the
effective and redundant mass portions respectively, R being the effective mass fraction (for the present case of beams
without a tip mass, R¼ 60:49% [2]). In accordance with the definition of the tuned frequency ωa given in the previous
section, the tuned frequency ωa and the viscous damping ratio ζa of the TMD bimorph absorber under short-circuit
conditions are

ωa≡ω1; ζa≡ζ1 (4a,b)

where ω1, ζ1 denote the undamped natural frequency and damping ratio of the fundamental mode of free vibration of
either of the actual (distributed-parameter) electrically uncoupled beams with their base fixed in both translation and
rotation (“clamped–free”). It is noted that the symbols ωa and ζa are reserved for short-circuit conditions only (as observed in
[14], the PVEH effect considered in the subsequent sections causes a slight shift in the tuned frequency and is typically not at
all equivalent to an added viscous damper).

From Eq. (1), for excitation frequencies ω≈ΩT , the original host structure can approximately be represented as a mass-

spring system of mass MðTÞ
A ¼ 1=fϕ̂ðTÞ

A g
2
and stiffness K ðTÞ

A ¼Ω2
TM

ðTÞ
A . The optimal tuned frequency ωaopt and optimal viscous

damping ratio ζaopt are then given by the following expressions [5]:

ωaopt

Ω0
T

¼ 1
1þ μ

(5)
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ζaopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3μ
8ð1þ μÞ3

s
(6)

where the modified targeted host mode frequency ΩT
0 and mass ratio μ are given by

ΩT
0 ¼ΩT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðTÞ

A =fMðTÞ
A þma;redg

q
(7)

μ¼ma;eff=fMðTÞ
A þma;redg (8)

The attachment point receptance of the equivalent 2-dof TMD model is given by

frTMD
yAF

ðωÞg2�dof

uncoup
¼ ~yA

~F
¼ −ma;effω

2 þ ka þ jωca
−ma;effω2ðka þ jωcaÞ−ma;redω2ð−ma;effω2 þ ka þ jωcaÞ

(9)

The benchmark performance of the TMD is defined as the response rhostþTMD
yAFext

ðωÞ calculated from Eq. (2) with
frTMD

yAF
ðωÞg2�dof

uncoup;opt
substituted for rTMD

yAF
ðωÞ, where frTMD

yAF
ðωÞg2�dof

uncoup;opt
is calculated from Eq. (9) with optimal values for ka

and ca that are calculated from Eqs. (3) with ωa and ζa set to their optimal values (defined by Eqs. (5) and (6)).
In practice, for the actual (distributed-parameter) TMD, it is easy to make ω1 (≡ωa, see Eq. (4a)) equal to ωa opt. However,

ζa opt is difficult to implement in practice. The difference between ζa opt and the actual value of ζ1 (≡ζa, see Eq. (4b)) is
addressed by the electrical tuning of the proposed TMD.

2.2. Derivation of rTMD
yAF

ðωÞ for the electromechanical TMD [5]

Let (u0, θ0), (ul, θl) denote the absolute displacement and rotation at the respective ends of either overhanging
piezoelectric beam comprising the TMD. Let (F0, Γ0), (Fl, Γl) denote the applied force and moment at these locations.
Assuming harmonic vibration at circular frequency ω i.e. u0 ¼ Ref ~u0ejωtg, etc., the dynamic stiffness matrix DðωÞ of the
piezoelectric beam relates the complex amplitudes of the force/moment excitation at its ends with the complex amplitudes
of the corresponding displacements/rotations:

f ¼DðωÞu; f ¼ ~F 0 ~Γ0
~F l ~Γ l

h iT
; u¼ ~u0 ~θ0 ~ul

~θ l
h iT

(10a–c)

The dynamic stiffness matrix can be expressed as [14]

DðωÞ≡DmechðωÞ þ ϑGðωÞ

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

2
6664

3
7775 (11)

The second matrix on the right hand side is the contribution from the PVEH effect. ϑ is the electromechanical coupling
constant of the piezoelectric beam [14] and GðωÞ is dependent, among other things, on the impedance of the external circuit.
The origin of GðωÞ is explained by consideration of the current generated by one piezoelectric beam, which is obtained by
integrating the charge density (defined by the piezoelectric constitutive relation [14]) over the electrode area and
differentiating with respect to time. For a piezoelectric beam that is individually connected to an (external) impedance
ZðωÞ, as in the separate circuits configuration [5]:

~v ¼ Gð ~θ l− ~θ0Þ (12)

GðωÞ ¼ −jωf d31Yphpcb
jωðf =aÞCp þ 1=ZðωÞ (13)

In the above equations: v is the output voltage developed across the piezoelectric beams (see Fig. 1); d31 is the
piezoelectric coefficient, Yp is the Young modulus of the piezoelectric material; hpc is the distance between the mid-surface
of one piezo layer and the neutral surface of the piezoelectric beam's composite cross-section; f ¼ 1 and a¼ 2 for a bimorph
with the upper and lower piezo layers wired in series (as in the present case, Fig. 1) [14]; Cp is the capacitance of each piezo
layer of dimensions l� b� hp, given by

Cp ¼
εs33bl
hp

(14)

εs33 being the permittivity at constant strain.
Substituting the relevant expression for GðωÞ into Eq. (13) and defining n¼ C=Cp, the following expressions are obtained

for the separate circuits configuration:

GðωÞ ¼ ω2f d31Yphpcb
1=Lþ jω=R−ω2Cpðf =aþ nÞ for C∥L∥R impedance (15)
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GðωÞ ¼ −f d31YphpcbðjωR−ω2LÞ
Cpf1=Cp þ ðjω=RÞðf =aþ nÞ−ω2Lðf =aþ nÞg for C∥ðL−RÞ impedance (16)

For the single circuit configuration, the currents generated by each bimorph are added together before delivery to the
external circuit; hence, assuming a perfect mechanical and electrical symmetry, the expressions for GðωÞ are obtained by
replacing f by 2f in Eqs. (15), (16) [5].

The first term of Eq. (11) is the dynamic stiffness matrix of the beam under electrically uncoupled conditions. Its
elements are given in [14] and are expressions of the wavenumber k:

k¼ω1=2 m

B̂=½1−jcamb=ðmωÞ�

( )1=4

(17)

B̂¼ B½1þ jωA=B� (18)

where m is the mass per unit length of the beam, camb is the ambient damping coefficient per unit length, and B, A are
respectively the bending stiffness and bending damping constants of the composite cross-section of the piezoelectric beam.
If camb is neglected, then A can be calculated from an experimentally determined value of ζ1 [14]:

A¼ 2B
ω1

ζ1 (19)

It is shown in [14] that determination of A by this method introduces no error in the FRF level of the beam at its fundamental
clamped–free mode. The method is hence justified in the present application since, by definition (Eqs. (4a,b)), the bimorph TMD is
designed to be effective around its first clamped–free mode (regardless of the targeted mode of the host structure).

The expression for rTMD
yAF

ðωÞ is obtained by solving Eq. (10a) for u, then setting ~θ0 ¼ 0, in addition to ~F l, ~Γ l ¼ 0, expressing ~Γ0 in
terms of ~F 0 and substituting ~u0 ¼ ~yA and ~F 0 ¼ ~F=2 (in order to account for the two symmetric bimorphs constituting the TMD):

rTMD
yAF

ðωÞ ¼ ~yA
~F

¼ 1
2

R11ðωÞ−R12ðωÞR21ðωÞ=R22ðωÞ
� �

(20)

where RijðωÞ is the term in ith row, jth column of the receptance matrix D−1ðωÞ. This expression is then used within Eq. (2) to
obtain rhostþTMD

yAF
ðωÞ.

2.3. Derivation of the voltage developed by the electromechanical TMD

Let αvF ðωÞ denote the FRF relating the voltage v with the interface force F (voltage generated per unit interface force).
From Eq. (12), noting that ~θ0 ¼ 0:

αvF ðωÞ ¼
~v
~F
¼ G

~θ l
~F

(21)

The expression for ~θ l is obtained by solving Eq. (10a) for u, then setting ~θ0 ¼ 0, in addition to ~F l, ~Γ l ¼ 0, expressing ~Γ0 in
terms of ~F 0 and substituting ~F 0 ¼ ~F=2. The expression for αvF ðωÞ in Eq. (21) then becomes:

αvF ðωÞ ¼ 1
2GðωÞ R41ðωÞ−R42ðωÞR21ðωÞ=R22ðωÞ

� �
(22)

With reference to Fig. 1, what is actually of interest is the FRF relating the voltage v with the external force Fext (voltage
generated per unit external force), denoted by αvFext ðωÞ. This FRF is obtained as follows:

αvFext ðωÞ ¼
~v

~F ext
¼ ~yA=

~F ext

~yA=
~F

 !
~v
~F
¼

rhostþTMD
yAFext

ðωÞ
rTMD
yAF

ðωÞ αvF ðωÞ (23)

3. Experimental design and procedure

Fig. 2(a) and (b) respectively show photographs of the experimental set-ups for the separate circuits and single circuit
configurations of the electromechanical TMD. The electromechanical TMD, composed of two symmetrical shunted bimorph
beams, was attached to the host structure via the attachment block. The host structure was mounted on an electrodynamic
shaker which provided the external excitation (Fext in Fig. 1). The theory developed in the previous section applied for a
generic host structure. However, without loss of generality, the host structure in the experimental validation study was
taken to be a free–free beam with an attachment block in the middle and the TMD was targeted at dampening its first
flexural mode. It is noted that, like the classical TMD, the proposed TMD acts directly on only one degree of freedom at its
point of attachment. Hence, if it was desired to target the second flexural mode of the free–free beam, the TMD would need
to be attached at a different point along the beam since the beam's midpoint is a node for displacement in that mode
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S. Rafique et al. / Journal of Sound and Vibration ] (]]]]) ]]]–]]] 7
(a convenient location in that case would be around a fifth of the total length away from the middle since the displacement
there would be substantial, with minimal slope rotation).

The main design and development activities performed in order to produce the experimental set-up can be summarised
as follows:
�

�

P
d

Mechanical aspect:
○ Experimental identification of the modal parameters (resonance frequency ΩT , equivalent mass MðTÞ

A ) of the targeted
mode of the host structure.

○ Design and procurement of the necessary bimorph beams that, when short circuited, had a fundamental clamped–
free frequency ωa (Eq. (4a)) that satisfied the TMD optimal tuning condition defined by Eq. (5), for a given prescribed
mass ratio (defined by Eq. (8)).
lea
am
Electrical aspect:
○ Design and development/procurement of R, C, L circuitry that could be easily adapted to any one of the four

configurations considered (C∥L∥R or C∥(L−R) impedance in either a separate circuits or single circuit configuration, see
Introduction), based on calculations that optimised the circuit parameters against the benchmark established in
Section 2.1.
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3.1. Experimental design—mechanical aspect
The host structure (i.e. free–free beam with attachment block, without TMD, Fig. 2(a)) was mounted on the shaker via a force
gauge which measured FextðtÞ. The signal €yAðtÞ was measured by a tiny accelerometer and conditioned prior to being sent to the
data acquisition system. A pc-controlled data-acquisition system was used to generate the excitation signal (sent to the shaker via
an amplifier) and to acquire the signals €yAðtÞ, Fext tð Þ. Random excitation (band-limited white noise) was fed to the shaker and the
FRF Hhost

€yAFext
ðωÞ f ¼−ω2rhostyAFext

ðωÞg was calculated by the data acquisition system software from the acquired signals.
The undamped natural frequency and damping ratio of the targeted mode were determined by applying the circle-fit

method [17] to the measured FRF. A multimodal curve fitting method [17] was then used to determine the mass-normalised
mode shapes from the measured FRF. This method was based on the modal series expansion of Eq. (1), which neglects
damping in the structure. The series expansion was truncated beyond the second mode (which is the first flexural mode, the
first mode simply defining rigid body motion (i.e. Ω1 ¼ 0, Ω2 ¼ΩT )). The measured FRF was then checked against the one
reconstructed from Eq. (1) using the identified modal parameters. In this reconstruction, a damping term of jζ̂2Ω2ω was
added to the denominator of the second term of the series expansion of Eq. (1) (where the host structure damping
ζ̂2 ¼ 0:14%). Agreement in resonance amplitude level in the flexural mode between the measured and reconstructed FRFs
confirmed that the damping present in the host structure was indeed negligible.

According to Fig. 1, the TMD, of mass ma, is comprised of the overhanging portions of the bimorphs. The mass of the
overhanging part of each of the required bimorph beams is ma=2, and their first clamped–free natural frequency under short
circuited conditions is the tuned frequency of the TMD ωa (as per Eq. (4a)). Having determined MðTÞ

A and prescribing a mass
ratio μ in the region of 2 percent, the required value of ma, was estimated from Eq. (8) and (3c,d). The required tuned
frequency ωa was then estimated from Eqs. (5) and (7) such that it was optimal. The bimorphs were then specified giving
due consideration to Eq. (4a) where [18]:

ω1 ¼ ð1:87510=lÞ2
ffiffiffiffiffiffiffiffiffiffi
B=m

p
(24)

The above described calculations determined the choice of the bimorphs, which were manufactured by Piezo Systems Inc.
Each comprised two PZT-5A4E layers bonded to the top and bottom surfaces of an aluminium shim. Each bimorph had
series-connected layers and its geometric, material and electromechanical properties, as provided by the manufacturer, are
given in Table 1(a). It is noted that the total length of the bimorph as received from the manufacturer was 72.5 mm. Of this
length, 58.75 mmwas overhung to attain the required tuned frequency. The clamped length of the piezos could be regarded
as a simple rigid mass addition to the host structure. Hence, with the TMD attached, the host structure parameters Mð1Þ

A ,
Mð2Þ

A ð ¼MðTÞ
A Þ, Ω2ð ¼ΩT Þ were very slightly corrected to account for this, their final values being given in Table 1(b).

Using the relevant parameters in Table 1, the final value of the mass ratio recalculated from Eq. (8) and (3c,d) was μ¼ 1:93%.
Also, from Eqs. (4a), (24), (5) and (7) it was evident that ω1 (i.e. ωa)≈ωaopt i.e. the electrically uncoupled system was approximately
optimally tuned. Using Eq. (6), the optimal damping ratio was calculated to be ζaopt ¼ 8:28%. This value was used for the benchmark
model, against which the experimental and theoretical performances of the electromechanical TMD were judged.

3.2. Experimental design—electrical aspect

The theoretical simulations performed in [5], covering a broad range of performance, including the optimal one for each
circuit configuration in Figure, considered R, L, C parameters in the following ranges:
�

P
d

Inductors L in the range 7.66–13.5 H.

�
 Resistances R in the range of 100–1000 kΩ.
Table 1
Parameters of electromechanical TMD (a) and modal parameters of host structure (b).

(a) Parameters of electromechanical TMD

Overhanging length of each beam, l (mm) 58.75
Width of each beam, b (mm) 25
Thickness of each piezoelectric layer, hp (mm) 0.267
Thickness of each shim hsh (mm) 0.285
Young modulus of the piezoelectric, Yp (GPa) 66
Young modulus of the shim, Ysh (GPa) 72
Mass of TMD, ma (comprising overhanging portions of beams) (kg) 15� 10−3

piezoelectric coefficient d31 (pm/V) −190
permittivity at constant strain εs33 (F/m) 1:3555� 10−8

(b) Modal parameters of host structure

Ω1=ð2πÞ(Hz) 0
Mð1Þ

A ¼ 1=fϕ̂ð1Þ
A g

2
(kg)

0.278

Ω2=ð2πÞ (Hz) 127.7
Mð2Þ

A ¼ 1=fϕ̂ð2Þ
A g

2
(kg)

0.463
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Capacitors in the range 74–400 nF (the capacitance Cp of each piezo layer was calculated from Eq. (14) to be 74.565 nF,
which closely matched with the measured value of 76 nF).
The resistances and capacitances required were available from off-the-shelf variable resistance and capacitance boxes
(two of each, in the case of the separate circuit configuration). The inductor requirement was covered by using one off-the-
shelf variable inductor box, which provided inductances of up to 12.11 H (with a resolution of 0.001 H), and a custom-made
variable inductor box, which provided inductances in the range 0.5–20 H (with a resolution of 0.5 H). This latter box
contained five copper-wound inductors of different values that could be interconnected in different ways; this not only
produced a range of values of inductance, but could also be used to augment the range of the other inductance box; hence,
for example, it was possible to produce a separate circuits configuration with an inductance of 13 H in each circuit.

3.3. Experimental procedure

The experimental validation procedure was similar to that described in Section 3.1, except that the shunted
electromechanical TMD was attached to the host structure, as in Figs. 1 and 2, and the generated voltage vðtÞ was acquired,
in addition to €yAðtÞ, FextðtÞ. The signal vðtÞ was measured by the data acquisition system itself (i.e. connected directly to it
from the circuit). Band-limited white noise was fed to the shaker and the FRFs HhostþTMD

€yAFext
ðωÞ f ¼−ω2rhostþTMD

yAFext
ðωÞg, αvFext ðωÞ

were calculated by the data acquisition software. Linearity was ascertained by monitoring the coherence function between
the acquired signals, as in [18].

Prior to performing the tests presented in this paper, tests similar to those in [18,19] were performed to determine the
damping ratio of the fundamental clamped–free mode of the electrically uncoupled bimorphs (ζ1, see Eq. (4b)), which was
necessary for the determination of the bending damping constant A (Eq. (19)). By applying the fitting techniques in [18] or
[19] to the FRF relating vðtÞ to €yAðtÞ, ζ1 was estimated to be 1 percent. The value for A used in all theoretical results for
rhostþTMD
yAFext

ðωÞ in the subsequent section was based on this value of ζ1.

4. Experimental and theoretical results

Fig. 3 shows satisfactory agreement between the experimental and theoretical results for rhostþTMD
yAFext

ðωÞ for the case where
the bimorphs were short-circuited. The theoretical result was obtained using the dynamic stiffness equations in Section 2.2
by setting GðωÞ≡0. Also shown in Fig. 3 are the benchmark response of the TMD and the experimental result for rhostyAFext

ðωÞ.
The benchmark performance, denoted by frhostþTMD

yAFext
ðωÞg

uncoup;opt
, was calculated using the equivalent two-degree-of-freedom

model of the TMD, as per penultimate paragraph of Section 2.1, and so is based on ζa ¼ ζa opt(¼8.24 percent). It is noted that
a virtually identical benchmark performance was obtained by calculating rhostþTMD

yAFext
ðωÞ using the dynamic stiffness equations

in Section 2.2 (which refer to the actual distributed-parameter TMD) with GðωÞ≡0 and a value for A based on ζ1 set to
ζa opt(¼8.24 percent) instead of the actual value of 1 percent.

In the subsequent sections, the electrical coupling (PVEH) effect is exploited to make up for the shortfall in the actual
damping level relative to the optimal value. As stated in [5], previous research e.g. [14,18,19] has proved that the PVEH effect
is typically not at all equivalent to an added viscous damper (unless the electrical load is a pure resistance of sufficiently low
value [14]). However, the following experimental and theoretical results will show that this fact is no obstacle to achieving
a desired response rhostþTMD

yAFext
ðωÞ with the electromechanical TMD that is at least as good as that achieved by the

benchmark TMD.
In the following sections, for each of the four circuit configurations considered, the experimental and theoretical results

for rhostþTMD
yAFext

ðωÞ were both optimised with the aim of making jrhostþTMD
yAFext

ðωÞj less than or equal to the benchmark
function jfrhostþTMD

yAFext
ðωÞg

uncoup;opt
j over a wide frequency range. In the case of the experimental results, this was done by

manual tuning of the R, L, C parameters, using the predicted (i.e. theoretical) optimal parameters as a guide. In the case of
the theoretical results, the R, L, C parameters were optimised using the Matlab Optimization Toolbox [20], following the
Fig. 3. Theoretical (unlabelled dashed line) and experimental (solid line) receptance of host structure with short-circuited TMD attached.
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procedure described in [5]. For a given external capacitance C ¼ nCp the theoretical optimisation process used an initial
approximation for L that approximately maximised the electrical effect G over the frequency range of the targeted mode
(where ω≈ωa); for the separate circuits case, the denominator of Eqs. (15) or (16) is approximately minimised for

Lopt;approx ¼
1

Cpðnþ f =aÞω2
a

(25)

The above approximation applies for the separate circuit cases; for the single circuit configuration, the approximation is
given by replacing replacing f by 2f in Eq. (25).
Fig. 4. Theoretical (unlabelled dashed line) and experimental (solid line) receptance of host structure with TMD attached, single circuit configuration with
C∥L∥R impedance, at three different conditions: (a) theoretical optimal conditions R¼22.5 kΩ, L¼10 H, C¼1.05Cp; (b) experimental optimal conditions
R¼22.5 kΩ, L¼10.5 H, C¼1.18Cp; and (c) non-optimal conditions R¼500 kΩ, L¼10 H, C¼1.05Cp.
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4.1. Single circuit with C∥L∥R load

The optimal electrical parameters were predicted to be R¼22.5 kΩ, L¼10 H, C¼1.05Cp and Fig. 4(a) shows the predicted
and measured FRFs rhostþTMD

yAFext
ðωÞ for these parameters; the experimental response was near, but not quite, optimal. Fig. 4(b)

shows that optimal conditions were achieved experimentally for slightly different parameters (R¼22.5 kΩ, L¼10.5 H,
C¼1.18Cp); this figure also contains the theoretical prediction for the same parameters. The results show that: (i) there was
reasonable agreement between the predicted and measured FRFs for the same electrical parameters; (ii) a response that was
at least as good as the benchmark was indeed achievable experimentally as well as theoretically; (iii) the experimental
optimal response was achieved for electrical parameters that were approximately in the region of the corresponding
predictions. Fig. 4(c) shows that the predicted and measured responses followed the same trend as the resistance was
increased to a non-optimal value of 500 kΩ.

Fig. 5(a–c) shows reasonable agreement between the predicted and measured voltage FRFs αvFext ðωÞ for electrical
parameters respectively corresponding to those in Fig. 4(a–c). Fig. 5(a,b) shows that optimal conditions resulted in a broad
peak in the voltage FRF over the region of the targeted mode; this plateau disappeared as the conditions were made
significantly non-optimal (Fig. 5(c)).

It is noted that research into the electrical TVA (shunted piezoelectric patch) typically did not include an external
capacitor e.g. [8]. The inclusion of the external capacitor C in the proposed TMD is justified by two reasons: it reduces the
Fig. 5. Theoretical (dashed line) and experimental (solid line) voltage FRF (voltage v per unit excitation force Fext) for single circuit configuration with
C∥L∥R impedance. (a), (b) and (c) respectively correspond to the conditions in Fig. 4(a), (b) and (c).

Fig. 6. Theoretical (unlabelled dashed line) and experimental (solid line) receptance of host structure with TMD attached, single circuit configuration with
L∥R impedance (no external capacitor) at experimental optimal conditions R¼40 kΩ, L¼15.8 H.
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size of the optimised inductor (as indicated approximately by Eq. (25)); it introduces an additional controllable parameter
that is usually important for achieving the targeted (benchmark) response. This is illustrated by the results presented in
Fig. 6, in which the external capacitor C was omitted: it is seen that the optimal (best possible) experimental response
achieved was considerably poorer than the benchmark and the inductor necessary (15.8 H) was significantly higher than
that required if C were included (10.5 H, Fig. 4(b)).

4.2. Single circuit with C∥(L−R) load

The advantage of using C∥(L−R) over C∥L∥Rwas that the L−R combination increased the net impedance of the system. Hence, as
seen from Fig. 7(a,b), the C∥(L−R) system attained tuned conditions at much lower values of R than the C∥L∥R system. Optimum
Fig. 7. Theoretical (unlabelled dashed line) and experimental (solid line) receptance of host structure with TMD attached, single circuit configuration with
C∥(L−R) impedance, at three different conditions: (a) theoretical optimal conditions R¼1.8 kΩ, L¼7.66 H, C¼1.42Cp; (b) experimental optimal conditions
R¼1.8 kΩ, L¼9 H, C¼1.42Cp; and (c) non-optimal conditions R¼50 kΩ, L¼7.66 H, C¼1.42Cp.
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Fig. 8. Theoretical (dashed line) and experimental (solid line) voltage FRF (voltage v per unit excitation force Fext) for single circuit configuration with
C∥(L−R) impedance. (a), (b) and (c) respectively correspond to the conditions in Fig. 7(a), (b) and (c).

Fig. 9. Theoretical (dashed line) and experimental (solid line) receptance of host structure with TMD attached, separate circuits configuration with C∥L∥R
impedance: (a) at respective optimal conditions (different for theoretical and experimental); and (b) for same R, L, C values, corresponding to experimental
optimum (R¼50 kΩ, L¼10 H, C¼1.35Cp).
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Fig. 10. Theoretical (dashed line) and experimental (solid line) receptance of host structure with TMD attached, separate circuits configuration with
C∥(L−R) impedance: (a) at respective optimal conditions (different for theoretical and experimental); and (b) for same R, L, C values, corresponding to
experimental optimum (R¼2.5 kΩ, L¼13 H, C¼1Cp).
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conditions were reached theoretically at R¼1.8 kΩ, L¼7.66 H, C¼1.42Cp (Fig. 7(a)). Optimum conditions were reached
experimentally at R¼1.8 kΩ, L¼9 H, C¼1.42Cp (Fig. 7(b)) and the response was at least as good as the benchmark. Fig. 7(c)
shows that the predicted and measured responses followed the same trend as the resistance was increased to a non-optimal value
of 50 kΩ. In this latter case, due to the high impedance in the L−R branch, there was virtually no attenuation in the response
rhostþTMD
yAFext

ðωÞ since there was no net power being dissipated in the circuit; the rhostþTMD
yAFext

ðωÞ curves merely exhibited a shift to the
right relative to the short-circuit response in Fig. 3 due to the stiffening produced by the increased impedance.

Fig. 8(a,b) again show that optimal conditions resulted in a broad peak in the voltage FRF over the region of the targeted
mode, which disappeared as the conditions were made significantly non-optimal (Fig. 8(c)).

4.3. Separate circuits

Figs. 9 and 10 respectively refer to the separate circuits configurations with C∥L∥R, C∥(L−R) impedances in each circuit.
Figs. 9(a) and 10(a), show that a response that was at least as good as the benchmark was achievable experimentally, as well
as theoretically. The experimental optimal parameters were approximately in the region of the predicted ones. However, as
in previous results, the response was somewhat sensitive to these differences in theoretical and experimental optimal
parameters (Figs. 9(b) and 10(b)). It is also noted that, as in the single circuit case, the optimal resistance required for the
C∥(L−R) impedance was an order of magnitude smaller than that required for the C∥L∥R.

4.4. Summary of results

For the case studied, both theory and experiment showed that the most convenient and economical circuit configuration
was the single-circuit configuration with C∥(L−R) impedance since it required the smallest optimal resistor and inductor
(and only one of each, Fig. 7(a,b)). As reasoned in [5], although the overall optimum R, L, C values are dependent on the host
structure, one would expect this conclusion to be the norm for the following reasons: a single circuit requires half the
number of components; the additive effect of the bimorph internal capacitances in a single circuit tends to reduce the size of
the required inductor; having L in series with R increases the overall impedance, reducing the required value of R. However,
in the absence of a quantitative universal conclusion, it is prudent to consider all four circuit options for a given application
prior to choosing the most appropriate configuration [5].
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5. Conclusions

This paper has experimentally validated the novel concept of utilising a PVEH beam as a TMD in order to suppress a
particular vibration mode of a generic host structure over a broad band of excitation frequencies. This device comprised a
pair of bimorphs shunted by resistor, capacitor, inductor circuitry. The optimal damping required by this TMD was generated
by the PVEH effect of the bimorphs. The benchmark for both measured and predicted performance was established by
adapting Den Hartog's classical theory to a TMD in the form of a beam device. Just as predicted by the theory, the
experimental results demonstrated that the ideal degree of vibration attenuation could be achieved through appropriate
tuning of the circuitry using an electromechanical TMD beam device whose effective mass was less than 2 percent of the
equivalent mass of the example host structure at the targeted mode.

The proposed dual PVEH/TMD beam device combines the relative advantages of the classical (mechanical) TMD and the
shunted piezoelectric patch (electrical vibration absorber). Additionally, it holds the potential of simultaneous energy
storage, as demonstrated by predicted and measured voltage FRFs, which showed a broad peak over the region of the
targeted mode. However, for such a potential to be realised, a means of energy storage has to be introduced. This latter
development is the subject of future research, using the work in [15] as a basis. Another area of possible future research is
the implementation of the electrical side of the proposed TMD through synthetic circuits which, apart from eliminating the
use of bulky inductor boxes, facilitates online electrical tuning [12].
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