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We study the ground state of the Nonlinear Sigma Model in a hamiltonian framework as function of coupling 
constant, using the Coupled Cluster Method. We find a phase transition for finite coupling. 

1. I N T R O D U C T I O N  

The starting point for any investigation of a 
field theoretical model must be the vacuum. The 
ground state determines which type of fluctua- 
tions exist around this minimum, and thereby 
the low energy, or physical, states or particles. 
In many cases the bare vacuum can be the ref- 
erence state for calculations. However, in some 
cases, such as with broken symmetries, the vac- 
uum might be highly nontrivial. On top of that  
the ground state might depend strongly on the 
values of any physical constants that  appear in 
the model field theory. There could, for instance, 
be a phase transition in the system. 

We investigate the nonlinear sigma model as a 
model field theory to study the feasibility of using 
the coupled cluster method to study physical field 
theories. The nonlinear sigma model is believed 
to have a phase transition for a finite coupling 
constant[i].  We confirm this claim. The coupling 
constant in the nonlinear sigma model is propor- 
tional to the inverse square of the lattice spacing, 
and tells us in practice at what scale the ground 
state is oriented, and at what scale it is disori- 
ented. 

2. T H E O R Y  

The nonlinear sigma model is related to a num- 
bet of physical systems. It was introduced to de-. 
scribe pion dynamics. The low-energy behavior 
of pions and their isospin symmetry originate in 
the chiral symmetry  of the quark degrees of free.- 
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dom. The simplest nonlinear realization of chiral 
symmetry yields the lagrangian: 

= ~Tr[O~,VO~'Vt], (1) £ 

where U is a unitary 2 x 2 matrix, and U t its 
hermitian conjugate. The manifest symmetry is 
the left and right multiplication with a unitary 
matrix: (LL t = 1 and R R  t = 1 ) 

U -+ LUR,  
U t -+ ( L U R ) t = R t U t L  t, (2) 

under which the lagrangian is invariant. 
In order to derive the associated hamiltonian 

we have to identify the proper, independent vari- 
ables. We parametrize the unitary matr ix by: 

U = n ° + i~. 3, (3) 

where fi = (n °, 3) is a four-dimensional unit vec- 
tor. Therefore the kinetic energy can be repre- 
sented by the angular momentum operators in 
four dimensions. There are 6 angular momentum 
generators in 4 dimensions: (i ¢ j )  

(n  i O-~-- - n J ~ - ~ )  
L 0 = - i  \ OnJ " (4) 

The generators L 0 preserve the constraint I~tl = 
1. Hence the hamiltonian density follows from 
this parametrization in terms of a field of unit 
vectors, h: 

: ~ ~W~[~V ~Vt]. 74 = -~ ~ n 0 + . (5) 
i<j 

In order to deal with the potential part  we have 
to discretize the space variable. If we use a lattice 
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spacing a we will find that the potential term at 
the point i can be given the form 

~Tr[VUi. ~U~]= Z ~ a  2 ( 1 - h ' ' h j ) ( 6 )  
< i , j >  

where < i , j  > indicates the sum over all nearest- 
neighbor site pairs. Now the whole hamiltonian 
is expressed in term of the variables hi, which we 
will use for the rest of the paper. 

We introduce the coupling constant, ~ _= 
(2a2) -1 . For large coupling constants the ground 
state will be an oriented state: all the vectors 
stand in the same direction. For )~ = 0 there 
is a free rotator in four dimensions at each lat- 
tice point. The different rotators do not feel their 
neighbors. The ground state is the product of 
S-states at each lattice point. 

The strong-coupling perturbative expansion re- 
quires a basis consisting of the direct product of 
hyperspherical harmonics at each lattice point [2]. 
Instead we will use the Coupled Cluster Method 
and restrict ourselves to pairwise correlations be- 
tween sites. Given a correlation between two lat- 
tice sites, it depends only on one variable, the 
angle between the two vectors: hi • hi, the oth- 
ers variables being the overall orientation of the 
system. For the (almost) free system the natural 
choice for the correlation functions in the relative 
coordinate are the Gegenbauer polynomials. This 
is true for an arbitrary dimension of the sphere. 

2.1. C O U P L E D  C L U S T E R  M E T H O D  
The Coupled Cluster Method (CCM) is a very 

direct way of calculating the ground state and the 
ground-state energy. The basis of the CCM is the 
parametrization of the bra and ket state with an 
exponential of all excitation operators [3,4]: 

= eS, 
(el{a}) = (1 + ~5)e-S. (7) 

The functions S and S are approximated as the 
sum of all pairwise correlations: 

s = 

i , j  ¢fi 

= (8) 
i , j  rT~ 

where i and i + r~ run over all lattice sites, and j 
runs over a complete set of basis functions. The 
dependence on [r~[ only indicates that for all pairs 
of lattice points which are unique up to lattice 
symmetries (translations, rotations, and reflec- 
tions) we use the same correlation function. 

This parametrization takes proper care of in- 
dependent excitations. For a number of systems 
CCM gives the best available results for ground- 
state energies. However, most of these systems 
are many-body systems and formulated in terms 
of operators. Field theoretical models are more 
easily formulated in terms of coordinate expecta- 
tion values. Hence, the excitation operator will 
amount to multiplication with a function, and 
one excitation operator does not necessarily step 
through the whole Hilbert space. 

Basically, since the state is normalized we only 
need one functional to derive most results: 

I[E, b] -- ((1 + S)e-SHeS), (9) 

where E and b are the coefficients of the ket and 
bra state parametrization (eq. 8). If e S is an 
eigenstate of the Hamiltonian, e-SHe S must be 
equal to Egs and the variation with respect to S, 
which are orthogonal to the reference state (the 
constant function in this case), must be zero: 

6I[E, ~ = 0 (10) 
(g 

The ~, which are a solution to these equations, 
lead immediately to the ground-state energy: 

Egs = I[E, 0]. (11) 

This is all we need to find the ground state in 
the CCM. We will restrict ourselves to the SUB2 
approximation, i.e., we allow only for two-body 
correlations. In this approximation the ground 
state is a product of functions of one relative angle 
only. 

3. EXCITATIONS 

Since the nonlinear sigma model describes 
pion dynamics, the excitations in the strong- 
coupling limit are associated with different par- 
ticles. However, in the weak-coupling limit (dis- 
oriented state) the signatures of the excitations 
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are not so clear. In the free case the lowest col- 
lective excitation is the sum of lowest free rota- 
tor excitations. We track this state to stronger 
couplings using an excitation operator. In order 
to estimate the energy gap between the ground- 
state energy and this excitation we calculate the 
commutator of the hamiltonian and the excita- 
tion operator. This excitation operator is the ex- 
act operator which put the system in the first ex- 
cited state in the free case. Due to the variational 
form of the equations in the CCM we can calcu- 
late the energy gap in this approximation analyt- 
ically, knowing the properties of the ground state. 
The excitation operator equals a specific combi- 
nation of the correlation functions that appear in 
the bra and ket state. 

The excitation operator: 

X = ~ fi, i ' n j  (12) 
<i,/> 

is inserted in the expectation value of the hamilto- 
nian using Feynman's technique, The energy gap 
is given by: 

1 (01(1 +  )e-S[[H,X],X]eSlO ) (13) 
AE = - ~  (01( 1 + ~)e_SXZeSlO) 

where the bra and the ket state are those found 
in the calculation of the ground state. 

4. RESULTS 

The results depend on the order of approxi- 
mation. We need to truncate both the number 
of correlation functions taken into account and 
how many basis functions are used for each re- 
tained correlation function. Generally the results 
depend more critically on the former than on the 
latter. Close to the phase transition point, ob- 
served in Fig 1, all the correlation functions are 
still smooth and not very large. They are very 
well approximated with as few as three basis func- 
tions. We allow all correlation functions within a 
cube and find that we already obtained the limit 
point to an accuracy of ~ 2% with a cube of size 
2, which leads to 9 correlation functions. 

The physical branch, which starts at the con- 
stant function at )~ -- 0, bends downwards at the 
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Figure 1. The ground-state energy and the energy 
gap. The extrapolated end point is A = 0.2679(5). 
The calculation of the excitation energy becomes 
unstable at the phase transition point. The cor- 
relation is the expectation value of X 2 (see text). 

phase transition point, and backtracks the phys- 
ical branch at a slightly lower energy. At the 
highest-order approximation, with all correlations 
retained in a cube of size 4, the two solutions are 
almost indistinguishable. 

The vanishing energy gap between the ground 
state and the first excited state is a good indica- 
tion of a phase transition at the end point. We 
aim both to investigate this further and to extend 
our results to other dimensions for comparison 
with other hamiltonian approaches [2]. 
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