
The University of Manchester Research

Discrete element modelling using a parallelised physics
engine
DOI:
10.2312/LocalChapterEvents/TPCG/TPCG09/207-214

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Longshaw, S. M., Turner, M. J., Finch, E., & Gawthorpe, R. (2009). Discrete element modelling using a parallelised
physics engine. In Theory and Practice of Computer Graphics 2009, TPCG 2009 - Eurographics UK Chapter
Proceedings|Theory Pract. Comput. Graph., TPCG - Eurographics UK Chapter Proc. (pp. 207-214). John Wiley &
Sons Ltd. https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG09/207-214
Published in:
Theory and Practice of Computer Graphics 2009, TPCG 2009 - Eurographics UK Chapter Proceedings|Theory
Pract. Comput. Graph., TPCG - Eurographics UK Chapter Proc.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:21. Oct. 2022

https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG09/207-214
https://www.research.manchester.ac.uk/portal/en/publications/discrete-element-modelling-using-a-parallelised-physics-engine(7ff59058-9080-4cfb-91d7-6bad36393a71).html
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG09/207-214


EG UK Theory and Practice of Computer Graphics (2009)
Wen Tang, John Collomosse (Editors)

Discrete Element Modelling Using a Parallelised Physics

Engine

S.M. Longshaw∗, M.J. Turner†, E. Finch⊥ & R. Gawthorpe⊥

∗School of Computer Science, The University of Manchester, UK
†Research Computing Services, The University of Manchester, UK

⊥Basin Studies and Petroleum Geoscience, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, UK

Abstract

Discrete Element Modelling (DEM) is a technique used widely throughout science and engineering. It offers a

convenient method with which to numerically simulate a system prone to developing discontinuities within its

structure. Often the technique gets overlooked as designing and implementing a model on a scale large enough

to be worthwhile can be both time consuming and require specialist programming skills. Currently there are a

few notable efforts to produce homogenised software to allow researchers to quickly design and run DEMs with

in excess of 1 million elements. However, these applications, while open source, are still complex in nature and

require significant input from their original publishers in order for them to include new features as a researcher

needs them. Recently software libraries notably from the computer gaming and graphics industries, known as

physics engines, have emerged. These are designed specifically to calculate the physical movement and interaction

of a system of independent rigid bodies. They provide conceptual equivalents of real world constructions with

which an approximation of a realistic scenario can be quickly built. This paper presents a method to utilise the

most notable of these engines, NVIDIAs PhysX, to produce a parallelised geological DEM capable of supporting

in excess of a million elements.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Types of Simulation]: Discrete Event I.6.8
[Types of Simulation]: Distributed I.6.8 [Types of Simulation]: Parallel

1. Introduction

The Discrete Element Modelling (DEM) technique is
utilised widely throughout many subject areas in both in-
dustry and the theoretical sciences. It was initially proposed
by Cundall [Cun71] and later presented practically by Cun-
dall and Strack in their paper “A discrete numerical model

for granular assemblies" [CS79]. The basic premise is that
a collection of disparate bodies are allowed to physically in-
teract over a set time period, while being contained in a spec-
ified area either by rigid static structures or opposing forces.
The result is that the combined movement of each individ-
ual element produces an overall system, which can allow for
accurate simulation of many material types.

DEMs are especially useful while modelling the effect of
fracturing or any other form of discontinuity in a material.
While the more common Finite Element Modelling (FEM)
technique discretises an overall volume into a collection of

points, each of which represents a portion of that volume,
DEM is intrinsically discontinuous in its nature. It is more
difficult to represent the absence of a material using FEM
than with DEM, especially if that absence occurs during the
models evolution. This discontinuous nature means DEM is
the preferred solution for the analysis of rock and other frac-
turous materials. As with an FEM, a DEM with a greater
number of individual elements will allow for higher model
accuracy due to each element representing a smaller portion
of the overall model, therefore increasing the models resolu-
tion. However, increasing the number of elements that exist
in a DEM has a very obvious and detrimental effect to the
amount of time required for processing.

One of the most computationally intensive portions of the
majority of DEM codes is that of contact detection between
each element. Typically, DEMs utilise spheres as elements,
as spheres allow for simple contact detection while still of-

c© The Eurographics Association 2009.



S.M. Longshaw, M.J. Turner, E. Finch & R. Gawthorpe / Discrete Element Modelling Using a Parallelised Physics Engine

fering reasonable representation of a portion of the model
space. However, more complex models have begun to em-
ploy non spherical elements, increasing the computational
complexity of collision detection. The techniques used to ac-
celerate collision detection have improved rapidly. Initially,
when DEM models tended to contain less than 10,000 ele-
ments and were in two dimensions, this operation was nor-
mally treated serially with each element being compared
against every other, often using a simple Euclidean distance
check. However as the models moved into three dimensions
and the number of elements began to increase significantly,
it was no longer feasible to perform the check in this way.
Codes began to surface that utilised more advanced domain
sub-division techniques, employing tree based algorithms
from the world of computer graphics. At the same time, the
increasing complexity of the models, with the inclusion of
more real world physical properties has meant their compu-
tational demand has increased significantly.

This increase in computational complexity has led re-
searchers to begin to distribute and parallelise their code over
multiple cores. Typically this is done using common par-
allelisation techniques, utilising standardised libraries such
as OpenMP [CMD∗00] and MPI [WLS99]. This paralleli-
sation, coupled with the ever increasing availability of large
computing resources, has meant that the ability to calculate
DEM models with in excess of 1,000,000 elements, in a rea-
sonable timescale, has become a reality.

However, even with all of these advances, the use of DEM
as a technique within some sciences that could be making
use of its ability to model discontinuous systems, is rela-
tively small. One key reason for this could be the mathe-
matical inaccessibility of the DEM technique and the pro-
gramming complexity of implementing fast collision de-
tection. While there are a few commercial software pack-
ages that offer the ability to perform industrial DEM sim-
ulations [Sol09], they are not specifically aimed at the re-
searcher. Recently there have also begun to emerge reason-
able attempts at generic DEM codes that can be used to de-
fine and run large DEM models. The most notable of these
are YADE [KD08] and ESyS-Particle (formally known as
LSMEarth) [PM00]. ESyS-Particle offers good functional-
ity and also the ability to parallelise the model over multiple
CPUs using MPI.

Recently, software libraries designed specifically to com-
pute the physical properties of objects as quickly as possi-
ble, have become available. These libraries are currently pri-
marily aimed at the gaming industry, with closed source ex-
amples including NVIDIA’s PhysX [NVI09] or Intel’s Ha-
vok [Hav09] and some common open source examples in-
cluding Bullet [Cou09] and ODE [Smi09]. As with graphi-
cal libraries such as OpenGL, these physics libraries are de-
signed to allow the programmer to define complicated phys-
ical ‘worlds’ and then automatically perform all necessary
calculations in as optimised a manner as possible, while still

maintaining a reasonable level of accuracy. In order to en-
sure that calculations are performed as quickly as possible,
the libraries employ complexity reduction techniques, com-
bined with optimised tree based searching algorithms to cal-
culate the positions and forces acting on each ‘actor’ con-
tained within the ‘world’ at each time-step. The libraries al-
low for quick and relatively easy definition of complex phys-
ical environments, including non geometric triangulated ob-
jects. The libraries also allow for a large number of physi-
cal properties to be applied to each ‘actor’, resulting in the
ability to produce complex DEM simulations in a relatively
short period of time, without the need to re-implement phys-
ical calculation code.

Physics engines are especially suited to modelling scenar-
ios which involve the usage of real-world physics. Unlike
the majority of DEM code, which assumes each element is a
sphere and bases the contact detection code around this fact,
a physics engine provides a generic contact detection sys-
tem. Due to this, the type of elements that can be used in a
physics engine based DEM can be swapped quickly and eas-
ily from the standard sphere. Replacements can be as simple
as a cube or as complex as a deformable meshed object. Per-
haps even more compellingly, it is possible to easily mix in-
teracting objects of varying types. Traditionally, DEM mod-
els tend to use a pre-defined set of elements, however when
designing with a physics engine, the researcher is able to
alter the physical properties of every single element in the
system. From simple variations on size and mass through to
dyanmically generating each element algorithmically.

However, physics engines, due to their target audience of
game programmers, tend to employ strict limits on the num-
ber of physical ‘actors’ that can exist at any one time. Within
NVIDIA’s PhysX for example, it is currently only possible
to introduce 64,000 individual ‘actors’. Open source imple-
mentations can be altered to allow for larger simulations, but
currently the result is that models become too slow to cal-
culate in a reasonable timeframe and a more sensible op-
tion would be to use code specifically designed to calculate
spherical DEMs.

This paper explores a set of methodologies that have been
designed to allow a researcher to implement a large-scale
physical modelling scenario using a modern physics en-
gine. The methods presented allow distributed parallelism
to be utilised to overcome the limitations of simulation scale
that current real-time physics engines enforce. The methods
themselves are applicable to most current libraries and have
scope to be included as part of the feature set of future li-
braries.

2. Related Work

Within Earth sciences, it is typical to perform scaled down
modelling experiments using physical media such as sand
or clay. The ‘sandbox’ experimental apparatus is often used

c© The Eurographics Association 2009.



S.M. Longshaw, M.J. Turner, E. Finch & R. Gawthorpe / Discrete Element Modelling Using a Parallelised Physics Engine

by researchers to study the effects of folding and faulting
in rock. This has allowed for a reasonable approximation of
the structure of rock to be created using particulate materi-
als such as sand, and friction inducing components such as
rubber sheeting, within an enclosed space. Through steady
compression or expansion of the enclosing space, the partic-
ulate material moves in a similar manner to rock, only over
a much smaller scale and time period.

While the results of this form of analogue experiment are
undoubtedly invaluable, numerical modelling using DEM
offers an obvious alternative with many advantages. A nu-
merical model is not restricted by the concept of scale; simi-
larly, it is possible to make each element in a DEM mimic the
physical properties of the rock that is being simulated much
more closely. When using a DEM the researcher is also able
to begin to consider model parameters that simply would not
be possible using real world experimentation, specifically in
the case of crustal fault evolution experimentation, the use
of a breakable spring/damper connection between every ele-
ment in the system to make it behave more like a fracturous
continuum.

There is precedent for using DEM for fault analysis, with
examples of two dimensional code available [FHG03] and
a solution presented by Mora and Place in which they con-
nect the elements together using a spring-damper structure.
In their paper entitled “A lattice solid model for the non-

linear dynamics of earthquakes" [MP93], they present the
use of a lattice of spring/dampers to produce an initially con-
tinuous DEM that is able to evolve to include fracturous re-
gions. This work led to a software implementation known
as LSMEarth [PM00], which provided the ability to produce
three dimensional DEM models based around a set of gen-
eralised input parameters. LSMEarth [PM00] has eventually
evolved to become ESyS-Particle, which could be consid-
ered to be a universal parallelised spherical DEM calculation
code.

3. Physics Engines

Many different physics engines exist and most are de-
signed in a similar manner. Most engines use the object-
orientated programming paradigm, with C++ being the pre-
ferred choice. Typically they use tree based domain decom-
position and catagorisation techniques to allow for fast yet
accurate calculation of physical interaction and movement of
a collection of bodies in a system. Generally they are used to
calculate user defined fixed timesteps and allow for variable
sub-division of each timestep in order to increase simulation
accuracy at the expense of computatiion time.

As with certain tasks within computer graphics, the cal-
culation of Newtonian physics is a well defined problem.
Currently, it is normal for code to calculate physics to be re-
implemented and thus re-written by each researcher every
time a new model is designed. Within Computer Science, it

is generally accepted that it is best practice to standardise
the code for repeat calculations, thus ensuring that all code
has an equal starting point. Within graphics, this process was
begun though the development of API libraries, which per-
form the most common calculations undertaken in the gen-
eration of graphical geometry. Today we primarily use either
OpenGL or Microsoft’s DirectX libraries. This has the effect
that improvement and refinement of the graphical calcula-
tion code is handled by those that develop the graphics APIs
and all other software is built upon that code base. Physics
engines offer this same possibility to researchers developing
physical simulation code.

While the current generation of physics engines may not
be suitable for all physical simulations, there are certainly
cases where the calculable drop in integration accuracy can
be acceptable, while the ease of implementation and diver-
sity offered is sufficiently compelling to make a physics en-
gine a realistic choice. One such area is that of a DEM on
a geological scale. Models of crustal deformation take place
over millions of simulated years; often involve limited over-
all movement and include very large conceptual scales. Typ-
ically the precise movement of each element in such a DEM
is not as important as the general trend of movement in the
system.

3.1. NVIDIA PhysX for Geological Modelling

Physics engines offer the ability to define a simulated world
using a collection of different shapes and joint types. A
shape can be defined as either a primitive geometric shape
or as a customised triangulated mesh. Shapes in the world
are commonly referred to as actors, however an actor can
actually be a compound of multiple shapes. One of the ac-
celeration techniques the engines employ is by determining
whether a shape is ever going to move during a simulation
or not. To this end, an actor can be considered to be fully dy-
namic, entirely static, or in a state in-between known as kine-
matic. Static actors never move, dynamic actors may move
at every time-step and kinematic actors exist in the world as
dynamic actors, only their movement is fixed unless a spe-
cific command is issued telling them to do so.

One of the most highly developed and well documented
physics engines is NVIDIA’s PhysX [NVI09]. It is free for
commercial and non commercial use, but closed source with
the option of paying to access the source. A recent study
[BB07] has shown the accuracy of the PhysX integrator to
be closest to that of standard Verlet or Euler integration
schemes. While its accuracy for other physical properties
such as friction, restitution and angular velocity are all closer
to the idealised normal than most other engines. Only its
joint solver lacks behind other engines and this is currently
an area of development within NVIDIA. The overall calcu-
lation performance of PhysX appears to be superior to most
engines in most situations.

However, there are limitations to the size of the simula-

c© The Eurographics Association 2009.



S.M. Longshaw, M.J. Turner, E. Finch & R. Gawthorpe / Discrete Element Modelling Using a Parallelised Physics Engine

tion physics engines allow. These vary per engine; however
PhysX employs the following limits:

• Maximum number of scenes per world: 64
• Maximum number of shapes per scene: 64,000
• Maximum number of contact pairings per scene: 256,000

If we assume a simple 3D DEM case, containing only
equally sized spheres, then each sphere is theoretically able
to come into contact with 12 others. This means that the
256,000 contact pairings limit per scene in fact reduces the
maximum spheres that can exist safely per scene to 21,333.

In the next section methods to exploit the limitations im-
posed by PhysX as a basis for a parallelisation model are
explored.

3.2. Parallelisation of Physics Engines

As has been previously discussed, to make a physics engine
usable on the scale required for DEMs, while maintaining
computational performance, it is essential to exploit paral-
lelism. A single instance of a physics engine has a hard limit
on the number of actors it supports, in some engines this
can be as high as 1,000,000 in a single scene. PhysX pro-
vides an extra layer of sub-division in that it can support
multiple scenes within a single instance of the engine; this
therefore raises the possible number of actors to 4,096,000
as it is possible to create 64 scenes, each of which can hold
64,000 actors. However, the actors in one scene do not inter-
act with actors in another, effectively meaning that a PhysX
world containing 4,096,000 actors would in fact contain 64
individual DEM models, each with 64,000 elements with no
awareness of the movement of elements in the other 63 mod-
els.

To overcome this limitation, and allow simulations
bounded only by system resources, while still maintaining
the use of a black box physics engine, a form of inter-
model interaction has been defined to suit the nature of mod-
ern physics engines. The concept is similar to domain sub-
division, in which the elements at the edge of a predefined
sub-boundary within the model are recreated within the next
boundary. Elemental overlap of the boundaries is then re-
solved by allowing an overlap of the domains equal to the
size of the largest element in the model. Inside this overlap-
ping region, the element may exist twice.

The model developed to allow for the parallelisation of
multiple instances of a physics engine operates in a subtly
different manner. Effectively each instance of the engine re-
ceives a portion of the overall number of elements; the max-
imum number that can be added to each instance is limited
by the engine itself, henceforth an instance is referred to as a
model. Dynamically adjusted bounds are then calculated for
each individual set of elements within each model, at each
timestep. Elements at the edge of these bounds are tested
against the elements within any other model approaching the

Figure 1: Overview of the element ghosting model used to

allow multiple DEMs to interact as one. The red boundary

lines show the dynamically adjusted bounding area of model

0, while the blue lines show the bounding area of model 1.

Model elements are shown in the top portion while the resul-

tant ‘ghost’ elements are shown at the bottom.

current models bounds. Where it is found an element is the-
oretically about to come into contact with an element within
the approaching scene, a ‘ghost’ element is created at the ex-
act location of the tested element, but within the approaching
scene. ‘Ghost’ elements have the same physical presence as
the element they represent and are subject to forces from ele-

c© The Eurographics Association 2009.



S.M. Longshaw, M.J. Turner, E. Finch & R. Gawthorpe / Discrete Element Modelling Using a Parallelised Physics Engine

Figure 2: Simplification of force mirroring schema for each

substep of an overall timestep between two scenes in a par-

allelised physics engine based DEM

ments in the scene in which they reside. After each time-step,
any force that they have experienced is mirrored to the ele-
ment that they represent. Similarly, any forces on their par-
ent element is mirrored to the ghost. If an existing ‘ghost’ is
found to be no longer required, it is deleted. This system is
illustrated in figures 1 and 2.

The forces that are copied are obtained from the physics
engine directly at each iteration of a substep. Forces are in-
troduced to all bodies using a specific position rather than
at their centre of mass, thus ensuring the resultant torque
introduced is as accurate as the engine initially calculated.
A requirement of this method is that it is possible to iden-
tify each element and be able to define whether the interac-
tion pair should be mirrored or not, for example we do not
wish to mirror forces generated between two ghosts, rather
only between ghosts and normal elements. Some engines,
such as PhysX, offer a built-in bit-masking system, allow-
ing for quick and easy segmentation of each element in the
system, however for engines without this ability, it would
be necessery to manually identify between which two actor
types a contact has occured.

While the ghosting model allows multiple DEMs to oper-
ate independently but still acting as a continuous system, it is
important to then split the overall DEM into its smaller sub
models according to the limitations of the engine being used.
Within PhysX, it is possible to add 21,333 same sized spher-
ical elements to each scene (due to the pair contact limit),
of which there can be 64 within each instance of the engine.

This means we are able to create a model with 1,365,312
elements using one instance of the PhysX engine.

A better model however is to distribute over a multi-nodal
computing cluster, utilising parallelism at both the local and
distributed levels. If, for example, we have a 1,000,000 ele-
ment model and have access to 8 compute nodes, each with
8 local processing cores, then we can create 8 instances of
the PhysX engine, 1 on each node, and then create 8 scenes
within each node. This would mean we have divided the
1,000,000 element model into 64 models, each with 15,625
elements. This can be seen in figure 3.

Figure 3: Example of a parallel distribution of a physics

engine based DEM. This model assumes an MPI scheduler

that allows fine grained parallelism using OpenMP or lo-

cal threads. In the absence of this capability, the OpenMP

communication channels are simply replaced by MPI or the

available equivalent and the distributed resource considered

on a per CPU basis rather than a per node basis. The model

shown in the figure is optimal.

Clearly if we have enough processors to ensure each
model contains less than the maximum number of elements
supported by each PhysX scene, then we have an optimal
case in which each model is operating on its own processor.
If the overall number of elements is increased to 2,000,000
then each node would contain 250,000 elements and we
would need 14 scenes to be calculated on each node, assum-
ing we allow for a 10% reduction in elements per scene to
allow for ghosts to be created. While this is still highly par-
allelised, it is not as optimal as with 1,000,000 elements, as
each processor effectively has the task of solving 1.75 mod-
els.

c© The Eurographics Association 2009.



S.M. Longshaw, M.J. Turner, E. Finch & R. Gawthorpe / Discrete Element Modelling Using a Parallelised Physics Engine

One interesting outcome of this form of parallelisation is
that it is possible to guarantee determinism of the model.
When traditional parallelisation techniques are applied, such
as for loop splitting, the allocation of work from the for loop
is often different on each run, depending on multiple factors
such as the work load of each processor at that exact mo-
ment. If a loop were to contain a calculation which relied
on any other iteration of that loop, then it may be that on
one run, due to floating point rounding errors, a slightly dif-
ferent result is obtained. The parallelisation technique pre-
sented here ensures that each subset of elements of the over-
all model is only ever calculated by one processor. There-
fore, as long as a run is performed on the same hardware,
therefore ensuring the model is split in the same fashion and
floating point operation is the same, the results from one run
will be identical to another.

4. Example Geological Case Study

In order to demonstrate the parallel usage of a physics engine
in the design of a DEM, this section presents results from a
partial run of a DEM representing a weak rock structure ap-
proximately 100km in length, 60km in depth and 30km in
height. The DEM presented is relatively coarse; containing
97,038 equally sized spherical elements. It was run on a sin-
gle PC containing 2 AMD Athlon FX-70 CPUs, providing
a total of 4 processing cores. The overall model was split
into 6 individual models, each containing 16,173 elements.
Therefore this was not an optimal parallelisation case.

The model consisted of a simple triangulated box 115km
in length, 60km in depth and 60km in height. The elements
were initially packed into the box in a close hexagonal for-
mation. Within the box, at 100km, a convex hull in the shape
of a flat plate acted as an immovable barrier between the free
space in the box and the elements packed to the 100km point.
The plate was designated as a ’kinematic’ actor; therefore
it could interact with the model elements but its movement
could only be affected by direct manipulation of its position.
Each element in the model began by being attached to all
of its neighbours by a weak spring-damper joint; each joint
in the system had a slightly randomised breaking length but
identical spring and damping values. Gravity was set to -
9.81m/s. The box, plate and all elements had negligible val-
ues for friction and each element had a density of 3,300
kg/m−3.

Images taken from the 120th iteration of the model can
be seen in figures 4 and 5, this is equivalent to 1200 years
of model evolution. The kinematic plate has been moved
at each iteration so that it provides a smooth compressional
force against all of the elements on the rightmost side of the
model.

The primary parallelisation overhead that this method in-
troduces is the dynamic creation and deletion of ghost ele-
ments, as well as transferring the data required to re-position

Figure 4: Geological DEM model at t=1200 years. Actual

model elements can be seen at the top of the figure; differing

colours represent each elements membership to a particular

sub model. The resultant ’ghost’ elements that allow inter-

model interactivity can be seen at the bottom of the figure.

Compressional force is being applied from the right of the

model to the left.

each ghost after every iteration of the model. Detailed re-
search to obtain definitive results as to how the overhead
scales with the size of the DEMs are yet to be determined,
however for this test case, at t=1200, there existed 3458
ghost elements in total. This is a 3.56% increase in the
number of elements that exist in the system over the initial
amount.

As this example occurred within a single shared memory
system, each sub-model utilised a shared memory resource
to access every other sub-models boundaries and ghosted el-
ements. In a scenario utilising MPI for parallelism over a
nodal computing cluster, there will be a further overhead in
the form of a broadcast of the sub-boundary and force de-
tails. Given a 100,000 element model and a distributed sys-
tem utilising a modern high bandwidth interconnect, it is es-
timated that this transfer overhead will be negligible.

As one sub-model encroaches further into another, this
overhead will increase, with a worst case scenario being
that one sub-models boundary entirely surrounds another,
therefore meaning each element in each model will likely be
tested against a theoretical maximum number of elements,
with all elements haveing a ghost. Effectively each model

c© The Eurographics Association 2009.



S.M. Longshaw, M.J. Turner, E. Finch & R. Gawthorpe / Discrete Element Modelling Using a Parallelised Physics Engine

Figure 5: Close-up of geological DEM model at t=1200

years. Actual model elements can be seen at the top of the

figure; differing colours represent an elements membership

to a particular sub model. The resultant ghost elements can

be seen at the bottom of the figure. Of particular interest in

this figure is the accurate continuation of movement between

the rightmost scene, with green elements, and the next scene

to the left, with grey elements. This movement occurs purely

due to the ghost element structure.

would become mirrored in the other. Due to the scale of ge-
ological DEMs, this case is unlikely to happen, with model
overlap being kept close to each sub models boundaries.
However there may be some uses for the DEM technique in

which this worst case is likely and therefore should become
a consideration.

5. Conclusion

This paper has presented a method to allow modern physics
engines to be utilised in the design and implementation of
large scale scientific Discrete Element Models and other
suitable simulations. The implications of the reduction in
numerical accuracy that a physics engine will introduce to
a DEM have been discussed as have the usage limitations
that the most notable engines currently enforce.

The benefits of using a physics engine for scientific model
development, especially for those models that rely on phys-
ical interaction between different bodies, are numerous.
Physics engines provide a robust and well defined frame-
work with which to build a simulated version of a real world
scenario. This paper has shown how the NVIDIA PhysX
engine can be utilised to implement a large scale geolog-
ical DEM, based loosely around the Lattice Solid Model
[MP93].

In order to utilise PhysX for DEMs with large numbers of
elements, it was necessary to define a method to use multiple
instances of the engine to calculate an overall model. This
paper presents the design of a model which allows multiple
discrete DEMs, that utilise a physics engine, to be calculated
simultaneously across large distributed computing systems.
The design is currently only being used for geological DEM
purposes, but with further testing should be suitable for other
modelling scenarios where a physics engine can be used.

The technique of splitting a DEM into multiple individ-
ual DEMs, as seen in this paper, allows a limited black box
physics engine to be used to produce large-scale scientific
simulations. The effects of the ghosting model on general
accuracy needs further exploration, as does the extent of
the overhead introduced when a model is parallelised over
a large distributed computing cluster.

Within Computer Science, it is generally accepted that
producing a standardised framework of code for the most
common calculations is good practice. The area of com-
puter graphics already has two main standardised libraries
in the form of OpenGL and DirectX, which are accepted and
utilised for most rendering purposes. However, physics cal-
culations are normally re-coded every time they are required.
This leaves new simulation code open to individual program-
ming errors and discrepancies. While the current generation
of physics engines, due to their bias towards game design,
are perhaps not numerically accurate enough for some simu-
lations, the basic premise of a highly accurate homogenised
library of physical constructs, with which a researcher can
produce a simulated real-world, is a compelling one which
may be explored by the current commercial engines in the
future and is already being explored by the open source de-
velopers of engines like Bullet [Cou09].

c© The Eurographics Association 2009.



S.M. Longshaw, M.J. Turner, E. Finch & R. Gawthorpe / Discrete Element Modelling Using a Parallelised Physics Engine

The goal of a physics engine is to provide the developer
with a generic set of joints and collision detection routines,
so that they are able to produce a physical scenario that can
be likened to any real-world scenario. This not only sim-
plifies the process of handling collision detection between
many uniform and non-uniform rigid and soft bodies, it also
allows complicated jointing systems. As physics engines im-
prove in performance and accuracy, the possibility of easily
allowing a researcher, to design and produce their own high
performance simulation code becomes a reality. The inte-
gration of the ghosting model presented by this paper would
also allow models created using the engines to be processed
in parallel over clustered computing resources.

6. Future Work

While the techniques presented in this paper are currently
being used to produce large DEMs of fault evolution in the
Earth’s crust, they should be applicable to other forms of
physical modelling.

Immediate work to be completed involves analysis of the
ghosting technique, measuring the overhead that it intro-
duces, assessing its applicability to physics engines other
than NVIDIAs PhysX, and determining any reduction in cal-
culation error that utilising such a technique introduces into
very large systems over a large simulated time period. Also,
there currently exists a situaton where too many ghosts may
be introduced into a model, with a possible worst case sce-
nario of there being as many ghosts as there are elements.
While this is unlikely to happen during the evolution of a
geological DEM due to the slow and relatively small move-
ment in the system, if the method was utilised to design a
simulation for another purpose, it may become a tangible is-
sue.

Further application of the method will be used to produce
large DEMs of fault evolution, the capabilities of the PhysX
engine will be explored, including utilising non-geometrical,
or even deformable rigid bodies in place of the current
spheres. Replacement of the simple rigid box structure that
holds the elements in place will also be examined. Use of ex-
isting techniques found within PhysX, such as variable force
fields and complex triangulated convex hulls may also be ex-
plored.

As a physics engine effectively provides a closed loop
within simulation code where the majority of the simulation
calculation occurs, it also becomes easier to design model
code that involve forms of computational steering, that is
allowing model parameters to be altered by the user as it
evolves, while also offering a form of visual or numerical
feedback informing the user as to the current state of their
simulation. The inclusion of steerable parameters into a sim-
ulation using a physics engine will be explored, including
how user input should be propagated across multiple mod-
els all running simultaneously and how best to offer visual
feedback.

References

[BB07] BOEING A., BRÄUNL T.: Evaluation of real-
time physics simulation systems. In GRAPHITE ’07:

Proceedings of the 5th international conference on Com-

puter graphics and interactive techniques in Australia and

Southeast Asia (2007), ACM, pp. 281–288.

[CMD∗00] CHANDRA R., MENON R., DAGUM L.,
KOHR D., MAYDAN D., MCDONALD J.: Parallel Pro-

gramming in OpenMP. Morgan Kaufmann, 2000.

[Cou09] COUMANS E.: Bullet. http://www.

bulletphysics.com, 2009.

[CS79] CUNDALL P. A., STRACK O. D. L.: A discrete
numerical model for granular assemblies. Geotechnique

29 (1979), 47–65.

[Cun71] CUNDALL P. A.: A Computer Model for Sim-
ulating Progressive Large Scale Movements in Blocky
Rock Systems. In Proc. Sympo. Int. Soc. Rock Mech.

(1971), pp. 129–136.

[FHG03] FINCH E., HARDY S., GAWTHORPE R.:
Discrete element modelling of contractional fault-
propagation folding above rigid basement fault blocks.
Journal of Structural Geology 25, 4 (2003), 515–528.

[Hav09] HAVOK: Havok physics. http://www.

havok.com [, 2009.

[KD08] KOZICKI J., DONZÉ F. V.: A new open-source
software developed for numerical simulations using dis-
crete modeling methods. Computer Methods in Applied

Mechanics and Engineering 197 (2008), 4429–4443.

[MP93] MORA P., PLACE D.: A lattice solid model for the
non-linear dynamics of earthquakes. International Jour-

nal of Modern Physics C 4, 6 (1993), 1059–1074.

[NVI09] NVIDIA: Nvidia physx. http://www.

nvidia.com/object/nvidia_physx.html,
2009.

[PM00] PLACE D. G., MORA P. R.: LSMearth: a Vir-
tual Earth Simulator for eathquake micro-physics. In
2000 Fall Meeting, American Geophysical Union (2000),
American Geophysical Union, pp. 15–19.

[Smi09] SMITH R.: Open Dynamics Engine (ODE).
http://www.ode.org, 2009.

[Sol09] SOLUTIONS D.: Edem. http://www.

dem-solutions.com, 2009.

[WLS99] WILLIAM G., LUSK E., SKJELLUM A.: Using

MPI, 2nd Edition: Portable Parallel Programming with

the Message Passing Interface. MIT Press, 1999.

c© The Eurographics Association 2009.


