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ABSTRACT 

In order to produce stable lines with parallel sides through inkjet printing, individual drops are 

deposited on a surface so that they coalesce; this initial liquid line (or bead) must remain stable until it 

forms a solid. The stable line width is shown to be bounded by two limits, with the lower bound 

(minimum line width) determined by the maximum drop spacing for stable coalescence and the upper 

bound determined by the minimum drop spacing below which a bulging instability occurs. The 

maximum stable track width is also a function of the velocity at which an inkjet printhead traverses the 

substrate. These bounds are presented in dimensionless form and shown to agree well with experiment. 

To enable easier determination of the stability of an arbitrary ink/substrate combination, both the upper 

and lower bounds are presented in graphical forms to define a region of bead stability in an appropriate 

parameter space. 
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Introduction 

 

There has been considerable interest in recent years in the use of inkjet printing as a tool to fabricate 

engineered objects with applications in a range of fields including, polymers, 1,2 displays, 3 polymer 

electronics, 4 3-Dimensional fabrication, 5 and biomaterials and tissue engineering. 6 Unlike the original 

application of inkjet printing for graphic output, where a pattern of discrete printed drops is required, 

these new applications often require the coalescence of printed drops to produce linear features, 2-

Dimensional patterns or even 3-Dimensional objects. The end product of the printing process for most 

applications will be a solid deposit, thus for the case of drop coalescence to form a defined shape, 

stability must be retained from initial coalescence and throughout the subsequent solidification process. 

Thus the conditions that lead to stable liquid beads on flat substrates must be understood if inkjet 

printing is to be used as a general fabrication tool. 

 

It has been known for some time that a line or bead of liquid resting on a flat homogeneous surface 

can be unstable depending on the boundary conditions at the moving contact line. Davis considered the 

stability of three cases of liquid beads: 7 i) where the contact angle at the line is fixed but the contact 

line is free to move, ii) where the contact angle is a function of line speed but has a limiting value at 

zero contact line speed, and iii) where the contact angle is free to change but the contact line is pinned 

and the two lines defining the liquid bead are parallel. It was shown that for both cases (i) and (ii) a 

liquid bead undergoes a Rayleigh instability but for case (iii) the bead is stable if the contact angle θ < 

π/2. This prediction was studied by Schiaffino and Sonin who confirmed Davis’s predictions using 

experiments with wax droplets on a cooled substrate such that the contact line was pinned by 

solidification. 8 They also studied water droplets and found that the liquid bead was always unstable as 

predicted by Davis’s cases (i) and (ii).  
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In earlier work we considered a lower bound limiting conditions for the width of a stable liquid bead 

formed through the coalescence of liquid droplets in the case of receding contact line pinning. 9,10  By 

assuming that liquid beads form through the interaction of adjacent droplets resting on a substrate, a 

model based on volume conservation was derived that predicted the width of a parallel sided liquid bead 

as a function of droplet spacing or dot pitch.. The predictions of the model were found to agree well 

with experiment for a commercial soluble silver ink on a range of substrates. This model assumed that 

the limiting condition for bead formation was given by a critical amount of droplet overlap. 

 

Duineveld considered another instability that occurs with liquid beads if there is significant hysteresis 

between the advancing and receding contact angles, θa and θr respectively. 11 When a liquid contains 

particles in suspension, or a high concentration of solute, the contact line can be pinned by solid 

deposition following solvent evaporation resulting in a zero or near zero receding contact angle 12,13 and 

thus Duineveld’s instability analysis may be more appropriate for inkjet printing systems. In this case 

the instability is present when capillary spreading occurs more rapidly than flow along the direction of 

printing and results in a characteristic regular spacing of bulges separated by constant section liquid 

beads. The physical basis for this instability will be considered in more detail as part of this work but 

this instability defines a maximum droplet overlap for stable liquid bead formation whereas the stability 

criterion of Stringer 9,10 defines a minimum droplet overlap 

 

Soltman and Subramanian considered the stability of inkjet printed lines in terms of these two 

instability criteria. 14  They re-derived the lower bound instability criterion in order to present it in a 

dimensionless form normalized by initial droplet diameter. They also identified the dynamic nature of 

Duineveld’s instability and proposed a qualitative schematic parameter space in which one axis was the 

spacing of printed droplets on a substrate and the second axis was in temporal units related to the time 

between adjacent droplet depositions. However, no attempt was made to quantify the model predictions 

or to test them experimentally. 
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This work develops the models for the stability of inkjet printed lines presented earlier by ourselves 

and by Duineveld. The two regimes of line stability provide lower and upper bounds for the width of a 

stable parallel sided liquid bead. The lower bound is based on the interaction between equilibrium 

surface tension concepts and contact line pinning, 9,10 the other bound is developed from Duineveld’s 

model that considers a kinetic instability during the deposition and coalescence of drops. 11 These 

results can be combined and presented in a graphical form that defines a region of stability in 

appropriate parameter space that can be used with arbitrary ink/substrate combinations. 

 

 

Criteria for Printed Line Stability 

 

Droplet Equilibrium and Line Stability 

 

Once deposited on a substrate, a liquid droplet will spread to equilibrium defined by the interfacial 

energy balance of the Young Equation such that: 

 

 eqmLVLSSV cosθσσσ +=  (1) 

 

where σSV, σLS and σLS are the substrate-vapor, liquid-substrate and liquid vapor surface energies 

respectively and θeqm is the equilibrium contact angle. In the case of a finite contact angle, it is possible 

to model the deposited droplet as a spherical cap if gravitational forces are negligible, i.e. a Bond 

number ( ) significantly less than 1, where ρ is the liquid density, g is gravitational 

acceleration and d0 is the diameter of the drop before it is in contact with the surface.  If we assume 

volume conservation between the deposited drop and the spherical cap, the following expression can be 

LVgdBo σρ /2
0=
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derived, 15 where βeqm is the diameter of the spherical cap on the substrate, deqm, normalized to the initial 

droplet diameter, d0: 
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With inkjet printing, this liquid cap will eventually transform into a solid either through drying 

(evaporation) or phase change (solidification). In solidifying systems there is a small change in volume 

associated with the phase change; in evaporating systems, there could be a significant amount of 

volume loss before the droplet assumes the equilibrium spherical cap shape, with the amount of volume 

loss dependent upon the volatility of the droplet.  The degree to which this loss of volume affects the 

final deposit diameter will depend upon whether contact line pinning occurs with the particular 

evaporating system involved. However, the ubiquitous nature of contact line pinning in all but the 

cleanest, pure solvent systems would suggest that it is likely to take place in most practical cases of ink 

jet printing. 12,13 

 

Two droplets deposited so that they overlap will tend to coalesce.  These droplets will coalesce into a 

single body of liquid if the first deposited droplet does not form a solid before the next one is deposited.  

A series of droplets deposited linearly on a substrate will therefore form a liquid bead on the substrate. 

Assuming that the contact line of this liquid bead cannot recede due to contact line pinning, ignoring 

any end effects and that gravitational forces are negligible (Bo<<1), the bead will have a constant cross 

section of a circular segment.  Based on these assumptions and that of volume conservation between the 

impinging droplets and the liquid bead, it is possible to construct a simple geometric model of the bead 

as a function of initial droplet diameter d0, droplet spacing p, bead width w and θeqm 9 (figure 1): 
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By rearranging equation 3 to make w the subject, the following expression for the stable bead width as a 

function of p, d0 and βeqm can be obtained: 10 
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The bead width can be normalized with respect to βeqmd0, giving the following dimensionless 

relationship for all stable bead widths: 
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where w* is the dimensionless bead width. Assuming that the contact line of an individual droplet is 

pinned and cannot retract, the minimum width of the bead is equal to βeqmd0.  By substituting this into 

equation 5 for w and rearranging, the following equation for the maximum droplet spacing pmax is 

obtained: 
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or in dimensionless form using the same normalization as w*: 
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Dynamic Line Stability 

 

As discussed earlier, a further bulging instability is observed at smaller droplet separation, which 

consists of a series of bulges connected by ridges of width βeqmd0.  Duineveld proposed that the 

transition to this morphology was explained by competing flow rates within the bead.  There is a flow, 

Q, along the bead driven by a pressure difference from any variation in bead width. There is another 

spreading flow, QA, due to capillarity. 11  If Q >> QA, any newly deposited liquid will preferentially flow 

along the bead to the area of low pressure, rather than causing the bead to spread.  Here we present 

Duineveld’s model and develop it further to present an explicit analytical expression for the onset of the 

bulging instability. 

 

Duineveld’s analysis assumes that QA is the mean flow rate generated by droplet deposition, which is 

significantly less than the axial flow due to pressure differences within the bead: 

 

 QQA <<  (7a) 

or QQK A <1  (7b) 
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where K1 is a constant > 1, which we have introduced for convenience in later manipulation. QA can be 

defined as the rate of arrival of drops from the printer 
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where VD is the volume of a droplet, ƒ is the frequency of droplet generation and UT is the speed at 

which the substrate moves relative to the printhead.  It is also assumed that the axial flow within the 

bead is fully developed and dominated by viscous forces, with a zero shear stress condition on the free 

(bead/vapor) surface. From this Duineveld obtained the following expression for Q: 11 
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where ∆PR is the pressure difference between the ridge and the bulge, AR is the cross sectional area of 

the ridge, η is the dynamic viscosity of the liquid, lr is the length of ridge between newly deposited 

droplets and a bulge, and S is a shape factor with: 
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where θc is the contact angle of the ridge with the substrate. If a bulge forms, θc < θeqm to eliminate the 

driving force for capillary spreading within the ridge, it is therefore assumed in this work that the 

critical criterion for which the axial flow will dominate and bulges appear is θc = θeqm.   
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The low pressure region, at which the bulge will form, occurs because of a difference in width 

between a newly deposited droplet and some point further down the bead.  Duineveld considered the 

evolution of this pressure difference in some detail but for his calculations of fluid flow within a liquid 

bead he used the approximate value ( )0/sin2 dP eqmeqmLVR βθσ=∆ . We use the following argument to 

determine the pressure difference. The most obvious difference in width along a bead is caused by the 

bead spreading to a stable width, w.  The pressure difference between a ridge of width βeqmd0  and a bead 

of width w is given below: 

 

 
( ) ( )

*

*

00

0 1sin2sin2
0 w

w
ddw

dw
PPP

eqm

eqmLV

eqm

eqmeqmLV
dwR eqm

−
=

−
=−=∆

β
θσ

β
βθσ

β  (11) 

 

 

The length of ridge, lr, over which equation 11 will be valid depends on the rate of capillary spreading 

of the bead. Duineveld estimated the spreading time of the coalesced droplets to a bead of width w to be 

of the order of 100 ms. 11  This estimate is contingent on the properties of the fluid, in particular the 

dynamic viscosity and surface tension, and the rate of phase change of the fluid.  A more viscous fluid 

will spread at a slower rate than a less viscous fluid, 16 and this can be exacerbated by any evaporation 

that reduces solvent content. The value of lr is also found to decrease with increasing UT.  While highly 

simplified, considering the interplay of various factors outlined above, the value of lr in this work is 

assumed to be proportional to the drop spacing, p, leading to the following equation: 

 

 pKlr 2=  (12) 

 

The cross-sectional area of the ridge, AR, is given by conservation of mass within the bead with: 
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By substituting equations 8, 9, 10, 11, 12, 13 and into inequality 7, the following inequality is derived: 
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This can be rewritten in terms of dimensionless drop spacing, p*, by substituting for w* (equations 5 

and 6) to give 
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In inequality 15 the terms S, βeqm and f(θeqm) are all functions of θeqm and both K1 and K2 are constants, 

hence we can express inequality 14 in terms of a simple function of p* and θeqm. 
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Thus the inequality can be considered as representing the relationship between a dimensionless velocity 

for the traverse of an inkjet printer (UT*) and a dimensionless drop spacing raised to the power of -2 

(modified by a function of the equilibrium contact angle). Unstable lines are formed when the drops are 

placed too close together but this threshold is reduced as the traverse velocity increases. We note that 

the dimensionless velocity, UT*, has the same dimensional form as the Capillary number. 

 

This representation of Duineveld’s model for the onset of the bulging instability, although somewhat 

simplified, allows it to be stated in the form of an analytical expression that can be used to determine 

the critical droplet spacing for the onset of the instability at a given line speed, as a function of the 

equilibrium contact angle. 

 

 

Experimental 

 

The inks used in this study were a commercial silver nanoparticle ink (Inkjet Silver Conductor AG-IJ-

G-100-S1, CABOT-PED, Albuquerque, NM, USA; herein referred to as nanoparticle ink) and an 

organometallic salt dissolved in xylene synthesized in-house (herein referred to as organometallic ink).  

Preparation details for the synthesis of the organometallic solution have been published previously. 17  

The substrates used in this study were glass (microscope slides, BDH, Poole, Dorset, UK), polyimide 

film (Kapton™, DuPont, Wilmington, DE, USA) and silicone rubber (Goodfellow Cambridge Ltd., 

Huntingdon, UK).  The equilibrium contact angle, θeqm, of each ink/substrate combination was 

measured using a CCD camera and image analysis software (FTA 200, Camtel, Royston, UK).  Both 
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inks used have previously been characterized with regards to surface tension and viscosity, either in 

previous publications or on data sheets supplied with the ink.  This data is summarized in Table 1. 

 

Printing of samples was carried out using a JetLab printing platform (MicroFab Inc., Plano, TX, 

USA) that consists of a piezoelectric squeeze mode printhead situated above a programmable x-y 

platform.  The printheads used in this study had a nozzle diameter of 50 µm (MJ-SF-01-50, MicroFab).  

It is possible to alter printed drop velocity by controlling the shape and timing of the electrical pulse 

used to actuate the piezoelectric printhead. Table 2 shows the conditions used to actuate the printer for 

the materials used and that for the organometallic ink we used two different drop velocities.  Droplet 

diameter measurements were conducted by ejecting a known number of droplets into a vial containing 

an appropriate solvent. The mass change of this vial was compared with an identical reference vial filled 

with the same solvent and a mass balance used to calculated the diameter of an individual droplet, 

assuming a spherical droplet and known density values.  All substrates were cleaned with acetone 

before deposition of droplets. 

 

Variation of p and UT, leads to a corresponding variation of the droplet deposition frequency, f.  As f 

is increased, it is possible that there may be acoustic interference (constructive or destructive) within the 

printhead that influence the size and velocity of ejected droplets. 18  For this reason, values of d0 were 

measured for all frequencies used.  
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Results and Discussion 

 

Stable bead formation from overlapping droplets 

 

In order to explore the transition from isolated drops to a stable bead, we printed a series of deposits 

with overlapping droplets of both the organometallic and nanoparticle ink on glass, polyimide and 

silicone substrates, using printing condition 1 (Table 2), with droplet spacing of the beads varying 

between values approximately 15 µm below pmax (equation 6) and βeqmd0 (equation 2).  

 

Figures 2 and 3 show typical morphologies either side of pmax for the organometallic ink on glass and 

silicone substrates. In both cases the deposit morphology for samples just below p = pmax is that of a 

stable track with parallel contact lines. Above pmax the morphology of the samples on high contact angle 

substrates (figure 3) is in good agreement, with a periodic curvature to the contact line, as there is 

insufficient fluid to form a stable bead. A similar behavior is seen with the nanoparticle ink on all 

substrates. However, on the low contact angle substrates (figure 2) equation 6 does not give such an 

accurate prediction for the transition between the two morphologies, with the change in morphology 

found to occur at higher values of p.  This is believed to be related to the behavior shown in figure 4 

where it can be seen that adjacent printed droplets have spread to an elliptical footprint and approached 

each other; with the result in one instance that droplet coalescence has occurred even though p > βeqmd0. 

This phenomenon is believed to be related to local changes in surface energy related to vapor transport 

from the drops but further work is required to confirm this. Similar observations of excess droplet 

spreading in the printing direction and the influence it has on bead morphology have been made for a 

study of the inkjet printing of an aqueous solution of poly(3,4-ethylene-

dioxythiopene)poly(styrenesulfonate), PEDOT/PSS. 14 While this shows that it is possible to form 

stable tracks from droplets spaced with p > βeqmd0, there is no benefit gained in terms of smaller features 

because contact line pinning limits the minimum track width to βeqmd0.  
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To study the relation between droplet spacing and stable bead width, and to validate equation 5, we 

printed a series of beads of organometallic ink at constant frequency (750 Hz), using printing condition 

1 (Table 2), onto glass, polyimide and silicone substrates.  In all cases the same qualitative behavior was 

observed, with the deposited bead width decreasing as p increases. The beads formed on polyimide 

showed significantly greater width, w, for a given drop spacing p, than the deposits formed on glass; 

those formed on silicone did not show spreading to the same degree as with the other substrates.  This is 

to be expected as the contact angle of the organometallic ink on glass is intermediate to that on 

polyimide and silicone (Table 3). The range of drop spacing in which stable beads were produced on 

silicone was relatively small, with a bulging instability observed at low values of p and break-up of the 

bead into individual droplets at high p. This small range of stable p occurs because high θeqm substrates 

will produce beads that have a low value of pmax (equation 6) and are also more likely to possess a 

bulging instability if all other variables are kept constant. 11  The measured values of w on the silicone 

substrate did not show such good agreement with equation 5 as the other substrates, with w tending 

towards βeqmd0 in all cases. A possible cause of this could be inaccuracies in either measurement of any 

the involved variables (w, θeqm, d0) being amplified at the smaller size of deposit. We carried out an 

identical series of experiments using the silver nanoparticle ink with printing condition 3 (Table 2). 

There is again a strong relationship between deposit width, w, and θeqm. We found that the measured 

values of w compare well with those predicted by equation 4, and this was found to hold for all deposits 

formed from stable beads of nanoparticle ink.   

 

To allow a comparison with prediction for all inks and substrates, the bead width and drop spacing 

have been converted to the dimensionless terms w* and p*f(θ) and compared with equations 5 and 6 in 

figure 5.  There is good agreement between equation 5 and the experimental results before the threshold 

given by equation 6 for all combinations of ink and substrate.  Above the threshold given by equation 6, 

the value of w* becomes constant at a value of 1; This corresponds to w = βeqmd0, showing that the 
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minimum width achievable for a bead formed by ink jet printing is the diameter of a single droplet on a 

substrate; this is limited by contact line pinning, as discussed previously. The value of pmax occurs at a 

lower value of p as θeqm is increased, meaning that there is a smaller range of p that is usable to produce 

stable beads.  

 

 

Unstable bead formation and bulging 

 

A series of beads of the nanoparticle ink were printed onto three different substrates: glass, polyimide 

and silicone using condition 3 (Table 2).  The bead morphologies observed with the nanoparticle ink are 

in good qualitative agreement with those expected for a bulging instability (figure 6).  The bulging 

instability was found to be more prevalent on high contact angle substrates, at low p and at low UT. 

These data are therefore suitable to be used to identify the undefined constants, K1 and K2, in 

inequalities 14 and 15. The product of the undefined constants can be determined by the best fit of the 

instability criterion to the data, resulting in K1K2 = 4. This value is physically consistent with the 

definitions of both K1 and K2.  In order to test the validity of the model’s predictions, inequality 15, the 

dimensionless form of the instability criterion, is plotted in figure 7. This divides the parameter space 

into two regions with stable beads formed at large drop spacing and traverse velocity.  

 

Superimposed upon the stability criterion in figure 7, we have plotted experimental data from our 

experiments and from sources in the literature. 11,19 Our data for lines printed on polyimide and silicone 

substrates show two sets of unstable conditions falsely identified as stable. In all cases where the 

criterion inaccurately predicts the outcome for a given set of deposition conditions on high contact angle 

substrates, the conditions are very close to the threshold defined by the inequality 14.  It is therefore 

possible that these erroneous results arose from the simplified assumptions made when deriving the 

inequality.  One feature of note is that the criterion erroneously predicts unstable results on the low 
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contact angle substrate (glass) and stable results on higher contact angle substrates (polyimide and 

silicone).  This could suggest that the modeling of the capillary spreading flow is too simplistic because 

it assumes instantaneous spreading to βeqmd0 and that the spreading from βeqmd0 to w has no driving 

force associated with it that can compete with the pressure-driven axial flow.  This discrepancy could 

also be due to the assumption for the ridge length, lr, given in equation 12 for the reasons discussed 

previously. 

 

The model assumes a two stage process of bead formation, whereby any axial flow takes place before 

the bead spreads due to capillarity, this model would only be valid if the driving force for wetting of the 

substrate is relatively low or acts over timescales far in excess of any axial flow. On low contact angle 

substrates the driving force for capillary flow due to the surface energy imbalance will be substantial as 

more liquid is added, and this two stage assumption may no longer be valid. This would result in 

capillary-driven spreading dominating where pressure-driven flow would be expected to dominate, 

resulting in a stable bead where the model would predict differently. This is therefore a possible 

explanation for our outlying results for glass and Duineveld’s results for PEDOT/PSS solutions on a 

plasma-treated resist substrate that showed a zero receding contact angle. 

 

The morphologies observed for the organometallic ink, while in some ways showing qualitative 

agreement with the experimental results and predictions of Duineveld, 11 show little quantitative 

agreement.  The bead morphology observed on the low contact angle substrates of glass (figure 8) and 

polyimide at low drop spacing, p, shows bulges connected by ridges where the ridges have a width 

significantly greater than βeqmd0, and the appearance of bulges seems to be independent of traverse 

velocity, UT. Printed beads on a high contact angle substrate (silicone, figure 9) show greater similarity 

with Duineveld’s results, with ridge widths approximating to βeqmd0 and bulges first observed at larger p 

as UT is increased. It should, however, be noted that the range of stable bead widths possible on silicone 

are much smaller according to equation 5 and at all but the smallest values of p are very close to βeqmd0. 
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A possible explanation for this discrepancy is that there is no allowance for evaporation in 

Duineveld’s model. 11 Assuming that the evaporation time of a droplet is limited by diffusion of the 

solvent away from the droplet, a simple order of magnitude estimate for the evaporation time, te, 

necessary for the contact line to be permanently pinned can be obtained by: 

 

 
VV

e CD
dKt

2
03ρ

≈   (17) 

 

Where DV is the vapor diffusion coefficient, CV is the saturated vapor concentration and K3 is a constant 

representing the fraction of solvent evaporation necessary for precipitation to take place (in this case, 

K3 = 0.02).  In this work the solvent used was xylene which has the following values for saturated vapor 

concentration and diffusion coefficient: Cv = 3.6 x 10-2 kgm-3, Dv = 7.5 x 10-6 m2s-1 (manufacturer’s 

data, Sigma Aldrich Ltd, Dorset, UK). Using equation 17, an evaporation timescale, te, of approximately 

50 ms is thus obtained.  This is of a similar order of magnitude to the time necessary for a deposited 

liquid bead to spread, 16 and it is thus possible that evaporation will have an influence on the dynamics 

of bulge formation. The poor agreement with Duineveld’s model for high vapor pressure inks is 

discussed in more detail elsewhere.20 It should also be noted that, due to the relatively long time 

between droplet depositions, that such mechanisms may explain the outlying results in figure 7 from 

Duineveld's data. 

 

 

Graphical Representation of Printed Line Stability 

 

From the results we have presented, we have demonstrated that the stability of liquid beads, and 

hence inkjet printed continuous lines, is controlled by two limiting conditions related to drop spacing 
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and printer traverse velocity. From the grouping of the variables of inequality 16, it is possible to 

construct a stability map, with axes of g(p*,θeqm) and UT*, to enable graphical inspection of a given set 

of printing parameters to see whether a stable liquid bead will form. The inequality will be represented 

by a diagonal line of this graph (as in figure 7) with the region for stable bead formation lying above 

and to the left. The x-axis of the map represents a dimensionless function of the drop spacing and thus it 

will be possible to use the threshold defined in equation 6 to identify a vertical line that represents p*max, 

the dimensionless maximum drop spacing. We also note that the y-axis represents a dimensionless 

traverse velocity of the printing system. Although there is no physical limit to this velocity implicit in 

our analysis, any given printing system will have a maximum traverse velocity that is defined by its 

design and/or construction. Thus we would expect the stability map to be a triangular region in this 

version of the parameter space (figure 10) with a diagonal line indicating the bulge instability, a vertical 

line the maximum drop spacing for line formation and a horizontal line indicating the mechanical 

limitations of the printing system.  

 

In order to determine values for these thresholds and to maintain self-consistency with the 

representation of the bulging instability, we must make some alterations to our previous analysis of pmax. 

The assumption of w = βeqmd0 used to determine pmax (equation 6) is not consistent with equation 11, 

because, in its present form, it implies that there is no pressure difference within the bead. While this 

would simplify the creation of a stability map, it does not give any indication as to the relative 

sensitivity of the deposited bead to the development of any instability with varying θeqm.  For this reason 

we arbitrarily define w = 1.1βeqmd0, which both allows for variation of w with θeqm and gives a small 

pressure difference within the bead to drive axial flow, thus making the right hand side of inequality 14 

greater than zero.  The choice of this value also makes the stability map more robust to any positioning 

errors that may occur.  By substituting the appropriate value of p into equation 16e, an expression for a 

threshold representative of pmax can be derived: 
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From the definitions of βeqm (equation 2) and S (equation 10), this threshold is dependent only upon the 

equilibrium contact angle, θeqm, and the value of K1K2.   

 

The traverse velocity limit corresponds to the maximum attainable value of the left hand side of 

inequality 16a, which is given by: 
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where UTmax is the maximum speed at which the substrate can move relative to the printhead (defined by 

the relevant parameters of the printing equipment under study).  If we use typical values for the 

viscosity of an ink suitable for inkjet printing, η < 10 mPas and σLV < 50 mJm-2, we would expect 

U*Tmax < 1 for most practical printing systems. 

 

By plotting inequality 16a and equations 18 and 19 on a common set of axes, a triangular region is 

defined within which a stable liquid bead is be produced (figure 10).  Unfortunately, because of the 

assumptions used in the definitions of the two stability bounds, it is impossible to produce a plot that is 

both dimensionless and independent of the contact angle, θeqm. The position of the vertical line that 

indicates the maximum drop spacing on the substrate is an additional function of θeqm as can be seen in 

figure 10. However the position of the bulging instability is invariant with contact angle using this 

system of axes.  From this figure we can see that the triangular region of stability is a function of θeqm, 

with low equilibrium contact angle drop/substrate combinations showing the largest region of stability. 
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Although this plot (figure 10) is useful in identifying the conditions for stable printing, the rather 

artificial formulation of g(p*max,θeqm) makes it difficult to visualize how the printing parameters and 

contact angle each influence line stability. In figure 11 we have replaced the x- axis with drop spacing 

normalized by printed drop diameter (p/d0) and redrawn the stability map with the new axis set. Using 

this representation, the loci representing both of the stability criteria appear as functions of the contact 

angle. However, it is easier to appreciate the inter-relation between drop spacing and printhead traverse 

velocity that defines the onset of the bulging instability. It can now be clearly seen that the region of 

stability is reduced as the contact angle of the drop on the substrate increases and that increasing the 

velocity of traverse allows stable lines with smaller drop spacing and hence thicker printed lines. 

 

 

Conclusions 

 

We have shown that when liquid drops show contact line pinning, it is possible to form stable lines or 

liquid beads, with constant width and parallel, straight edges, through the coalescence of trains of 

overlapping drops. The conditions for stable line formation are limited by upper and lower bounds for 

drop width, which can be predicted through simple mechanism models for the bounding instabilities. 

These bounds can be also considered in terms of critical drop spacing (dot pitch) with the lower bound 

for width determined by a maximum drop spacing and the upper bound by a minimum drop spacing. 

The upper bound is also a function of the rate at which the drops arrive at the surface, with a more rapid 

delivery leading to a larger stable upper bounding bead width. It is possible to describe these two 

limiting bounds using a common dimensionless formulation and produce a graphical prediction of the 

conditions for track stability. These predictions have been compared with experimental results and show 

good agreement with a range of ink and substrate combinations in this study and in the literature. 
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However, with an ink based on a relatively high vapor pressure solvent, the agreement was less good. 

We found that in this case the maximum drop spacing for overlap and the onset of coalescence is 

greater than predicted from the shape of isolated drops of fluid spread on a smooth surface. As 

separated adjacent liquid drops are printed with smaller separations, it is noticeable that the droplet 

spreading is no longer circular but instead forms an elliptical shape with the long axis of the ellipse 

along the line of droplet separation. This behavior is more pronounced with higher vapor pressure 

solvents and with lower contact angles. We hypothesize that this behavior is driven by evaporation from 

the drops prewetting the region between adjacent droplets and influencing contact line tension. 

However, this phenomenon needs further investigation. In addition, this high vapor pressure ink did not 

show the strong morphological transition at small drop spacings and low traverse velocities to the 

bulging instability first investigated by Duineveld.11 This divergence in behavior from many reports in 

the literature11,14,19 may be because the time constant for evaporation is similar to that for droplet 

spreading and thus may invalidate some of the assumptions in Duineveld’s model for the onset of the 

instability. 
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FIGURE CAPTIONS  

Figure 1.  At low values of Bond number a series of coalescing isolated drops will form a liquid bead of 

circular profile. 

Figure 2.  Printed track morphologies after drying of the organometallic ink on a glass substrate with a 

range of drop centre spacings around pmax = 83.4 µm: a) p = 80 µm b) p = 90 µm and c) p = 120 µm..  

Figure 3.  Printed track morphologies after drying of the organometallic ink on a silicone substrate with 

a range of drop centre spacings around pmax = 55.3 µm: a) p = 55 µm b) p = 60 µm and c) p = 85 µm..   

Figure 4.  Inkjet printed droplets of the organometallic ink on glass showing an interaction between 

neighboring droplets with drop spacings a) p = 300 µm, b) p =  195 µm, c) p =  180 µm, d) p = 165 µm . 

Solid outline shows position of the contact line with an identical volume isolated drop. In image (d) 

drop coalescence has occurred even though isolated drops would not touch at that spacing. βeqmd0 = 155 

µm in all cases. 

Figure 5.  A plot of normalized bead width, w*, against normalized droplet spacing, p*f(θeqm), for both 

nanoparticle (filled symbols) and organometallic inks (open symbols) on all substrates. Lines 

correspond to equations 5 and 6. 

Figure 6.  Printed track morphologies after drying of the nanoparticle ink on a polyimide substrate with 

a range of drop centre spacings and printhead traverse velocities:. a) p = 10 µm, UT = 10 mms-1 b) 

p = 10 µm, UT = 100 mms-1  c) p = 20 µm, UT  = 10 mms-1  d) p = 20 µm, UT = 100  mms-1. 

Figure 7: Stability map showing the condition for the onset of the bulging instability as defined by 

equations 15 and 16, with data for the nanoparticle ink experiments superimposed, together with data 

obtained from the literature.  In all cases, open symbols indicate an unstable morphology and filled 

marks indicate a stable morphology: 
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Figure 8.  Printed track morphologies after drying of the organometallic ink on a glass substrate with a 

range of drop centre spacings and printhead traverse velocities:. a) p = 10 µm, UT = 10 mms-1 b) p = 10 

µm, UT = 100 mms-1  c) p = 20 µm, UT  = 10 mms-1  d) p = 20 µm, UT = 100  mms-1. 

Figure 9.  Printed track morphologies after drying of the organometallic ink on a silicone substrate with 

a range of drop centre spacings and printhead traverse velocities:. a) p = 10 µm, UT = 10 mms-1 b) 

p = 10 µm, UT = 100 mms-1  c) p = 20 µm, UT  = 10 mms-1  d) p = 20 µm, UT = 100  mms-1. 

Figure 10  Map of parameter space defined by a dimensionless velocity and a function of p* and θ, 

showing the region of printed line stability. The solid diagonal line indicates the onset of the bulging 

instability. The horizontal dashed line indicates the maximum traverse speed for a particular printing 

system. The maximum drop spacing limit (vertical dotted line) is shown for a range of equilibrium 

contact angles. 

Figure 11.  Alternative representation of the regions within which inkjet printed liquid lines or beads 

are stable using dimensionless axes of velocity and drop spacing for a range of contact angles. The 

curved lines show the onset of the bulging instability and the vertical lines show the limit of maximum 

droplet spacing. The region of stability clearly gets smaller and the range of stable droplet spacing 

reduces as the contact angle increases. 

 

 

26



Table 1.  Fluid physical properties of the inks used in this study. 

 

Ink Viscosity, η 

mPa.s 

Surface Tension, σLV 

mJ.m-2 

Nanoparticle 14.4 31 

Organometallic 4.14 28 

 

 

Table 2.  Piezoelectric actuation pulse for the inkjet printheads and the resulting drop diameter and drop 
ejection velocity. 

 

Ink Condition Voltage 

V 

Rise time 

µs 

Dwell time 

µs 

Fall time 

µs 

d0 

µm 

Velocity 

ms-1 

Organometalli
c 

1 50 5 50 5 65 2.3 

Organometalli
c 

2 90 5 60 5 72 4.8 

Nanoparticle 3 60 10 60 10 56 2.8 
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Table 3. Contact angle of the inks on the substrates used in this study. 

 

Ink Substrate θ /° 

Nanoparticle Glass 7.8   ± 2.2 

Nanoparticle Polyimide 45.2 ± 0.8 

Nanoparticle Silicone 63.4 ± 1.1 

Organometallic Glass 22.0 ± 1.4 

Organometallic Polyimide 10.8 ± 2.4 

Organometallic Silicone 75.0 ± 1.3 
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Figures 

 Figure 1.  At low values of Bond number a series of coalescing isolated drops will form a liquid bead 

of circular profile. 

 

 

 

Figure 2.  Printed track morphologies after drying of the organometallic ink on a glass substrate with a 

range of drop centre spacings around pmax = 83.4 µm: a) p = 80 µm b) p = 90 µm and c) p = 120 µm.   
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Figure 3.  Printed track morphologies after drying of the organometallic ink on a silicone substrate with 

a range of drop centre spacings around pmax = 55.3 µm: a) p = 55 µm b) p = 60 µm and c) p = 85 µm.   

 

 

Figure 4.  Inkjet printed droplets of the organometallic ink on glass showing an interaction between 

neighboring droplets with drop spacings a) p = 300 µm, b) p =  195 µm, c) p =  180 µm, d) p = 165 µm. 

Solid outline shows position of the contact line with an identical volume isolated drop. In image (d) 

drop coalescence has occurred even though isolated drops would not touch at that spacing. βeqmd0 = 155 

µm in all cases. 

 

 

30



 

Figure 5.  A plot of normalized bead width, w*, against normalized droplet spacing, p*f(θeqm), for both 

nanoparticle (filled symbols) and organometallic inks (open symbols) on all substrates. Lines 

correspond to equations 5 and 6. 

 

  

Figure 6.  Printed track morphologies after drying of the nanoparticle ink on a polyimide substrate with 

a range of drop centre spacings and printhead traverse velocities:. a) p = 10 µm, UT = 10 mms-1 b) 

p = 10 µm, UT = 100 mms-1  c) p = 20 µm, UT  = 10 mms-1  d) p = 20 µm, UT = 100  mms-1 
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Figure 7: Stability map showing the condition for the onset of the bulging instability as defined by 

equations 15 and 16, with data for the nanoparticle ink experiments superimposed, together with data 

obtained from the literature.  In all cases, open symbols indicate an unstable morphology and filled 

marks indicate a stable morphology: 

 

 

Figure 8.  Printed track morphologies after drying of the organometallic ink on a glass substrate with a 

range of drop centre spacings and printhead traverse velocities:. a) p = 10 µm, UT = 10 mms-1 b) p = 10 

µm, UT = 100 mms-1  c) p = 20 µm, UT  = 10 mms-1  d) p = 20 µm, UT = 100  mms-1 
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Figure 9.  Printed track morphologies after drying of the organometallic ink on a silicone substrate with 

a range of drop centre spacings and printhead traverse velocities: a) p = 10 µm, UT = 10 mms-1 b) p = 10 

µm, UT = 100 mms-1  c) p = 20 µm, UT  = 10 mms-1  d) p = 20 µm, UT = 100  mms-1 
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Figure 10  Map of parameter space defined by a dimensionless velocity, UT*, and a function, 

g(p*,θeqm), of dimensionless drop spacing, p*, and equilibrium contact angle, θeqm, showing the region 

of printed line stability. The solid diagonal line indicates the onset of the bulging instability. The 

horizontal dashed line indicates the maximum traverse speed for a particular printing system. The 

maximum drop spacing limit (vertical dotted line) is shown for a range of equilibrium contact angles.  

 

Figure 11.  Alternative representation of the regions within which inkjet printed liquid lines or beads 

are stable using dimensionless axes of velocity and drop spacing for a range of contact angles. The 

curved lines show the onset of the bulging instability and the vertical lines show the limit of maximum 

droplet spacing. The region of stability clearly gets smaller and the range of stable droplet spacing 

reduces as the contact angle increases. 

 

34



 

 

TOC Image 

 

35


	Figures

