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1. INTRODUCTION

Non-adiabatic models of a two-level fermionic system interacting with one or
two independent bosonic modes are of interest for several reasons. The first reason is
that they serve as simple prototypical many-particle Hamiltonians for many different
physical systems. In quantum optics such models describe the resonant or near-
resonant interaction of an atom with one or two perpendicularly polarized modes of
a quantized electromagnetic field. For a single mode this model is known as the Rabi
Hamiltonian, or equivalently as the Jaynes-Cummings model without the rotating
wave approximation (RWA) [1-2]. In quantum chemistry such models describe the
vibronic coupling between two electronic levels and two degenerate nuclear vibrational
modes in a molecule or crystal. In the case where the electronic levels are degenerate
this is known as the linear E®e Jahn-Teller model and in the case where they are not
as the linear E' ® e pseudo Jahn-Teller model [3]. Another realization is the two-site
polaron problem describing the interaction of an electron restricted to two lattice
sites with one or two lattice phononic modes. Although analytic solutions to both
the Rabi and pseudo Jahn-Teller Hamiltonians have been found at isolated values of
the fermionic-bosonic coupling [4-5]. complete analytic solutions are only available for
special values of the bosonic frequency and/or the fermionic level splitting. Since this
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class of Hamiltonians is so widely applicable, it is important to find simple tractable
approximations.

The second reason such models are interesting is their simplicity. Not only do
they contain interesting symmetries, but quasi-exact results are readily obtainable
from large-scale diagonalization. They are nonetheless real and non-trivial many-
body Hamiltonians, and as such serve as ideal testing grounds for many-body tech-
niques. In particular we shall discuss the application of the coupled cluster method
(CCM) (see the review [6]) to these Hamiltonians, underlining some of the drawbacks
of the method and suggesting an appropriate resolution. We shall also consider a
variational technique in the case of the Rabi Hamiltonian.

The generic form of the non-adiabatic Hamiltonians considered is
- 1
H = Swoo® + w1biby + wablby + my (bY+ b1)a® + 72 (b] + ba)a¥, (1)

where the two-level fermionic system of level splitting wg, represented in terms of the
Pauli-matrices 0%, 0¥ and o7, is interacting with coupling strengths 7; and n; with
two perpendicular boson modes-of angular frequencies w; and w;. We have taken

h =1, and the usual commutation relations [bl,bl] =1= [bz,bg] apply.
For the case of the Rabi Hamiltonian one has only one bosonic mode

H = Zwoo? + wb'b + 2g(b" + b)o®. (2)

where one has written 5 = 2g. In this case one expects many-body effects to become
more important as one increases the electromagnetic field strength and thus the
coupling g. For the linear E ® e pseudo Jahn-Teller Hamiltonian, the two bosonic

modes are degenerate,

- 1

H = Juwoo® + wbby + wbiby + (b} + b1)o™ — (bl + b2)o?, 3)
and the electronic levels are either degenerate (wg = 0) or nearly degenerate (wp <<
w).

There is an important parity symmetry for these Hamiltonians. The operator
that gives the total number of excitation quanta is

. 1
.sz{b1+b;b2+§[a‘+1], : (4)
and one can define the parity operator by
I1=exp [in] \ (5)

which has eigenvalues +1. Since this operator commutes with the Hamiltonian all
non-degenerate eigenstates are of good: parity. In particular the ground state has
even parity or an even number of excitation quanta and the first excited state has
odd parity or an odd number of excitation quanta. These states become degenerate



CCM Calculations on Model Non-Adiabatic Hamiltonians

(i-e., of mixed parity) only for zero fermionic level splitting wp = 0 or in the limit of
infinite coupling.

2. THE COUPLED CLUSTER METHOD (CCM)

At the heart of the coupled cluster method lies the exponential ansatz for the
exact ground-state wave function,

|T) = exp[S]|®); S=s:Cl, (6)
I#0

in terms of a (normalised) model state |®) and a corresponding complete set of com-
muting multiconfigurational creation operators {C}} defined with respect to it. It
is often convenient, although not essential, to choose these such that Cr|®) = 0 =
(Q[CT, VI # 0 where we define Cg = 1. Apart from the requirements that the model
state not be orthogonal to the exact ground state and that the creation operators form
a complete set, this choice is in principle arbitrary, although the better the choice
the more rapid is likely to be the resulting rate of convergence. The Schrédinger
equation H|¥) = F,|¥) can then be rewritten in terms of the similarity transformed
Hamiltonian as exp[~S]H exp[S]|®@) = E4|®), so that E, = (®{exp[—S]H exp[5]|®).
The similarity transformed Hamiltonian can then be expanded using the nested com-
mutator expansion

exp|—S|H exp[S] = H + [H, 5] + % (H,5],8)+ -, (7)

which generally terminates at finite order and is therefore computationally tractable,
in contrast to the unitary transform exp[St]H exp[S). The CCM bra ground state,
(¥, is not simply the manifest Hermitian conjugate of |¥), but can be parameterized
in two ways [7]. The first is the normal CCM (NCCM}) for which

(F] = (®|Sexp[-S]; S=1+ ZSICI (8)
I£0

The second is the extended CCM (ECCM) [7] where the bra state is parameterized
as
(¥] = (®|exp(Z) exp[-S]; &= dICr. (9)
' 170
We note that (¥|¥) = (®|¥) = (®|®) = 1. In both cases one constructs the energy
functional for the Hamiltonian,

H = (V|H|Y), (10)

and the coefficients are given by minimizing H Thus the NCCM coefficients {sy,5s}

are given by _ _
oH OH (11)

369
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and the ECCM coefficients {s;,5;} by

0H o0H

oy = 0= %" (12)
Note that the fact that (¥| is not the manifest Hermitian conjugate of [¥) means
that an approximate CCM result for E, does not necessarily provide an upper bound
for the true ground-state energy, which in turn implies that convergence may be
non-uniform. Furthermore we note that, in general one violates Hermiticity for any
finite-order truncation in the sum over the cluster correlation operators in Egs. (6)-
(9). This non-Hermiticity can lead to imaginary values for the CCM energy, but until
recently; the appearance of an imaginary part; correctly signalled the presence of a
phase transition in the system (see e.g. [8]). On the other hand, the CCM results
are clearly size-extensive and these parameterizations do preserve the important
Hellmann-Feynman theorem at all orders of approximation.

3. A SIMPLE APPLICATION OF THE CCM
TO THE RABI HAMILTONIAN

In this section we briefly recall the results [9] obtained by applying the CCM
method to the Rabi Hamiltonian (2) with the following choice of model state and
operators

l6>=0)[)), S=8+5

N/2 NJ2
S = Z Sgl)(bf)zn; Sy = Z 51(‘2)(bf)2n—1a+’ (13)
=l n=1

where the SUB-N calculation contains a maximum of NV excitation quanta. At reso-
nance w = wg = 1 and for N/2 an odd integer, one obtains a real termination point

for the NCCM calculation at g,(;N) which increases with NV and converges smoothly
to gc. In the corresponding ECCM calculations [9] no termination point is observed
but the ground state changes character from good (even) parity and non-degenerate
to mixed parity and degenerate at coupling values similar to the termination values
in the NCCM. Thus one has an apparent symmetry-breaking phase transition.

However the results of large-scale diagonalization show no evidence for a phase
transition and no degeneracy at g.. The results of diagonalization are not necessarily
arbitrarily accurate as the order of the matrix increases (see e.g. the multi quan-
tum of k~photon Rabi Hamiltonian [10]). Nonetheless for the Rabi Hamiltonian,
there exist isolated analytic solutions for the higher-lying states and the large-scale
diagonalizations reproduce these energies to within a numerical accuracy of < 10719,
strongly suggesting that the large— scale numerical diagonalization is to all practical
purposes exact.

Furthermore this termination in the CCM is present even for wo = 0 where
the ground and first excited states are known analytically for all couplings and are in
fact always degenerate. It therefore appears extremely likely that the phase transition
predicted by the CCM is entirely spurious.
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The underlying physical reason for the termination of the CCM is the marked
change in character in the ground state with increasing coupling. For weak coupling
the fermion is predominantly in the lower state. In a rather narrow transitional
coupling region this changes to the case of equal probability in the upper and lower
states This transition is similar to the localisation-delocalisation transition in the
polaron problem and is not in fact a phase transition.

4. PROBLEMS WITH THE CCM IN THE RABI HAMILTONIAN

The mathematical reason for the termination of the above CCM method is the
lack of uniform convergence for the CCM ansatz. This is most clearly seen by con-
sidering the even (and odd) parity solutions for the case of zero level splitting. These
are given by

iah = % (or) & [o2)) (14)
where 0g2 5
hor) = exp (—:’9-2-) exp (Ugb“) 10)] )= - (15)
’ 2
o = exp (- 205 ) exp (= 2201 031 (16)

and the states | 1)z and | J), are eigenstates of 0% with eigenvalues 1 respectively.
For the resonant Rabi Hamiltonian (wg = w) these are only exact for ¢ = 0 and in
the limit ¢ — oc. They have the variational estimates for the energy,

497 8g°
= —— bl - |- 17
E, " F -wp exp( 3 amn
If one tries to write these states in exp(S) form,

4) = exp (i sl + s&’>(b*>’"“a+) [0)} 4), (18)

n=1

in terms of the spin raising operator, ¢t = ¢® + io¥, and considers the sequences
st and s , one can show analytically that

(1) (1) 2
; Sny1lg) @ 4g
RO = BH0 e (), s
sn’(g) an

where aS,i ) is independent of g. Furthermore one can show numerically that

(2)

241 — 0.406 from which it follows that R(®)(g) > 1 for g > 0.785. Thus, for
a'l

g > 0.785, the sequence s(2)(g) diverges and the existence of any finite-order CCM
expansion is prohibited.

limn o0
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Table 1

The ground- and first excited-state energies of the scaled resonant (w = wp = 1)
Rabi Hamiltonian as a function of the coupling g as determined by a SUB-10 NCCM
calculation, compared to the results obtained via a CI diagonalization in a basis of
101 states. The model state expectation values given by Eq. (17) are also shown.

g Eg’l E+ EéVCCM EICI E_ E{VCCM

0.0 } -0.50000 [ -0.50000 | -0.50000 |} 0.50000 | 0.50000 | 0.50000
0.2]-0.58333 | -0.52307 | -0.58333 | 0.02337 | 0.20307 |-0.58333
0.4]-0.87855 | -0.77902 | -0.87882 | -0.61609 | -0.50098 | -0.87882
0.6 ]-1.52396 | -1.46806 | -1.52343 | -1.46444 | -1.41193 | -1.52343
0.81-2.59070 | -2.56298 | -2.57057 | -2.58432 | -2.55701 | -2.57057
1.0]-4.01693 | -4.00016 | -4.00028 | -4.01590 | -3.99983 | -4.00028

In fact |1p+) can also be written in a different CCM form,
292 29,1 o
) = e (-2 ) exp (- 2ot )1 (20)

Therefore let us consider the first order ansatz |) = exp (s16'0®) |0)] {). If one
treats s; as a variational parameter one obtains s; = —2g/w as g — oo as expected.
If however one solves for s; from the CCM one obtains s; = —2g/(w + wp). Thus,
the CCM is incorrect to leading order precisely because of the lack of Hermiticity of
the method, and in fact remains poor to all orders. The lack of Hermiticity to all
finite orders is therefore also a problem within the CCM.

Possible resolutions include applying a unitary transform to the Hamiltonian as
was done for the multimode Rabi model [11] and then applying the NCCM to the
transformed Hamiltonian. The results of this procedure are only modestly accurate
and one has destroyed the parity symmetry.

Better results can Be obtained using coupling-dependent reference states which
mimic the change in the exact states. For the ground state we have used |¢) = [¥4)
and for the first excited state |@) = |¢~) together with the following correlation
operator for the SUB-N calculation

N
5 2
S= E splch™,  ct=blo™+ Ug (21)
n=1

Results are given for the ground and the first excited state SUB-10 calculations at
resonance w = wg = 1 in Table 1, where we note the considerable improvemnent over

the model state expectation values.

RN
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5. VARIATIONAL CALCULATIONS FOR THE RABI HAMILTONIAN

In this section we present the results of a simple variational calculation for the
ground- and first excited-state energies of the Rabi Hamiltonian [12]. First one
notes that the wg = 0 or g — co solutions can be written as

1
|z1‘2! o) = —‘“———Ixt.z) €xp y1,20'+ 2) 14

where |z) = e~ 7 oot [0) denotes a coherent state b|z) = z|z) and z, , = i%—?,ym =
F1. One can use |z,y) as a 2-parameter variational ansatz, but the result has a
discontinuous derivative at g = y/wwp/4.

This ansatz however neglects the parity symmetry. Using the relationship fI]:c, y) =
| —z, —y) it is straightforward to construct states of good even and odd parity respec-
tively |z,y)p = |z,¥) £ | — z, —~y). One notes that the states ;) and |-}, which
become exact in the limit of infinite coupling (and are in fact exact at g = 0), are
of this form with z = %‘1 and y = —1. Although it is possible to solve for z and
y variationally as above and then project out states of good even (odd) parity, it
is clearly preferable to use |z,y)p as our variational ansatz and then solve for these
values variationally. This corresponds to projection before variation (PBV) and leads
to a dramatic improvement in the results

One can rewrite these ansatzen in the form

(22)

{l2} 2] -2 +yf{le) Fl - D)} 1) = 2)] ) +ylz)=] 1), (23)

where the combinations |z)4 = |z) & | — z) are of good even (odd) parity. One can
thus also propose a 3-parameter variational ansatz

lz1) x| 4) + ylza)z| 1), (24)

which yields excellent results for the ground state energy as shown in Figure 1 where
the maximal error can be seen to be approximately 1 %. It also yields very good
results for the first excited-state energy and the ground-state wavefunction [13].

6. CCM FOR THE PSEUDO JAHN-TELLER HAMILTONIAN

The pseudo Jahn-Teller Hamiltonian (3) has two important symmetries. The
first is the parity as before. Secondly, the z-component of the total angular momen-

tum 1
J = i(blby — biby) + 50" (25)

is a constant of the motion with eigenvalues j = £1,43 ...
It proves very useful to introduce the quasi-boson operator,

ot = b§ T bgay, (26)
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Figure 1. The percentage error in the three parameter variational approximation to
the ground state energy, Ky, as a function of the level splitting wp/w and the coupling
g/w.

which commutes both with J and the parity operator II (5). The exact ground
state can then be expanded as a power series in the operator ¢! acting on the non-
interacting ground state, and the first excited state can be shown to be obtained from
the ground state by the formal replacement wg — —wy.

As is the case of the Rabi Hamiltonian the reference state for the CCM calcula-
tion should display the same change in character as the exact state, and in particular,
should reproduce the g = 0 and g — oo behaviour. An appropriate reference state

[13] is the exact ground state [5] of the resonant wy = w pseudo Jahn-Teller Hamil-
tonian, given by

)T = T (?Lz)lﬂ = {fo (22e) - 1. (22e) oot 4y, (27)
0{22 11253

where Iy and 1; are modified Bessel functions of the first kind, and vy = n/v/2. This
state has energy equal to the baseline energy,

2
greT = L, 2 (28)
2 w
We have used this state together with the correlation operator,

S=s (c7+%), (29)
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Figure 2. The percentage error in the ground state energy (w = 1) of the linear E®e
pseudo Jahn—Teller Hamiltonian as obtained from first-order NCCM calculations, as
a function of the coupling ¥? = 2n? and of the level splitting wy. Note there is zero
error at wg = w = 1.

to obtain a single transcendental equation for s;, which one can substitute to obtain
the CCM approximation to the ground state energy [13]. The results are excellent as
is clear from Figure 2 where the maximal error is less than 0.4 %. In the Jahn-Teller
case wp = 0 they are better than those obtained via a unitary transformed CCM and
a number of variational methods (see [14] and references therein)

One can obtain the solution for the first excited state simply by replacing wg by —wo
in all the equations. The results obtained are not quite as good as those for the
ground state, but remain remarkably accurate with a maximal error of only 1.2 %.

7. CONCLUSIONS AND OUTLOOK

Our results clearly show the central role that symmetry is known to play in many-
body calculations. In particular including the parity symmetry leads to excellent
variational results for the Rabi Hamiltonian for both the ground- and first-excited
state energies. In addition, by incorporating the parity and angular momentum
symmetries for the linear F ® e pseudo Jahn-Teller Hamiltonian, one obtains results
notably better than those previously obtained both via the CCM and other variational
calculations [14].

We note that the application of the CCM to these systems is non-trivial since
the ground state undergoes a marked change in character with increasing coupling
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strength. If the CCM reference state does not reproduce this change, one encounters
problems’ both with an effective incompleteness of the CCM ansatz and with non-
Hermiticity. Indeed if one applies the CCM to the non-interacting ground state
one even predicts [9], on the basis of the regular termination of the CCM results, a
spurious phase transition. In fact this termination simply reflects the absence of a
convergent CCM expansion at the relevant coupling.

Our calculations imply that the choice of the CCM model state is not as arbi-
trary as previously surmised. Ideally one needs to check whether a convergent CCM
expansion exists in cases where the ground-state character changes markedly. In
practice one needs to choose a reference state that reflects this change in character.
If one does this, one can obtain good CCM results both for the Rabi and linear E®e
Jahn-Teller Hamiltonians. For the Jahn-Teller case one obtains remarkable results
from the solution of a single transcendental equation.

For the future, it would be interesting to study the time dependence of these
systems and to study such related models as the multi-mode Rabi Hamiltonian and
the I's ® 7o Jahn-Teller Hamiltonian.
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