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Vegetation plays a major role in controlling the fate of contaminants in natural and constructed wetlands.
Estimating the efficiency of contaminant removal of a wetland requires separate knowledge of the resi-
dence time statistics in the main flow channels, where the flow velocity is relatively higher, and in the
more densely vegetated zones, where the velocity is smaller and most of the biochemical transformations
occur. A conceptual wetland characterized by a main flow channel (MFC) and lateral vegetated zones
(LVZs) is modeled here using a two-dimensional depth-averaged hydrodynamic and advection–
dispersion model. The effect of vegetation is described as a flow resistance represented in the
hydrodynamic model as a function of the stem density. Simulations are performed for a given flow
discharge and for increasing values of the ratio between the vegetation density in the LVZs and in the
MFC. Residence time distributions (RTDs) of a nonreactive tracer are derived from numerical simulations
of the solute breakthrough curves (BTCs) resulting from a continuous concentration input. Results show
that increasing vegetation densities produce an increasingly pronounced bimodality of the RTDs. At
longer times, the RTDs decrease exponentially, with different timescales depending on the stem density
ratio and other system parameters. The overall residence time distribution can be decomposed into a first
component associated with the relatively fast transport in the MFC, and a second component associated
with the slower transport in the LVZs. The weight of each temporal component is related to the exchange
flux at the MFC-LVZ interface. A one-dimensional transport model is proposed that is capable to
reproduce the RTDs predicted by the depth-averaged model, and the relationship between model and
system parameters is investigated using a combination of direct and inverse modeling approaches.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The removal efficiency of natural and constructed wetlands is
controlled by the time spent by contaminants in the vegetated
zones (Persson et al., 1999). Vegetation plays an important role
for two main reasons: firstly, dense vegetated zones locally
decrease the flow velocity, creating stagnant zones and favoring
the sedimentation of suspended solids; secondly, plant roots and
associated epiphytic biofilms are responsible for the transforma-
tion of the transported substances as a result of biochemical pro-
cesses. The combined effect of vegetation and wetland
topography can also produce hydraulic shortcuts that negatively
affects the wetland performance.
Despite their typical heterogeneity, constructed wetlands for
waste water treatment are often designed with reference to an
average water residence time (Kadlec and Wallace, 2009), which
can lead to significant inaccuracies in the evaluation of their per-
formance (Kadlec, 2000). Zero-dimensional models are often used
because of their simplicity, but they are inadequate to represent
complex spatial patterns resulting from heterogeneous vegetation
distributions (Akratos and Tsihrintzis, 2007; Kadlec and Wallace,
2009). One-dimensional transient storage models have been
widely used to represent the transport and retention dynamics in
rivers due to vegetation and permeable beds (Runkel and
Broshears, 1991; Bencala and Walters, 1983; Gooseff et al., 2003),
but a major question is whether these models can represent the
more complex hydrodynamics found in natural and constructed
wetlands. Recent studies (Keefe et al., 2004; Martinez and Wise,
2003) have used transient storage models to assess the contami-
nant removal in constructed wetlands, providing in some cases
good approximations of the breakthrough curves (BTCs). However,
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these models fail to describe in general the different flow paths
through vegetation and the main flow channels, which can result
in a clear bimodality of the solute breakthrough curves. A bimodal
behavior of the hydraulic residence time distributions (RTDs)
induced by riparian vegetation has been experimentally observed
in a real wetland by Martinez and Wise (2003) and in a conceptu-
alized lowland river by Perucca et al. (2009).

Since spatial heterogeneity plays a fundamental role in control-
ling the fate of contaminants, a two-dimensional approach is more
appropriate to describe transport dynamics in wetlands. Although
two-dimensional hydrodynamic models have already been used in
the past (Persson et al., 1999; Somes et al., 1999), the formulation
of more detailed models accounting for vegetation distribution
is relatively recent (Arega and Sanders, 2004; Jenkins and
Greenway, 2005), yet none of the suggested models provides a
clear relationship between vegetation density and hydraulic RTDs.
This relationship is investigated in the present study as a function
of the degree of flow channelization of a wetland induced by veg-
etation. To this end, a two-dimensional depth-averaged flow and
solute transport model is applied to a conceptual wetland charac-
terized by a central main flow channel (MFC) and lateral vegetated
zones (LVZs), and simulations are performed for different vegeta-
tion densities. A one-dimensional transport model is also proposed
and calibrated against the RTDs derived from the two-dimensional
depth-averaged model. The behavior of the model parameters is
analyzed as a function of the system parameters and analytical
relationships are provided for the average residence times and flow
discharges in the MFC and in the LVZs.
2. 2-D depth-averaged model

Assuming that the vertical gradients are small compared to the
horizontal gradients, the transport of a dissolved contaminant in a
wetland can be represented by a two-dimensional depth-averaged
model. This assumption has often been used in wetland studies
(Somes et al., 1999; Arega and Sanders, 2004; Jenkins and
Greenway, 2005) and is consistent with the simplified wetland
topography and geometry analyzed in this work. It is further
assumed that the long-term, average performance of a wetland
can be represented by steady state flow conditions. This represen-
tation can also be useful to describe gradually unsteady flows, for
which variations can be represented as a sequence of steady states.

2.1. Hydrodynamic model

Under the assumption of hydrostatic pressure, steady-state
flow, negligible wind and Coriolis forces, the depth-averaged veloc-
ity field and water depth satisfy the following equations (Wu,
2007):
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The quantities U and V represent the depth-averaged velocities
ðm s�1Þ in the x- and y-directions, respectively, h is the water depth,
zs is the water surface elevation ðmÞ, and q the water density
ðkg m�3Þ. The shear stresses sbx and sby account for bed resistance,
whereas svx and svy account for vegetation resistance along the
x- and y-direction, respectively. Eqs. (2) and (3) assume that
Reynolds stresses are negligible compared to bed and vegetative resis-
tance. In channelized wetlands, Babarutsi et al. (1989) experimentally
showed that bed friction dominates and Reynolds stresses can be
neglected when cbDLh=h > 0:1, where Lh is the horizontal length scale
of recirculation zones, and cbD is the bed drag coefficient. Since typical
values of cbD vary between 0.009 and 0.003 in tidal wetlands, this
model is expected to resolve recirculation zones where Lh=h > 10–
30 (Arega and Sanders, 2004).

The contribution of bed friction to bed shear stresses is com-
puted by adapting the one-dimensional relationships proposed
by Kadlec (1990) to a two-dimensional velocity field, which leads
to:

sbx ¼ qcbDU
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U2 þ V2
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The bed drag coefficient cbD ð�Þ in Eq. (4) combines both lami-
nar and turbulent stresses, and can be calculated as follows
(Kadlec, 1990):

cbD ¼
3m

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

p þ f 2gh�1=3 ¼ 3
Reh
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where m is the kinematic viscosity ðm2 s�1Þ and f is the Manning’s
friction coefficient ðs�1 m�1=3Þ. For depth-Reynolds numbers Reh less
than 500 the first term on the right-hand side prevails, whereas the
second term prevails for depth-Reynolds numbers greater than
12500 (Kadlec, 1990). The sum of the two terms therefore provides
a complete description of the bed shear stresses for a wide range of
depth-Reynolds numbers.

Vegetation drag is modeled in a similar way by representing
aquatic plant stems as an array of randomly distributed cylinders
with a uniform diameter d ðmÞ, as suggested by Kadlec (1990)
and by Arega and Sanders (2004):
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where n is the superficial stem density ðm�2Þ, l is the submerged
stem length ðmÞ and cvD is the vegetation drag coefficient. For fully
emergent vegetation, as considered in this work, the submerged
stem length can be taken as the water depth. The behavior of the
vegetation drag coefficient for an individual cylinder is well known
(Bennett and Myers, 1962; White, 1991) and shows a decreasing
trend for increasing stem Reynolds numbers, defined as
Red ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

p
d=m. Other studies (Ergun, 1952; Petryk, 1969;

Nepf, 1999; Hill et al., 2001; Blevins, 2005) have shown that neigh-
boring cylinders can produce a velocity reduction and, as a conse-
quence, a reduced drag (Tanino and Nepf, 2008). Nevertheless,
cumulative effects of multiple wake interactions can be neglected
for sufficiently sparse vegetation, i.e. when the solid volume frac-
tion ad is lower than 0:1 (Raupach, 1992). Here, the parameter a
represents the plant area projected on a plane perpendicular to
the flow direction per unit volume ðm�1Þ, and can be written as a
function of the superficial stem density, a ¼ nd, if the plants are
modeled as cylinders.

Nepf (1999) performed numerical and laboratory experiments
for superficial stem densities lower than 2500 stems/m2 and a
stem diameter of 2 mm, corresponding to a solid volume fraction
ad ¼ nd2 � 0:01, and found relatively constant values of cvD. Such
values are common in natural and constructed wetlands. Tanner
(2001) measured the superficial density of vegetation in pilot-scale
constructed wetlands and found 1400–1500 stems/m2 of Schoeno-
plectus Tabernaemontani and densities higher than 2000 stems/m2

of Schoenoplectus Validus. Hocking (1989) and Parr (1990) found
superficial vegetation densities of Phragmites Australis ranging
from 70 to 250 stems/m2. Other hydraulic studies on diffusion in
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emergent vegetation (Nepf et al., 1997) and vegetation drag (Hall
and Freeman, 1994) used densities ranging between 200–2000
stems/m2 and 400–800 stems/m2. In this study, a vegetation den-
sity in the range between 50 and 800 stems/m2 is considered, for
which the vegetation drag coefficient depends only on the stem
Reynolds number, Red. A continuous range of Red was modeled
using the relationship proposed by Kadlec (1990). This relationship
is based on laboratory tests performed by Wieselberger (1921) for
laminar flows, and Tritton (1959) for turbulent flows. Kadlec’s for-
mulation, similar to the one proposed by White (1991), is given as
follows:
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qd
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h
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2.2. Solute transport model

Solute transport of a passive tracer through a wetland is simu-
lated with a depth-averaged solute transport model,
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where C is the depth-averaged solute concentration ðkg m�3Þ, U;V
are the vertically integrated velocity components ðm s�1Þ in the
x-, y-directions respectively. The coefficients Eij ðm2 s�1Þ, i; j ¼ x; y,
account for both turbulent diffusion and shear dispersion due to
vertical velocity gradients, and are related to the transverse
diffusivity, ET , and the longitudinal dispersion coefficient, EL, by
the following equations (Arega and Sanders, 2004):
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An expression for the transverse diffusivity for flows through
emergent vegetation was proposed by Nepf (1999). This is written
in nondimensional form as

ET

Ud
¼ ah½cvDad�1=3 þ b2

2
ad ð12Þ

where ah and b are Oð1Þ-scale factors. The first and the second term
on the right-hand side of Eq. (12) represent the effect of turbulent
diffusion and mechanical dispersion, respectively. Nepf (1999) com-
pared the predictions of Eq. (12) with experimental data from lab-
oratory experiments in the range Red ¼ 400—2000 and field
experiments in the range Red ¼ 300—600, and found good agree-
ment for ah ¼ 0:81 and b ¼ 1.

The expression of the turbulent diffusivity in Eq. (12) is based
on the assumption that all the energy extracted from the mean
flow through stems is converted into turbulent kinetic energy. This
assumption is limited for Red < 200, when the effect of viscous
drag becomes significant. As experimentally confirmed by Nepf
(1999) for sufficiently small stem densities, ad < 0:01, mechanical
dispersion is small compared to turbulent diffusion and the second
term on the right-hand side of (12) can be neglected. Similar exper-
iments conducted for stem Reynolds numbers in the range
between 90 and 2000 (typical value � 200–300) show that this is
not the case for the lower end of the range (low stem Reynolds
numbers), for which mechanical diffusion appear to be the only
important mechanism. However, Lightbody and Nepf (2006) used
this assumption as a first approximation to determine the longitu-
dinal dispersion coefficient EL in field experiments with flow
speeds through marsh canopy varying from 0.1 to 24 cms�1

ðRed ¼ 2��360Þ. The proposed longitudinal dispersion coefficient,
EL, is written in nondimensional form as a combination of the
stem-scale and the depth-scale dispersion process:

EL

Ud
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2
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where Dz ¼ av ½cvDad�1=3U d is the vertical turbulent diffusion coeffi-
cient, av is a scale factor, and C is the nondimensional velocity
shape factor. The simulations in this study were performed for
av ¼ 0:1, which fits within the range of values reported by Nepf
(2004) and Lightbody and Nepf (2006).

The first term of (13) accounts for the stem-scale longitudinal
dispersion process, whereas the second term accounts for the dis-
persion induced by vertical velocity gradients. As noted by
Lightbody and Nepf (2006), the first term of (13) is typically much
smaller than the second term, and can be neglected. For the range
of stem Reynolds numbers investigated in this work it is reason-
able to consider only the first term of Eq. (12) and only the second
term of Eq. (13).

2.3. Residence time distributions

The physical and chemical transformations of dissolved solutes
in a wetland depend on the time spent by a particle in the vege-
tated zones. The residence time of a solute particle can vary to a
wide degree due to different flow paths, velocity gradients and
hydraulic short-circuits (Somes et al., 1999), making a statistical
description in terms of probability distributions more appropriate
for analyzing the problem (Somes et al., 1999; Kadlec and Wallace,
2009). Hydraulic RTDs provide a measure of the variability of the
detention time and can be a valuable tool for assessing the effi-
ciency of contaminant removal. By using a two-dimensional
depth-averaged hydrodynamic model in combination with a solute
transport model, it is possible to numerically derive the RTDs as a
function of the system variables. Other studies have used a similar
approach to characterize the hydraulic response of a wetland
(Wörman and Kronnäs, 2005).

The mass outflow, _M ðkg s�1Þ, is given by the temporal convolu-
tion between the mass inflow, _Min, and the probability density
function of the residence time, /ðtÞ:

_Mout ¼ ð/ � _MinÞðtÞ ¼
Z t

0
/ðsÞ _Minðt � sÞ ds ð14Þ

Eq. (14) expresses the fact that a fluid particle entering the system
at time t � s flows out at time t with probability /ðsÞds. In this work
the expression ‘‘residence time distribution’’ (RTD) is used to denote
the probability density function of the residence time, /ðtÞ.

In general, the mass inflow _Min can be time-dependent, and can
be written as the product of the input concentration CinðtÞ ðkg m�3Þ
and the inflow discharge Q inðtÞ ðm3 s�1Þ, hence _Min ¼ CinðtÞ Q inðtÞ.
Under the assumption of steady-state flow, Q inðtÞ ¼ Q and assum-
ing a constant concentration at the inlet, Cin, Eq. (14) can be
arranged in the form:

_Mout

CinQ
¼
Z t

0
/ðsÞ ds ð15Þ

The right-hand side of Eq. (15) represents the cumulative distri-
bution function of the wetland hydraulic residence time, denoted
by UðtÞ. Under steady flow conditions, the water inflow equals the
water outflow, therefore _Mout ¼ CoutðtÞQ . Eq. (15) then becomes:

CoutðtÞ
Cin

¼
Z t

0
/ðsÞ ds ¼ UðtÞ ð16Þ
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and hence:

/ðtÞ ¼ dUðtÞ
dt

¼ d
dt

CoutðtÞ
Cin

� �
ð17Þ

Eq. (17) provides the link between solute breakthrough curves
and RTDs. In particular, if a constant unitary concentration,
Cin ¼ 1, is imposed as a boundary condition at the inlet, the
hydraulic RTD can be obtained by numerically differentiating the
output concentration CoutðtÞ with respect to time.

2.4. Model application

The flow domain considered in this work is given by a rectangu-
lar wetland with length L ¼ 200 m, width B ¼ 50 m, and constant
bed elevation (Fig. 1). The choice of a zero bed slope is supported
by the evidence that in many natural wetlands the bed elevation
does not vary significantly in the streamwise direction, and the
effect of bed slope can often be neglected (Wörman and Kronnäs,
2005; Wu, 2007). The flow domain is characterized by a main flow
channel surrounded by vegetated zones on both sides. The channel
follows the center line of the wetlands and has a uniform width b.
The wetland inlet and outlet coincide with the end sections of the
main channel. Two different values of the channel width were con-
sidered in this work: b ¼ 5 m and b ¼ 10 m.

For the flow Eqs. (1)–(3), the boundary conditions are given by
the inflow at the inlet, Q ¼ 0:5 m3 s�1, and the water depth at the
outlet, h ¼ 0:5 m. For the solute transport equation, the boundary
conditions are given by a constant unitary concentration at the
inlet, C ¼ 1, an open boundary condition at the outlet, and the
no-flux condition on the remaining part of the flow boundary.
The equations are solved via a finite element method using
COMSOL Multiphysics� with quadratic shape functions. The
computational grid is made of approximately 150000 triangular
elements, with higher spatial resolution near the inlet and the
outlet, and a maximum element size of 2 m.

Simulations of the hydraulic RTD are performed in three steps:
first, the steady-state flow field is derived by solving the flow Eqs.
(1)–(3); second, the transport equation is solved using the previ-
ously calculated flow field until the concentration at the outlet
becomes constant; finally, the average concentration at the outlet
is calculated as a function of time, and the hydraulic RTD is derived
by numerical differentiation of the output concentration according
to (17).

A uniform value of the Manning’s roughness coefficient
f ¼ 0:02 m�1=3 s (usually associated with bare soil) was assumed
to represent the bottom flow resistance, whereas a sequence of
increasing vegetation densities were imposed for the vegetative
resistance. No friction was considered on the lateral walls of the
wetland domain.
Fig. 1. Illustration of the conceptual wetland analyzed in this work. A depth-averaged hy
densities in the main flow channel (MFC) and in the lateral vegetated zones (LVZs). The
different combinations of discharge and main channel widths are investigated.
In the simulations, the average vegetation density of the whole
wetland,

�n ¼ n2ðB� bÞ þ n1b
B

ð18Þ

was kept constant and equal to 650 stems=m2. In Eq. (18), B denotes
the wetland width, b is the MFC width and ni; i ¼ 1;2, are the veg-
etation densities in the MFC and the LVZs, respectively. Starting
from an initial homogeneous configuration with n1 ¼ n2 ¼ n, a
sequence of decreasing vegetation densities was imposed in the
main channel, varying from n1 ¼ 650 stems=m2 down to
50 stems=m2. The resulting vegetation density in the lateral zones
was then calculated from Eq. (18) by keeping n constant and solving
for n2. This allowed to analyze the statistics of the residence time for
a range of degrees of channelization while keeping the average veg-
etation density as constant. Ten density ratios n� ¼ n1=n2 were con-
sidered for each width ratio b� ¼ b=B. Note that the parameter n�

represents the degree of uniformity of the vegetation density in
the wetland, which increases as the degree of flow channelization
decreases, and is equal to 1 when the vegetation density in the
MFC is the same as in the LVZs. In this latter case, there is no real
distinction between MFC and LVZs.
3. 1-D solute transport model

In the two-dimensional model presented in the previous sec-
tion, the hydraulic RTDs are determined in three steps: first, the
2-D depth-averaged flow equations are solved to derive the
steady-state velocity field; second, the 2-D depth-averaged trans-
port equation is solved for a continuous input resulting in a con-
centration field as a function of time; finally, the RTD is derived
by calculating the derivative of the average concentration at the
outlet according to (17). The complexity of such a modeling pro-
cess can be substantially reduced if a parameterization of the RTDs
is available in which the model parameters can be linked to phys-
ical characteristics of the system. One-dimensional models are
generally easier to calibrate and more suitable for inverse-model-
ing using tracer tests (e.g. Keefe et al., 2004), especially when a
closed-form solution of the underlying 1-D equations can be
derived analytically. A parameterization of the hydraulic RTDs is
presented here, which extends the one-dimensional residence time
formulation proposed by Marion and Zaramella (2005) and Marion
et al. (2008) by introducing two main transport domains.

In order to represent the effect of the differential transport in
the MFC and the LVZs, the overall RTD is expressed as a weighted
sum of two residence time distributions individually describing the
residence time statistics in the MFC and in the LVZs. The overall
RTD in a wetland segment of length x is therefore written as
follows:
drodynamic model is applied to a rectangular flow domain with different vegetation
average vegetation density of the wetland is kept constant for all simulations and
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Fig. 2. Comparison between three selected velocity fields for a flow discharge Q ¼ 0:5 m3 s�1 and a main channel width b ¼ 10 m. Hydraulic residence time distributions
(RTDs) are plotted in nondimensional form using the average residence time TR ¼ BLH=Q as a reference time scale. For a uniform vegetation distribution of 650 stems=m2 (a),
the flow velocity is almost uniformly distributed, with diverging and converging flow regions in proximity of the inlet and the outlet. In the intermediate case (b), with 717
stems=m2 in the VZs and 384 stems=m2 in the MFC ðn� � 0:53Þ, a slight bimodality becomes apparent: the velocity field is more channelized, with higher velocities in the
main channel. In the third case (c), with 800 stems=m2 in the VZs and 50 stems=m2 in the MFC ðn� � 0:06Þ, the residence time statistics are characterized by two distinct
timescales, associated with the faster transport in the MFC and the slower transport in the LVZs, respectively. The result is a pronounced bimodality of the RTD.

1 The software is available for download at www.wetengineering.com.
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/ðt; xÞ ¼ w1r1ðt; xÞ þ ð1�w1Þr2ðt; xÞ ð19Þ

where w1 is a weight parameter (–) and r1 and r2 are the hydraulic
residence time distributions in the MFC and in the LVZs, respec-
tively. In the model application presented in this work the variable
x is replaced by the longitudinal extension of the wetland, L, since
the focus of the analysis is on the residence time statistics in the
whole wetland. However, the dependence on the coordinate x is
maintained in Eq. (19) for sake of generality.

The functional form of the individual RTDs, r1 and r2, is derived
from the solution of the advection–dispersion equation for a mass
pulse at x ¼ 0, and is given by:

riðt; xÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pKit3

p exp �ðx� UitÞ2

4Kit

" #
ð20Þ

where the subscript i takes the value 1 for the MFC, and 2 for the
LVZs. For a reactive tracer with first-order decay rate constant ki

ðs�1Þ, Eq. (20) is modified as follows:

riðt; xÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The model defined by Eqs. (19) and (20) depends on five param-
eters characterizing the transport dynamics of a passive tracer in a
channelized wetland, namely, the average flow velocities U1 and
U2, the longitudinal dispersion coefficients, K1 and K2, and the
weight parameter w1. If the flow discharges are denoted by Q 1

and Q2 and the flow cross-sectional areas are denoted by A1 and
A2, then U1 ¼ Q 1=A1 and U2 ¼ Q2=A2. The weight factor w1 can then
be calculated as the fraction of the total discharge flowing through
the main channel, w1 ¼ Q1=Q , where Q ¼ Q 1 þ Q 2 is the total
discharge.

The above-described model was implemented as an extension
of the software STIR (Solute Transport In Rivers), which provides
an expandable modeling framework and a set of optimization rou-
tines for model calibration.1 This particular extension is referred to
as STIR-DTD, where the acronym DTD stands for Double Transport
Domain. Although in this study the transport dynamics in the MFC
and in the LVZs is represented as a purely advection–dispersion pro-
cess, the software allows to incorporate additional retention pro-
cesses via specific RTDs.

The capability of the model to reproduce the observed RTDs was
analyzed by calibrating the model against the results of the two-
dimensional simulations. The RTDs resulting from Eqs. (19) and
(20) were fitted to the RTDs generated according to Section 2.3
and the behavior of the parameters was analyzed as a function of
the degree of channelization. The calibration parameters are given
by the velocities U1;U2, and the dispersion coefficients K1 and K2,
whereas the weight factor w1 was imposed using the definition
w1 ¼ Q1=Q and the flow discharge Q1 calculated from the hydrody-
namic model.

Whilst the parameter calibration procedure provides a way to
assess the suitability of the functional form (19) and (20) to

http://www.wetengineering.com
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represent the numerically simulated RTDs, a direct modeling
approach may be preferable in predictive studies even though a
certain degree of approximation is involved. Here, an approximate
relationship is derived for the discharges Q1 and Q2 that can be
used to calculate the parameters U1;U2 and w1. The relationship
is based on Manning’s equation, U ¼ f�1

eq R2=3
H S1=2, in which RH is

the hydraulic radius (m), S the slope of the energy line (–), and
feq is an equivalent roughness coefficient representing the flow
resistance due to vegetation and bed friction. The Manning’s
roughness coefficient, feq, is linked to the sum of the bed and veg-
etation shear stress, s ¼ sb þ sv , by the relationship

feq ¼
1
U

R2=3
H

s
cRH

� �1=2

¼ 1
U

R1=6
H

s
c

� �1=2

ð22Þ

where the equation s ¼ cRHS was used to link the total shear stress
to the energy slope, S. If the hydraulic radius is approximated with
the water depth, h, the equivalent Manning’s roughness coefficient
for fully emergent vegetation becomes:

feq ¼
1

g1=2 f 2g þ 3mh�2=3

U
þ 5mh4=3

U
nþ dh4=3

2
n

 !1=2

ð23Þ

The first two terms in parenthesis are associated with the bed
roughness, whereas the last two terms represent the contribution
to the shear stress due to vegetation. Under the flow conditions
analyzed in this work, the first two terms are generally much smal-
ler than the others. Also, with exception for the lower end of the
range of Reynolds numbers, the third term can be considered small
compared to the fourth. Under these assumptions, the equivalent
Manning’s roughness coefficient can be written as
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Fig. 3. Comparison between nondimensional hydraulic RTDs for a discharge of Q ¼ 0:5 m
the average water residence time in the wetland, TR ¼ BLH=Q , and plotted in linear and
curves at longer times.
feq ¼
dh4=3

2g
n

 !1=2

ð24Þ

Since Q ¼ Q 1 þ Q 2, it follows that:

Q 2

Q
¼ 1þ Q 1

Q 2

� ��1

ð25Þ

Q 1

Q
¼ 1� 1þ Q 1

Q 2

� ��1

ð26Þ

Assuming that the energy slope and the water depth is the same
in the MFC and in the LVZ, the ratio Q 1=Q 2 can be expressed as fol-
lows by combining Manning’s equation with (24):

Q1

Q2
¼

feq2
A2R2=3

H2
S1=2

2

feq1
A1R2=3

H1
S1=2

1

¼ n2

n1

� �1=2 b
B� b

¼ 1ffiffiffiffiffi
n�
p b�

1� b�
ð27Þ

Finally, replacing (27) in (25) and (26) yields:

Q 2

Q
¼ 1þ 1ffiffiffiffiffi

n�
p b�

1� b�

� ��1

ð28Þ

Q 1

Q
¼ w1 ¼ 1� 1þ 1ffiffiffiffiffi

n�
p b�

1� b�

� ��1

ð29Þ

Eqs. (28) and (29) provide a relationship between the nondi-
mensional discharges, Q 1=Q and Q2=Q , the vegetation density
ratio, n�, and the nondimensional channel width, b�. The equations
can be used to calculate the weight w1 ¼ Q 1=Q , and the velocities
U1 ¼ Q 1=ðbHÞ and U2 ¼ Q 2=HðB� bÞ, where H is the average water
depth. In the following section, the results of the model calibration
and the two-dimensional simulations are compared with the
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3 s�1 and two MFC widths, b ¼ 5 m (a) and b ¼ 10 m (c). Curves are normalized by
in logarithmic scale. The logarithmic plot (b) and (d) shows a linear behavior of the
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predictions from (28) and (29), and an attempt is made to clarify
the parametric dependence of the dispersion coefficients K1;K2

as a function of the density ratio, n�.

4. Results and discussion

Fig. 2 shows the effect of different vegetation densities on the
velocity field. For a homogeneous roughness distribution, the
velocity profile becomes approximately uniform at a distance of
20–25 m from the wetland inlet. The most significant velocity gra-
dients are located in proximity of the inlet and the outlet section,
with higher velocities in the center line and significantly smaller
velocities at the corners (Fig. 2a). As the difference between stem
density in the main channel and in the lateral banks increases,
the flow is increasingly confined in the main channel and a first
evidence of the bimodal behavior appears in the RTD (Fig. 2b). In
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Fig. 4. Comparison between mean MFC and LVZ velocities derived from the 2-D depth-a
(19) and (20)). Results are plotted for b� ¼ 0:1 (a) and b� ¼ 0:2 (b).

Table 1
Best-fit model parameters for Q ¼ 0:5 m3 s�1 and main channel width b ¼ 5 m.

n� (–) 1.00 0.887 0.777 0.669
w1 (–) 0.101 0.107 0.114 0.121

K1 ð�10�2 m2 s�1Þ 3.56 4.46 9.58 10.4

K2 ð�10�2 m2 s�1Þ 6.88 7.43 7.14 6.82

U1 ð�10�2 m s�1Þ 2.25 2.20 2.35 2.67

U2 ð�10�2 m s�1Þ 2.02 2.02 2.00 1.97

T1 ð�103 sÞ 8.90 9.11 8.50 7.48

T2 ð�103 sÞ 9.92 9.92 10.0 10.1

Pe1 ð�104Þ 2.10 2.17 2.27 2.40

Pe2 ð�104Þ 9.38 9.35 9.31 9.26

Table 2
Best-fit model parameters for Q ¼ 0:5 m3 s�1 and main channel width b ¼ 10 m.

n� (–) 1.00 0.875 0.756 0.643
w1 (%) 0.202 0.213 0.226 0.241

K1 ð�10�2 m2 s�1Þ 4.38 6.44 7.63 8.04

K2 ð�10�2 m2 s�1Þ 6.67 7.41 6.44 6.10

U1 ð�10�2 m s�1Þ 2.20 2.17 2.47 2.68

U2 ð�10�2 m s�1Þ 1.99 1.99 1.93 1.89

T1 ð�103 sÞ 9.08 9.21 8.08 7.45

T2 ð�103 sÞ 10.0 10.0 10.4 10.6

Pe1 ð�104Þ 4.19 4.34 4.56 4.79

Pe2 ð�104Þ 8.33 8.26 8.18 8.10
the most channelized case (Fig. 2c), the hydraulic RTD shows an
evident bimodality, indicating that mass transport is characterized
by two distinct time scales associated with the transport in the
main flow channel (MFC) and in the lateral vegetated zones (LVZs).
The development of a clear bimodality as n� decreases supports the
decomposition of the overall RTD into two components according
to Eq. (19).

A comparison of the RTDs is presented in Fig. 3 for a constant
flow discharge Q ¼ 0:5 m3 s�1 and for two different values of the
parameter b� ¼ b=B. In the figure, the residence time is normalized
by the mean hydraulic residence time in the wetland, defined as
TR ¼ BLH=Q , where H is the average water depth ðmÞ and L is the
wetland length ðmÞ. When the RTDs are plotted in a semilogarith-
mic scale (Fig. 3b and d), it becomes apparent that the RTDs decay
exponentially and the slope of the tails depends on the ratio of veg-
etation density, n�. As n� decreases, the slope of the tails decreases
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veraged hydrodynamic model and from calibration of the 1-D transport model (Eqs.

0.564 0.461 0.360 0.261 0.164 0.070
0.130 0.142 0.157 0.177 0.208 0.267
10.3 11.2 12.8 17.0 25.7 47.8

6.62 6.68 6.72 6.78 6.96 7.83

2.96 3.25 3.61 4.08 4.83 6.41

1.95 1.92 1.88 1.83 1.75 1.61

6.76 6.15 5.55 4.91 4.14 3.12

10.3 10.4 10.6 10.9 11.4 12.4

2.54 2.72 2.96 3.29 3.85 5.15

9.22 9.18 9.13 9.08 9.02 8.93

0.535 0.432 0.333 0.239 0.149 0.0625
0.259 0.280 0.307 0.343 0.395 0.489
8.70 9.77 11.7 15.1 21.0 35.8

5.94 5.89 5.84 5.75 5.63 5.45

2.90 3.14 3.44 3.83 4.43 5.54

1.84 1.79 1.72 1.62 1.49 1.25

6.90 6.37 5.82 5.22 4.52 3.61
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5.08 5.43 5.90 6.57 7.68 10.3

8.02 7.59 7.86 7.77 7.66 7.49
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and the distributions resemble more closely the solution of a con-
ventional advection–dispersion equation. The shape of the RTDs is
also affected by the width of the main channel. For a larger width,
b� ¼ 0:2, the RTDs decay more slowly than for b� ¼ 0:1, indicating a
slower transport in the LVZs. Also, for b� ¼ 0:2 the peak of the fas-
ter component is higher than for b� ¼ 0:1, due to the higher dis-
charge in the MFC (Fig. 3a and c).

As the ratio n� ¼ n1=n2 decreases, the mean velocity in the lat-
eral vegetated zones decreases whereas the mean velocity in the
main channel increases. This behavior is shown in Fig. 4 and con-
firmed by the pattern of the mean residence times in each zone
as a function of the density ratio, n� (Tables 1 and 2). Fig. 4 also
shows a comparison between the mean velocity derived from the
2-D depth-averaged model and from calibration of the 1-D trans-
port model expressed by Eqs. (19) and (20). The former is obtained
by calculating the cross-sectional average of the 2-D depth-aver-
aged velocity field for the MFC and the LVZs, whereas the latter
is derived by calibrating the 1-D model against the BTCs obtained
from the 2-D transport model.

For decreasing values of n� the time scale of transport in the
MFC, T1 ¼ L=U1, decreases and the time scale of the transport in
the LVZs, T2 ¼ L=U2, increases. The fraction w1 ¼ Q 1=Q of the total
discharge flowing through the main channel, calculated in the cen-
tral region of the domain where the flow is not affected by inlet
and outlet effects, is shown in Tables 1 and 2. The value of w1 for
a channel width b ¼ 5 m is approximately double the value for
b ¼ 10 m, whereas w1 ¼ 1 for the limit case of b ¼ B. Fig. 5 shows
a comparison between the breakthrough curves generated with
the 2-D model and the curves generated with the calibrated one-
dimensional model. As explained in the previous section, in the
calibration, the parameter w1 was imposed using the flow dis-
charge Q 1 calculated from the 2-D simulations, whereas the
parameters U1;U2;K1 and K2 were optimized to obtain a best-fit
with the 2-D model results. A good agreement between the curves
is found both in linear and in logarithmic scale. The use of an
advection–dispersion model for the two transport components
leads to a satisfactory representation of the RTDs, both in presence
and absence of a clear bimodality. The behavior of the tails is also
well represented, with only a slight deviation in the most channeli-
zed case. The model is therefore capable to represent the residence
time statistics with good approximation, matching the main time
scales and the variance of the RTDs.

The conceptual model expressed by Eqs. (28) and (29) linking
the weight w1 to the channel width, b�, and the vegetation density
ratio, n�, shows a good agreement with the flow discharges calcu-
lated in the 2-D simulations. As shown in Fig. 6, the model appears
to slightly overestimate the discharge flowing in the MFC (and con-
sequently underestimate the discharge in the LVZs), especially for
smaller values of n�. In this case, the vegetation density in the main
channel is lower and the velocity higher, making the magnitude of
the first term of Eq. (23) comparable to the fourth term, which was
neglected in the derivation of (28) and (29). This term should be
taken into account if a higher accuracy is desired. However, the
approximation provided by Eqs. (28) and (29) appears to be quite
satisfactory to determine the value of the weight factor w1, as dem-
onstrated by the graph in Fig. 6.

The values of the Peclet number for the main channel,
Pe1 ¼ U1b=ET;1, and the lateral vegetated zones, Pe2 ¼ U2ðB� bÞ=
2ET;2, calculated using the transverse diffusion coefficient (12),
are reported in Tables 1 and 2, respectively. The values indicate
that the transport process is dominated by advection both in the
MFC and in the LVZs. In particular, it is interesting to note that
the nondimensional longitudinal dispersion coefficients, defined
as K�i ¼ Ki=ET;i, are found to be proportional to the square of the
Peclet number Pe2

i . This means that the ratio K�i =Pe2 is approxi-
mately constant as the density ratio n� varies. Deviations from a
constant value are observed for density ratios close to one (i.e.
n� � 1) for which the bimodality of the RTDs is much less pro-
nounced, making the parameter estimation procedure unable to
distinguish between the two transport components.

Overall, the parameterization of the RTDs expressed by Eqs. (19)
and (20) reproduces satisfactorily the shape of the simulated RTDs,
and the approximate relationships (28) and (29) provide a reliable
estimate of the flow discharges in the MFC and the LVZs. Although
the parametric dependence of the dispersion coefficients K1 and K2

is not fully resolved, results show that the ratios K�i =Pe2 are inde-
pendent of n� and depend only on the nondimensional channel
width b� (Fig. 7).

To the best of our knowledge, this is the first study that system-
atically analyzes the effect of vegetation density on the behavior of
the hydraulic RTDs in a channelized wetland. The parameterization
of the RTDs suggested in this work has potential application to
both natural and constructed wetlands characterized by a main
flow channel and later zones with emergent vegetation. Although
the analysis presented here is focused on passive tracers, the model
can also be applied to reactive solutes by using Eq. (19) in combi-
nation with (21) for first-order decay reactions. Further study is
needed to understand the behavior of the RTDs and the resulting
wetland performance in more complex configurations.
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5. Conclusions

A two-dimensional depth-averaged hydrodynamic model cou-
pled with a solute transport model was used to derive the hydraulic
residence time distribution in a conceptual wetland characterized
by a main flow channel and lateral vegetated zones. Results show
that the partition of the flow between the main channel and the
vegetated zones leads to a bimodal behavior of the hydraulic RTD.
The RTD was parameterized as a weighted average of two RTDs
resulting from advective–diffusive transport along two one-dimen-
sional domains. Although the model can be extended to account for
additional retention processes, the use of a conventional advection–
dispersion model for each transport domain was shown to be suffi-
cient to adequately reproduce the observed bimodality, with a rea-
sonable level of accuracy also for the tail behavior of the RTDs. The
best-fit model parameters were analyzed as a function of the width
of the MFC and the density ratio between the MFC and the LVZs. The
position of the two concentration peaks on the time axis is linked to
the average travel time in each zone, whilst the ratio between the
nondimensional longitudinal dispersion coefficient and the square
of the Peclet number was found to be approximately constant.
Approximate analytical relationships were derived for the flow dis-
charges in the MFC and in the LVZs, which allow to estimate part of
the model parameters in a predictive way.

The analysis presented in this work retains a number of limita-
tions due to the simplified geometry and topography of the simu-
lated wetland. Even in the idealized case of a rectangular wetland
with uniform bed elevation, the residence time statistics depend
on several variables, such as the flow discharge, the wetland aspect
ratio, the geometry of the main channel and the vegetation density,
making the problem extremely complex to describe in a compre-
hensive way. This complexity is further increased by uncertainty,
which arises as a consequence of spatial heterogeneities and tem-
poral fluctuations driven by meteorological factors such as wind,
temperature and rainfall. The methodology and the results pre-
sented in this work can, however, be a basis for future studies aim-
ing to clarify the relationship between contaminant removal
efficiency and design parameters of constructed wetlands for
waste-water treatment.
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