
The University of Manchester Research

High-level Synthesis of GALS Systems

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Mamaghani, M. J., & Garside, J. (2014). High-level Synthesis of GALS Systems. In Designing with Uncertainity -
Opportunities & Challenges Workshop University of York.

Published in:
Designing with Uncertainity - Opportunities & Challenges Workshop

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:08. Jun. 2022

https://www.research.manchester.ac.uk/portal/en/publications/highlevel-synthesis-of-gals-systems(e0f7acf1-d954-4808-ba2d-874f5d33fb62).html


High-Level Synthesis of GALS Systems

Mahdi Jelodari Mamaghani, Jim D. Garside
School of Computer Sceince

The University of Manchester
Manchester, UK M139PL

Email: mamagham@cs.man.ac.uk

Abstract—The aim of this research is to automate the synthesis
process of synchronous elastic (SE) systems whilst exploiting the
advantages of data-flow concurrency of asynchronous design. This
approach automates the integration of synchrony and asynchrony.
Therefore, it makes it possible to investigate high level synthesis
of Globally Asynchronous Locally Synchronous (GALS) systems
without the need to build trivial links and ports and the ad-
hoc insertion of synchronisers etc. Our proposed method enables
the designer to use a unified language to develop flexible multi-
clocked SoCs.

I. INTRODUCTION

The forward-looking design trend in Very Large Scale
Integrated (VLSI) is Systems-on-Chip (SoC). SoC aims to
integrate multiple computation, communication and storage
components into a single chip and targets high performance
systems by elimination of most off-chip communication costs.
It is agreed that running SoC components under control of
a single clock is not feasible and clock distribution has been
revealed as a critical obstacle. For instance, It has been shown
that the die-to-die clock frequency varies by 30% in 180nm
technology [1]. This variability is responsible for system-
atic uncertainties in computation and communication delays.
Therefore designers are forced to deal with variability by
considering conservative margins [2] that could be prohibitive
for the system to achieve its potential performance.

Robustness towards variation has been widely cited as
an advantage of asynchronous circuits [3][4]. Although these
circuits can benefit from fine grained elasticity, their complex
handshake protocol imposes expensive implementation costs in
terms of area. For instance, an asynchronous delay-insensitive
(aka asynchronous elastic) circuit occupies almost four times
the area of a conventional inelastic synchronous circuit [4].
Additionally, the lack of mature EDA tools in this domain has
been an important reason why designers have been reluctant
to adopt this paradigm.

A less radical solution is Globally Asynchronous Locally
Synchronous (GALS) [5] which offers potential advantages
in this respect, as it preserves system modularity and con-
centrates on communication aspects. The main problems of
GALS design are the lack of methodology and tool support
for partitioning the system into the synchronous islands. The
existing GALS methods are of ad hoc nature, rather than being
a process of synthesis with optimisation. Only rudimentary
design automation has been proposed [6] where the top-
level hierarchy determines the boundaries for synchronicity
“islands” and a static analysis of communication between these
islands defines the choice of fairly limited communication
mechanisms. We propose an automated method to implement

GALS systems at a higher abstraction level which is indepen-
dent of technology, protocol, data encoding or any other details
of circuit design.

Our approach takes advantage of synchronous elasticity [7]
(aka SELF protocol) to introduce a common timing discipline
to the circuit which transforms it into a latency insensitive
system. A latency insensitive system is able to tolerate dynamic
changes in the computation and communication delays. This
feature enables us to raise the level of abstraction to the
data-flow representation where functionality is separated from
timing details. Therefore, it is possible for a designer to specify
a large scale system by only concentrating on its functional-
ity and postpone timing complexity to when synthesis takes
place. Currently, research work is focused on the development
of a synthesis flow to exploit GALSification techniques for
partitioning the system into individual synchronous clusters.

Unlike many previous systems, our design flow employs
a data-driven synthesis style to distribute controllers through
the circuit which contributes to its modularity and enhanced
concurrency. This facilitates partitioning into elastic blocks and
is supposed to pave the road for further optimisations using
commercial EDA tools.

II. OBSTACLES WITH TRADITIONAL GALS DESIGN

Three decades ago Chapiro introduced the GALS concept
to the community [5]. Since then academia and industry have
attempted to exploit this concept in SoC design which can
potentially benefit from the multi-clocked behaviour of the
GALS design. Broadly speaking, all the efforts to exploit the
GALS methodology fall in the lines of ad hoc design where
synchronous blocks are glued together using trivial interfacing
logic and synchronisers [8]. The tremendous challenge with
the multi-clock design is the implementation of stable com-
munication between clock islands. To combat this issue many
techniques are proposed in the literature including pausible
clock, asynchronous and loosely synchronous interfacing etc.
These techniques address the metastability issues through
explicit FIFO insertion which needs accurate considerations of
timing details at circuit level and is survivable only by using
the assemble-and-verify technique.

We believe that the time has arrived to automate the
building of GALS systems without reflecting the extreme
timing behaviour of the circuit to the designer. It is agreed that
the synchronous approach with the corresponding accuracy
complicates the design when it comes to SoC while the
asynchronous approach simplifies the design aspects by sepa-
rating timing from functionality [9]. Accordingly, we employ
the asynchronous design approach along with an advanced



communication protocols to investigate the possibilities to-
wards developing a new synthesis paradigm for GALS design.
Section III explains our approach towards this objective.

III. OUR APPROACH

Our approach exploits the fine-grained data-flow concur-
rency inherent from the asynchronous design rather than just
preserving the latency insensitivity. We aim at raising the
design abstraction level from RTL to algorithmic level to pro-
vide the designer with a flexible implementation of concurrent
hardware. At this level system functionality is specified by
data flows, apart from timing constraints. In general, raising
the level of abstraction could have three major benefits:

1) The designer is able to specify the hardware in the form
of concurrent data flows rather than thinking in a sequential
manner and squeezing the tasks in time boundaries.

2) It provides traditional designers with an interface to
cover their unfamiliarity with asynchronous techniques, pro-
tocols or data-encoding in circuit implementation.

3) A higher level abstraction allows flexible exploration of
the design space based on formal models, such as Petri nets
[10] where it is possible to consider different analyses and
measurements.

Regarding these advantages, we introduce eTeak as a high
level synthesis framework for designing synchronous elastic
systems [11]. eTeak is developed based on the Teak system
[12] which is a token flow implementation for Balsa language
[13]. It is capable of generating syntax-directed, data-driven
handshake circuits for Balsa descriptions using a new compo-
nent set to target delay-insensitive communication. In section
IV we discuss the features in detail and explain them in the
GALSification context.

IV. TEAK: A DATA-FLOW SYNTHESIS SYSTEM

We group the features of Teak into communication and
computation facets. From the communication perspective the
Teak networks are synthesised in a syntax-directed compilation
manner from a CSP-like language. The primitives of the
language, including channels and processes, are preserved
which forms a point-to-point communication between the
computation blocks at hardware level which contributes to
concurrency and synchronous massage passing.

The networks are slack elastic [14] which means the
communication channels are capable of storing any degree of
tokens. This feature enables us to modify the level of pipelining
over the channels without affecting the behaviour of the circuit.

From the computational perspective the network is built
based on the macro-module style [15] with separate go
and done activation signals. These modules are chained in
sequence or parallel according to the source level directives.
The macro-module architecture contributes to a distributed
control mechanism where the datapath and the corresponding
control are enclosed within a macro-module.

Accordingly, modules are controlled locally through hand-
shaking so whenever data becomes available computation can
start. This concept has already been introduced in data-flow

systems [16]. Based on this concept data-dependent compu-
tation becomes possible which means that independent data
streaming could exist within a module which can significantly
influence the performance of the circuit. In addition, it allows
the tool to perform functional decomposition over a module
and define new boundaries.

V. TEAK TOWARDS GALSification

We explain how the features of Teak are exploitable
towards automating the GALSification process and multi-
clocked SoC design.

1) Point-to-Point Communication: Point-to-Point (PTP)
communication enables a module to have independent rates
of data streaming from different sources which contributes
to a higher level of concurrency and accordingly effective
throughput. Let’s assume that module A with the input set of
{a,b,c} and the output set of {x,y} is capable of performing
two functions f,g which are not necessarily independent. The
function f takes {a,b} as input and g takes {b,c}. if we assume
that input values are supplied with different rates of a’, b’ and
c’ where a’ is the slowest rate then g can operate and produce
output independent from a’ which results in higher throughout
of module A. The PTP communication is closely compatible
with the data-flow style of computation of the modules which
will be discussed later.

2) Slack Elasticity: A Slack Elastic system can be pipelined
with any degree of storage on its communication channels.
This behaviour was first formalised for the distributed compu-
tation systems which were described in a CSP-like language,
CHP [14]. Slack Elasticity provides a flexible communication
environment for the computational blocks in the system. We
take advantage of this feature in Teak to optimise the processes
without affecting the overall functionality of the system. Com-
position and decomposition of modules towards GALSififcation
benefits from elastic communication which is not available
in the synchronous domain where rigid timing controls the
communications. The elastic behaviour is preserved when the
SELF protocol is employed. In section VII we demonstrate
a simple synchronous elastic processor which follows this
concept.

3) Macromodule Style: The Macromodule logic was intro-
duced to enable designers implement complex circuits using
simple data processing building blocks [15]. Later, this concept
was used to simplify the asynchronous control design [17].
Teak employs this technique to perform the control interactions
locally instead of having them as a separate central unit which
has significant performance implications. We exploit the local
(aka distributed) control behaviour to perform functional com-
position and decomposition of Macromodules which results
in defining new boundaries within the network. Moreover,
the Macromodules allow us to optimise one module without
affecting the behaviour of the network.

4) Dataflow Architecture: Dataflow machines emerged as
an alternative design style to reduce the centralised con-
trol effect and speed up the computation by prioritising the
data [16]. In the Teak networks dataflow architecture joined
with PTP communication realises concurrency and eases the
modules decomposition process. Decomposing the modules



towards GALSification based on their functionality, rather than
structural properties, is our main objective.

Teak extracts parallel entities from the high-level Balsa
code, produces a control-data flow graph (CDFG) and then
maps it onto the Macromodules with local control handshak-
ing through the go-done channels. Therefore the resulting
circuit benefits from distributed control scheme. This feature
allows us to explore different architectures by replacing the
communication-heavy asynchronous designs with Finite State
Machines (FSMs) which would trade off the elasticity and the
concurrency level inherent in the asynchronous design.

VI. SYNCHRONOUS ELASTIC TEAK

In the light of the mentioned features, Teak was considered
as a desired framework to inspect the GALSification process
from a high level perspective. To incorporate synchronous
elasticity in Teak, the existing component library is adapted to
the SELF protocol and buffers are converted to time decoupling
controllers to govern the flow of control and data based on the
elastic protocol [11]. Since the new component set does not
infer any combinational feedback loops within the network,
conventional EDA can be used for optimisation purposes.
Moreover, SELF is beneficial for the computation blocks as
it simplifies the deadlock freedom issue with loops according
to its simple interlocking behaviour.

VII. RESULTS

As a case study Manchester Small-Scale Experimental
Machine (SSEM) [18] is exercised. SSEM is a simple iterative
processor. The Balsa description of it is synthesised using Teak
and eTeak to generate the asynchronous and the synchronous
elastic version of the machine respectively with the same
level of granularity. In Figure 1 the area cost associated with
truly asynchronous and synchronous elastic design styles is
depicted. This experiment confirms that SELF preserves slack
elasticity which is the key property for further investiga-
tion. Additionally, SELF simplifies the loop structures in the
dataflow network and allows us to use synchronous CAD tools
to optimise the circuit, particularly computation-heavy data
manipulation units and detect the combinational loops for sake
of deadlock freedom.

Fig. 1. The asynchronous dual-rail SSEM vs. its synchronous elastic
counterpart in terms of cell area (UMC 130nm technology) which operates
@ 740MHz. Each column is fragmented based on the existing entities in the
circuit. Buffers are used to remove deadlock.

VIII. CONCLUSION AND FUTURE WORK

Our work successfully provides a flexible communication
medium based on the synchronous elastic protocol for the

computation in the circuit and enables us to exploit CAD tools
for further transformations in the synchronous domain. Based
on our analysis, elasticity at component level suffers from
prohibitive costs in terms of performance as communication
overhead dominates computation. A reasonable alternative
is to replace them with Synchronous Sequential Machines
(SSMs) and consequently, reduce the level of elasticity. Ac-
cordingly, our future work is to extend eTeak to be capable
of decomposing modules into macromodules based on specific
functionalities and consider optimising them using CAD tools.
Thereafter we will focus on composing/grouping the modules
based on their timing behaviour to form clocked islands.

IX. ACKNOWLEDGEMENT

This work is supported by EPSRC Grant ”Globally Asyn-
chronous Elastic Logic Synthesis (GAELS)” (EP/I038306/1).
The authors would like to thank Will Toms and Danil Sokolov
for their help in refining the ideas presented in this paper.

REFERENCES

[1] S. Borkar et al., “Parameter variations and impact on circuits and mi-
croarchitecture,” in Design Automation Conference, 2003. Proceedings,
2003, pp. 338–342.

[2] S. Hanson et al., “Energy optimality and variability in subthreshold
design,” in Low Power Electronics and Design, 2006. ISLPED’06.
Proceedings of the 2006 International Symposium on, 2006, pp. 363–
365.

[3] L. T. Duarte, “Performance-oriented Syntax-directed Synthesis Of
Asynchronous Circuits,” 2010.

[4] J. Sparsø et al., Principles of asynchronous circuit design: a systems
perspective. Springer-Netherlands, 2001.

[5] D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,”
Ph.D. dissertation, Stanford University, 1984.

[6] A. Hemani et al., “Lowering power consumption in clock by using
globally asynchronous locally synchronous design style,” in Design
Automation Conference, 1999. Proceedings. 36th, 1999.

[7] J. Carmona et al., “Elastic circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2009.

[8] P. Teehan et al., “A survey and taxonomy of gals design styles,” Design
Test of Computers, IEEE, 2007.

[9] K. S. Stevens et al., “The future of formal methods and gals design,”
Electronic Notes in Theoretical Computer Science, vol. 245, 2009.

[10] C. A. Petri, “Kommunikation mit automaten,” Ph.D. dissertation, Uni-
versitt Hamburg, 1962.

[11] M. J. Mamaghani et al., “eteak: A data-driven synchronous elastic
synthesiser,” in 13th International Conference on Application of Con-
currency to System Design, PhD Forum, 2013.

[12] A. Bardsley et al., “Teak: A token-flow implementation for the balsa
language,” in Application of Concurrency to System Design, 2009.
ACSD ’09. Ninth International Conference on, 2009.

[13] D. A. Edwards et al., “Balsa: An asynchronous hardware synthesis
language,” The Computer Journal, vol. 45, 2002.

[14] R. Manohar et al., “Slack elasticity in concurrent computing,” in
Proceedings of the Fourth International Conference on the Mathematics
of Program Construction. Springer-Verlag, 1998.

[15] M. J. Stucki et al., “Logical design of macromodules,” in Proceedings
of the Joint Computer Conference. ACM, 1967.

[16] Arvind et al., “Annual review of computer science.” Annual Reviews
Inc., 1986, ch. Dataflow Architectures.

[17] J. Cortadella et al., Logic Synthesis for Asynchronous Controllers and
Interfaces. Springer, 2002.

[18] S. Lavington, “A History of Manchester Computers (2nd ed.), Swindon:
The British Computer Society,” 1998.


