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We present the induced generalized ordered weighted averaging (IGOWA) operator. It is a
new aggregation operator that generalizes the OWA operator, including the main charac-
teristics of both the generalized OWA and the induced OWA operator. This operator uses
generalized means and order-inducing variables in the reordering process. It provides a
very general formulation that includes as special cases a wide range of aggregation opera-
tors, including all the particular cases of the IOWA and the GOWA operator, the induced
ordered weighted geometric (IOWG) operator and the induced ordered weighted quadratic
averaging (IOWQA) operator. We further generalize the IGOWA operator via quasi-arith-
metic means. The result is the Quasi-IOWA operator. Finally, we present a numerical exam-
ple to illustrate the new approach in a financial decision-making problem.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

A wide range of aggregation operators are found in the literature. One common aggregation method is the ordered
weighted averaging (OWA) operator [29]. It provides a parameterized family of aggregation operators that include as special
cases the maximum, the minimum and the average. Since its appearance, the OWA operator has been used in a wide range of
applications [1–8,11–45].

In [43], Yager and Filev, motivated by the work of Mitchell and Estrakh [20], developed an extension of the OWA operator,
called the induced ordered weighted averaging (IOWA) operator. The difference is that the reordering step is no longer deter-
mined only by the values of the arguments, but could be induced by another mechanism, such that the ordered position of
the arguments; in other words, the reordering can depend on the values of their associated order-inducing variables. In the
last few years, the IOWA operator has received increasing attention, e.g., [7,8,12,13,28,34,35,37].

Another interesting extension is the generalized OWA (GOWA) operator [15,38], which uses generalized means [9,10] in
the OWA operator. It generalizes a wide range of mean operators such as the arithmetic mean (AM), the geometric mean
(GM), the quadratic mean (QM), the OWA operator, the ordered weighted geometric (OWG) operator and the ordered
weighted quadratic averaging (OWQA) operator. In [3], Beliakov developed a further extension of the GOWA operator,
and obtained the Quasi-OWA operator introduced by [11]. Further studies on these generalizations are found in [4,5].

The aim of this paper is to present the induced generalized OWA (IGOWA) operator. It is an extension of the OWA oper-
ator that uses the main characteristics of both the IOWA and the GOWA operator. That is to say, it uses order-inducing vari-
ables in the reordering process and generalized means. Then, we can obtain a generalization that includes the IOWA operator
and its particular cases, as well as many other situations, such as the induced OWG (IOWG) operator [7,28], the induced
OWQA (IOWQA) operator and the induced ordered weighted harmonic averaging (IOWHA) operator. This generalization also
includes the GOWA operator and its special cases such as the OWA, the generalized mean (GM), the weighted generalized
. All rights reserved.
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mean (WGM), etc. We study different properties and families of this operator such as the olympic-IGOWA, the median-IGO-
WA, etc.

We further generalize the IGOWA operator by using quasi-arithmetic means, obtaining the Quasi-IOWA operator. Note
that the Quasi-IOWA can be seen as an extension of the Quasi-OWA operator that uses order-inducing variables in the reor-
dering process. With this generalization, we get as special cases the original IGOWA operator as well as many other known
operators such as the exponential IOWA, the trigonometric IOWA and the radical IOWA, among others.

We also present an application of the new approach in an example of investment selection. The main advantage of the
IGOWA operator in decision-making is that it includes a lot of particular cases that can be used for making the decision.
Therefore, it is possible to consider different types of aggregations that may lead to different decisions. Note that to a certain
extent, the OWA operator has the same advantage, but with the IGOWA, we have more possibilities. The operator could also
be used for other decision-making applications such as the selection of financial products, human resource management,
strategic decision-making, product management, and others.

This paper is organized as follows. In Section 2, we briefly review some basic concepts such as the OWA, the IOWA and the
GOWA operators. In Section 3, we present the IGOWA operator. Section 4 analyzes different families of IGOWA operators. In
Section 5 we introduce the Quasi-IOWA operator. In Section 6, an application of the new approach is presented. Finally, Sec-
tion 7 summarizes the main conclusions of the paper.
2. Preliminaries

In this section, we briefly describe the OWA operator, the IOWA operator and the GOWA operator.

2.1. OWA operator

The OWA operator was introduced by Yager in [29] and provides a parameterized family of aggregation operators that
includes the arithmetic mean, the maximum and the minimum. It can be defined as follows.

Definition 1. An OWA operator of dimension n is a mapping OWA: Rn? R defined by an associated weighting vector W of
dimension n, such that the sum of the weights is 1 and wj 2 [0,1], according to the following formula:
OWAða1; a2; . . . ; anÞ ¼
Xn

j¼1

wjbj; ð1Þ
where (b1, b2, . . . ,bn) is simply (a1, a2, . . . ,an) reordered from largest to smallest.

We can generalize the direction of the reordering, and distinguish between the descending OWA (DOWA) operator and
the ascending OWA (AOWA) operator [30]. The OWA operator is commutative, monotonic, bounded and idempotent [29].

2.2. IOWA operator

The IOWA operator was introduced by Yager and Filev [43] and it represents an extension of the OWA operator. The main
difference is that the reordering step of the IOWA is carried out with order-inducing variables, rather than depending on the
values of the arguments ai. The IOWA operator also includes the maximum, the minimum and the average operators, as spe-
cial cases. It can be defined as follows:

Definition 2. An IOWA operator of dimension n is a mapping IOWA: Rn ? R defined by an associated weighting vector W of
dimension n such that the sum of the weights is 1 and wj 2 [0,1], and a set of order-inducing variables ui, by a formula of the
following form:
IOWAðhu1; a1i; hu2; a2i . . . ; hun; aniÞ ¼
Xn

j¼1

wjbj; ð2Þ
where (b1, . . . ,bn) is simply (a1, a2, . . . ,an) reordered in decreasing order of the values of the ui, ui is the order-inducing variable
and ai is the argument variable.

The IOWA operator is also monotonic, bounded, idempotent and commutative [43]. Other properties and particular cases
of the IOWA operators are studied in [35,43].

2.3. GOWA operator

The generalized OWA (GOWA) operator was introduced in [11,38]. It uses generalized means in the OWA operator. It can
be defined as follows:
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Definition 3. A GOWA operator of dimension n is a mapping GOWA: Rn ? R defined by an associated weighting vector W of
dimension n such that the sum of the weights is 1 and wj 2 [0,1], and a parameter k 2 (�1,1), according to the following
formula:
GOWAða1; a2; . . . ; anÞ ¼
Xn

j¼1

wjb
k
j

 !1=k

; ð3Þ
where (b1, . . . ,bn) is simply (a1, a2, . . . ,an) reordered from largest to smallest.

In this case, it is also possible to distinguish between the descending generalized OWA (DGOWA) operator and the
ascending generalized OWA (AGOWA) operator. The weights of these operators are related by wj ¼ w�nþ1�j, where wj is
the jth weight of the DGOWA (or GOWA) operator and w�nþ1�j is the jth weight of the AGOWA operator.

As it is explained in [11,38], the GOWA operator is commutative, monotonic, bounded and idempotent. It can also be
demonstrated that the GOWA operator has as special cases the maximum, the minimum, the generalized mean and the
weighted generalized mean. Note that the weighted generalized mean is obtained when j = i, for all i and j, where j is the
jth argument of the bj and i is the ith argument of the ai.

By considering different values of the parameter k, we can also obtain other special cases, including the usual
OWA operator (k = 1) [29], the ordered weighted geometric (OWG) operator (k = 0) [6,27], the ordered weighted har-
monic averaging (OWHA) operator (k = �1) [38] and the ordered weighted quadratic averaging (OWQA) operator
(k = 2) [38].

Another interesting issue to consider is the attitudinal character, which is defined by Yager in [38] as
aðWÞ ¼
Xn

j¼1

wj
n� j
n� 1

� �k
 !1=k

: ð4Þ
It can be shown that a 2 [0,1]. The more of the weight is concentrated near the top of W, the closer a approaches 1, and the
more of the weight is concentrated toward the bottom of W, the closer a approaches 0. Note that for the optimistic criterion
a(W) = 1 and for the pessimistic criterion a(W) = 0.

If we replace bk with a general continuous strictly monotonic function g(b) [3], then, the GOWA operator becomes the
Quasi-OWA operator [11], which is defined as follows:

Definition 4. A Quasi-OWA operator of dimension n is a mapping QOWA: Rn ? R defined by an associated weighting vector
W of dimension n such that the sum of the weights is 1 and wj 2 [0,1], and a continuous strictly monotonic function g(b),
according to the following formula:
QOWAða1; a2; . . . ; anÞ ¼ g�1
Xn

j¼1

wjg bðjÞ
� � !

; ð5Þ
where (b1, . . . ,bn) is (a1, a2, . . . ,an) reordered from largest to smallest.
3. The induced generalized OWA operator

The induced generalized OWA (IGOWA) operator is an extension of the GOWA operator, with the difference that the reor-
dering step of the IGOWA operator is not defined by the values of the arguments ai, but rather by order-inducing variables ui,
where the ordered position of the arguments ai depends upon the values of the ui. Therefore, we get a more general formu-
lation of the reordering process that it is able to consider more complex situations. It can be defined as follows:

Definition 5. An IGOWA operator of dimension n is a mapping IGOWA: Rn ? R defined by an associated weighting vector W
of dimension n such that the sum of the weights is 1 and wj 2 [0,1], a set of order-inducing variables ui, and a parameter
k 2 (�1,1), according to the following formula:

n
 !1=k
IGOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼
X
j¼1

wjb
k
j ; ð6Þ
where (b1, . . . ,bn) is (a1, a2, . . . ,an) reordered in decreasing order of the values of the ui, the ui are the order-inducing variables,
and ai are the argument variables.

Example 1. Assume the following collection of arguments with their respective order-inducing variables hui,aii: h7,25i,
h2,40i, h10,20i, h3,60i. If we assume that W = (0.2,0.2,0.3,0.3) and k = 1, then, the aggregation formula is
0:2� 20þ 0:2� 25þ 0:3� 60þ 0:3� 40 ¼ 39:



As we can see, the order-inducing variables ui reorder the argument variables ai in decreasing order.

Again, it is possible to distinguish the descending induced generalized OWA (DIGOWA) operator and the ascending in-

duced generalized OWA (AIGOWA) operator. The weights of these operators are related by wj ¼ w�nþ1�j, where wj is the
jth weight of the DIGOWA (or IGOWA) operator and w�n+1�j the jth weight of the AIGOWA operator.

If B is the vector consisting of the ordered arguments bk
j , which we call the ordered argument vector and WT is the trans-

pose of the weighting vector, then the IGOWA operator can be expressed as
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IGOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼ WT B
� �1=k

: ð7Þ
Note that if the weighting vector is not normalized, i.e., W ¼
Pn

j¼1wj – 1, then, the IGOWA operator can be expressed as
IGOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼
1
W

Xn

j¼1

wjb
k
j

 !1=k

: ð8Þ
The IGOWA operator is a mean or averaging operator. This is a reflection of the fact that the operator is commutative, mono-
tonic, bounded and idempotent. These properties are proven in the following theorems:

Theorem 1. (Monotonicity): Let f be the IGOWA operator. If ai P ei, for all ai, then
f ðhu1; a1i; . . . ; hun; aniÞP f ðhu1; e1i; . . . ; hun; eniÞ: ð9Þ
Proof. Let
f ðhu1; a1i; . . . ; hun; aniÞ ¼
Xn

j¼1

wjb
k
j

 !1=k

; ð10Þ
and
f ðhu1; e1i; . . . ; hun; eniÞ ¼
Xn

j¼1

wjd
k
j

 !1=k

: ð11Þ
Since ai P ei, for all ai, it follows that, ai P ei, so
f ðhu1; a1i; . . . ; hun; aniÞP f ðhu1; e1i; . . . ; hun; eniÞ: �
Theorem 2. (Commutativity): Let f be the IGOWA operator. Then
f ðhu1; a1i; . . . ; hun; aniÞ ¼ f ðhu1; e1i; . . . ; hun; eniÞ; ð12Þ
where (hu1, a1i, . . . ,hun, ani) is any permutation of the arguments (hu1, e1i, . . . , hun, eni).

Proof. Let
f ðhu1; a1i; . . . ; hun; aniÞ ¼
Xn

j¼1

wjb
k
j

 !1=k

ð13Þ
and
f ðhu1; e1i; . . . ; hun; eniÞ ¼
Xn

j¼1

wjd
k
j

 !1=k

: ð14Þ
Since (hu1, a1i, . . . , hun, ani) is a permutation of (hu1, e1i, . . . , hun, eni), we have aj = ej, for all j, so
f ðhu1; a1i; . . . ; hun; aniÞ ¼ f ðhu1; e1i; . . . ; hun; eniÞ: �
Theorem 3. (Idempotency): Let f be the IGOWA operator. If ai = a, for all ai, then
f ðhu1; a1i; . . . ; hun; aniÞ ¼ a: ð15Þ
Proof. Since ai = a, for all ai, we have
f ðhu1; a1i; . . . ; hun; aniÞ ¼
Xn

j¼1

wjb
k
j

 !1=k

¼
Xn

j¼1

wjak

 !1=k

¼ ak
Xn

j¼1

wj

 !1=k

: ð16Þ
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Since
Pn

j¼1wj ¼ 1, we get
f ðhu1; a1i; . . . ; hun; aniÞ ¼ a: �
Theorem 4. (Bounded): Let f be the IGOWA operator. Then

minfa g 6 f ðhu ; a i; . . . ; hu ; a iÞ 6 maxfa g: ð17Þ
i 1 1 n n i
Proof. Let max{ai} = c, and min{ai} = d. Then
f ðhu1; a1i; . . . ; hun; aniÞ ¼
Xn

j¼1

wjb
k
j

 !1=k

6

Xn

j¼1

wjck

 !1=k

¼ ck
Xn

j¼1

wj

 !1=k

ð18Þ
and
f ðhu1; a1i; . . . ; hun; aniÞ ¼
Xn

j¼1

wjb
k
j

 !1=k

P
Xn

j¼1

wjd
k

 !1=k

¼ dk
Xn

j¼1

wj

 !1=k

: ð19Þ
Since
Pn

j¼1wj ¼ 1, we get
f ðhu1; a1i; . . . ; hun; aniÞ 6 c; ð20Þ
and
f ðhu1; a1i; . . . ; hun; aniÞP d: ð21Þ
Therefore,
minfaig 6 f ðhu1; a1i; . . . ; hun; aniÞ 6 maxfaig: �
An interesting issue in analyzing induced aggregation operators is the problem of ties in the reordering step. To solve this
problem, we recommend following the method developed by Yager and Filev [43] where they replace each argument of the
tied IOWA pair by its average. For the IGOWA operator, instead of using the arithmetic mean, we replace each argument of
the tied IGOWA pair by its generalized mean depending on the parameter of k.

As explained in [43] for the IOWA operator, we should note that the values used for the order-inducing variables of the
IGOWA operator, can be drawn from any space that has a linear ordering. Thus, it is possible to use different kinds of attri-
butes for the order-inducing variables; in particular, we can mix numbers with words in the aggregations [43]. For the IGO-
WA operator, this would mean that we are ordering numerical arguments by linguistic order-inducing variables. Note that in
some situations it is possible to use the implicit lexicographic ordering associated with words, i.e. the ordering of words in
the dictionary [43].

The IGOWA operator is a generalization of the IOWA operator. Therefore, the IGOWA operator is applicable to all the sit-
uations already discussed for the IOWA operator. For example, we could use it for modeling the nearest neighbour rule [43],
for model building [43] and for the aggregation of complex objects [35]. Other potential applications could be developed for
decision-making, group decision-making, business decisions, statistics, etc. In this paper, we develop an application for
financial decision-making.

4. Families of IGOWA operators

In this section, we consider different types of IGOWA operators. We distinguish between two main classes. The first class
focuses on the weighting vector W, and the second class on the parameter k. In Table 1, we present the main families of IGO-
WA operators that we consider in this paper.

The main advantage of using these families is that they can be very useful for the decision-maker in some specific situ-
ations. However, each family is just one particular case. Therefore, they can only be used in some particular cases, but they
cannot be seen as a general model that can be used in all possible frameworks. Thus, the best way to assess all these par-
ticular cases is by using a general formulation such as the IGOWA operator that includes them all. Note that the particular
case to be used will depend on the interests of the decision-maker in the specific problem at hand.

4.1. Analyzing the weighting vector W

By choosing a different manifestation of the weighting vector in the IGOWA operator, we are able to obtain different types
of aggregation operators. For example, we can obtain the maximum, the minimum, the generalized mean, the weighted gen-
eralized mean and the GOWA operator. Note that these results can be obtained both for the DIGOWA and the AIGOWA
operator.



Table 1
Families of IGOWA operators.

Weighting vector W Parameter k

� Maximum and minimum
� Generalized mean and weighted generalized mean
� GOWA operator
� Window-IGOWA
� Olympic-IGOWA
� E-Z IGOWA
� Generalized median and weighted generalized median
� S-IGOWA (orlike, andlike and generalized)
� BADD-IGOWA (Dependent – IGOWA)
� BUM function – IGOWA
� Centered IGOWA and Gaussian-IGOWA
� Etc.

� IOWA operator
� IOWG operator
� IOWHA operator
� IOWQA operator
� Etc.
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Remark 1. The maximum is obtained by setting wp = 1 and wj = 0, for all j – p, and up = Max{ai}, and the minimum by setting
wp = 1 and wj = 0, for all j – p, and up = Min{ai}. More generally, if wk = 1 and wj = 0, for all j – k, we get for any k, IGOWA(hu1,
a1i, . . . , hun, ani) = bk, where the bk as usual, are the ai values ordered by their associated ui values. The generalized mean is
found by setting wj = 1/n, for all ai and the weighted generalized mean is obtained if ui > ui + 1, for all i. Finally, we recover the
GOWA operator if the ordered positions of ui are the same as the ordered positions of the ai.

Remark 2. Other families of IGOWA operators can be constructed by choosing a different weighting vector. For
example, when wj = 1/m for k 6 j 6 k+m-1 and wj = 0 for j > k+m and j < k, we obtain the window-IGOWA operator
that it is based on the window-OWA operator [31]. Note that k and m must be positive integers such that k+m-
1 6 n. Note also that if m = k = 1, and the initial position of the highest ui is also the initial position of the highest
ai, then the window-IGOWA becomes the maximum. If m = 1, k = n, and the initial position of the lowest ui is also
the initial position of the lowest ai, then, it becomes the minimum. Finally, if m = n and k = 1, it becomes the gen-
eralized mean.

Example 2. (window-IGOWA). Assume a weighting vector of dimension 7 (n = 7). If k = 2 and m = 4, then the weighting vec-
tor to be used in the aggregation is W = (0,0.25,0.25,0.25,0.25,0,0).

Remark 3. If w1 = wn = 0, and for all others wj = 1/(n � 2), we use the olympic induced generalized average, which is based on
the olympic average [33]. Note that if n = 3 or n = 4, the olympic induced generalized average becomes the IGOWA median,
and if m = n � 2 and k = 2, the window-IGOWA becomes the olympic induced generalized average. Note also that the olympic
induced generalized average becomes the olympic generalized average if wp = wq = 0, such that up = Maxi{ai} and uq = Mi-
ni{ai}, and for all others wj = 1/(n � 2).

Example 3. (Olympic-IGOWA). Assume a weighting vector of dimension 7 (n = 7). Then the weighting vector to be used in
the aggregation is W = (0,0.2,0.2,0.2,0.2,0.2,0).

Remark 4. Another type of aggregation is the E-Z IGOWA weights, which are based on the E-Z OWA weights [36]. In this
case, we should distinguish between two classes. In the first class, we assign wj = (1/k) for j = 1 to k and wj = 0 for j > k,
and in the second class, we assign wj = 0 for j = 1 to n-k and wj = (1/k) for j = n- k + 1 to n. Note that the E-Z IGOWA weights
become the E-Z GOWA weights in the first class if the ordered positions of the ui are the same as those of the ai, for ibetween
1 and k, and for the second class, if the ordered positions of the ui are the same as those of the ai, for i between n � k + 1 and n.

Example 4. (E-Z IGOWA). Assume that k = 4 and n = 7. For the first class, the weighting vector is W = (0.25,0.25,0.25,0.25,0,
0,0) and for the second class, W = (0,0,0,0.25,0.25,0.25,0.25).

Remark 5. The generalized median and the weighted generalized median [32] can also be constructed as induced aggrega-
tion operators. For the IGOWA median, if n is odd we assign w(n+1)/2 = 1 and wj = 0 for all others, which selects the argument ai

with the [(n + 1)/2]th largest ui value. If n is even, we assign, for example, wn/2 = w(n/2) + 1 = 0.5, which selects the arguments
with the (n/2)th and [(n/2) + 1]th largest ui values. For the weighted IGOWA median, we select the argument ai that has the
kth largest inducing variable ui, such that the sum of the weights from 1 to k is equal or higher than 0.5 and the sum of the
weights from 1 to k � 1 is less than 0.5. Note that if the ordered positions of the ui are the same as the ordered positions of
the ai, then the IGOWA median and the weighted IGOWA median reduce to the GOWA median and the weighted GOWA
median, respectively.
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Example 5. (Median-IGOWA). Assume n = 7. Then the weighting vector to be used is: W = (0,0,0,1,0,0,0).

Remark 6.1. Another interesting family is the S-IGOWA operator, based on the S-OWA operator [31,42]. It can be divided in
three classes, the ‘‘orlike”, the ‘‘andlike” and the generalized S-IGOWA operator. The ‘‘orlike” S-IGOWA operator is formed
when wp = (1/n)(1 � a) + a, up = Max{ai}, and wj = (1/n)(1 � a) for all j – p with a 2 [0,1]. Note that if a = 0, we get the arith-
metic mean, and if a = 1, the maximum. The ‘‘andlike” S-IGOWA operator is found when wq = (1/n)(1 � b) + b,uq = Min{ai},
and wj = (1/n)(1 � b) for all j – q with b 2 [0,1]. In this class, if b = 0 we get the average, and if b = 1, the minimum. Finally,
the generalized S-IGOWA operator is obtained when wp = (1/n)(1 � (a + b)) + a, with up = Max{ai}; wq = (1/n)(1 � (a + b)) + b,
with uq = Min{ai}; and wj = (1/n)(1 � (a+b)) for all j – p,q where a, b 2 [0,1] and a + b 6 1. Note that if a = 0, the generalized S-
IGOWA operator becomes the ‘‘andlike” S-IGOWA operator, and if b = 0, it becomes the ‘‘orlike” S-IGOWA operator.

Remark 6.2. Note that it is also possible to consider the usual definition of the S-OWA without using the inducing orders
[42]. In this setting, we form another type of S-IGOWA that does not take into account the maximum and the minimum argu-
ments. Instead, it takes into account the arguments in the first and the last positions as defined by the order-inducing vari-
ables. In this case, the generalized S-IGOWA operator is formed when w1 = (1/n)(1 � (a + b)) + a, wn = (1/n)(1 � (a + b)) + b,
and wj = (1/n)(1 � (a + b)) for j = 2 to n � 1 where a, b 2 [0,1] and a + b 6 1. Note that if a = 0, the generalized S-IGOWA
becomes the ‘‘andlike” S-IGOWA operator and if b = 0, it becomes the ‘‘orlike” S-IGOWA operator.

Example 6. (Generalized S-IGOWA) : Take the IGOWA pairs in Example 1, and set a = 0.1 and b = 0.3. Then the weighting vec-
tor to be used in the aggregation is W = (0.45,0.15,0.25,0.15). In the context of Remark 6.2, the weighting vector is
W = (0.25,0.15,0.15,0.45).

Remark 7.1. Other families of IGOWA operators could be developed, with the weights depending on the aggregated objects
[31]. Note that in these cases, the results obtained with the IGOWA are equal to the ones obtained with the GOWA because
the order-inducing variables do not affect the final result. For example, we could develop the BADD-IGOWA operator based
on the OWA version developed in [31,42]:
wj ¼
ba

jPn
j¼1ba

j

; ð22Þ
where a 2 (�1, 1), and the bj are the arguments ai ordered in decreasing order. Note that the sum of the weights is 1 and
wj 2 [0,1]. Note also that if a = 0, we get the generalized mean, and if a =1, the maximum.

Remark 7.2. Another family of IGOWA operators that depend on the aggregated objects is
wj ¼
ð1� bjÞaPn
j¼1ð1� bjÞa

; ð23Þ
where a 2 (�1,1), and the bj are the arguments ai ordered in decreasing order. Note that in this case if a = 0, we also get the
generalized mean and if a =1, the minimum.

Remark 7.3. A third family of IGOWA operators that depend on the aggregated objects is
wj ¼
ð1=bjÞa

umn
j¼1ð1=bjÞa

; ð24Þ
where a 2 (�1,1), and the bj are the arguments ai in decreasing order. In this case, we also get the generalized mean if a = 0.
If a = 1, we obtain the harmonic mean and if a =1, the minimum.

Example 7. (BADD-IGOWA) : Taking the IGOWA pairs from Example 1, and a = 1, the weighting vector obtained is
W = (0.1379,01724,0.4137,0.2758).

Remark 8. A very useful approach to obtain the weights that is also applicable for the IGOWA operator is the functional
method introduced by Yager [33] for the OWA operator. This approach can be summarized as follows. Let f be a function
f:[0,1] ? [0,1] such that f(0) = f(1) and f(x) P f(y) for x > y. We call this function a basic unit interval monotonic function
(BUM). Using this BUM function we obtain the IGOWA weights wj for j = 1 to n as
wj ¼ f
j
n

� �
� f

j� 1
n

� �
: ð25Þ
It can be easily shown that using this method, the wj satisfy the conditions that the sum of the weights is 1 and wj 2 [0,1].

Example 8. (BUM function) : Take f(x) = x2 and n = 5. In this case, the weighting vector to be used is W = (0.04,0.12,0.2,
0.28,0.36).
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Remark 9. Another family of aggregation operators that could be used in the IGOWA operator is the centered aggregation
operators, which were suggested by Yager [39] for the OWA operator. Following the same methodology, we could say that an
IGOWA operator is a centered aggregation operator if it is symmetric, strongly decaying and inclusive. It is symmetric if
wj = wj + n�1. It is strongly decaying if i < j 6 (n + 1)/2 then wi < wj and when i > j P (n + 1)/2 then wi < wj. It is inclusive if
all the wj > 0. Note that it is possible to consider a softening of the second condition by using wi 6wj instead of wi < wj.
We shall refer to this as the softly decaying centered IGOWA operator. Note that the generalized mean is an example of this
particular case of the centered IGOWA operator. Another generalization of the centered IGOWA operator appears if we
remove the third condition. We shall refer to it as a non-inclusive centered IGOWA operator. The IGOWA median is a special
case of this operator.

Remark 10. A special type of centered IGOWA operator is the Gaussian-IGOWA weights operator, constructed by analogy
with the Gaussian OWA weights suggested by Xu [25]. In order to define it, we have to consider a Gaussian distribution
g(l,r) where
ln ¼
1
n

Xn

j¼1

j ¼ nþ 1
2

; ð26Þ

rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

j¼1

ðj� lnÞ
2

vuut : ð27Þ
Assuming that
gðjÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Prn
p e�ðj�lnÞ

2=2r2
n ; ð28Þ
we define the IGOWA weights as
wj ¼
gjPn

j¼gðjÞ
¼ e�ðj�lnÞ

2=2r2
nPn

j¼1e�ðj�lnÞ
2=2r2

n

: ð29Þ
Note that the sum of the weights is 1 and wj 2 [0,1].

Example 9. (Gaussian-IGOWA) : Set n = 5. Applying the previous equations, we get the following weighting vector:
W = (0.1117,0.2364,0.3036,0.2364,0.1117). As we can see, it is a centered aggregation operator because it satisfies the con-
ditions in Remark 9.

Remark 11. Other weighting vectors could also be used to construct other families of IGOWA operators, by analogy with the
other families of OWA operators, e.g., those in [1,2,16,17,21–25,40].
4.2. Analyzing the parameter k

If we analyze the possible values of the parameter k in the IGOWA operator, we obtain another group of particular cases,
including the usual IOWA operator, the induced OWG (IOWG) operator [7,28], the induced OWHA (IOWHA) operator and the
induced OWQA (IOWQA) operator.

Remark 12. When k = 1, the IGOWA operator becomes the IOWA operator:
IGOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼
Xn

j¼1

wjbj: ð30Þ
We can generalize the reordering direction and distinguish between the descending IOWA (DIOWA) operator (with the argu-
ments reordered in descending order) and the ascending IOWA (AIOWA) operator (with the arguments reordered in ascend-
ing order). Note that the distinction between descending and ascending orders is also applicable to the IOWG, the IOWHA
and the IOWQA operator. An example of the IOWA operator was presented after Definition 5.

Remark 13. When k = 0, the IGOWA operator becomes the IOWG operator:
IGOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼
Yn

j¼1

b
wj

j : ð31Þ
Example 10. (IOWG) : Using the same collection of IGOWA pairs and the same weighting vector as in Example 1, if we take
k = 0 (IOWG), then the aggregation process yields
IGOWA ¼ 200:2 � 250:2 � 600:3 � 400:3 ¼ 35:7978:
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Remark 14. When k = �1, we form the IOWHA operator:
IGOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼
1Pn

j¼1

wj

bj

: ð32Þ
Example 11. (IOWHA) : Using the same information as in Example 1, but now with k = �1, the aggregation is
IGOWA ¼ 1
0:2
20 þ 0:2

25 þ 0:3
60 þ 0:3

40

¼ 32:7868:
Remark 15. When k = 2, we form the IOWQA operator.
IGOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼
Xn

j¼1

wjb
2
j

 !1=2

: ð33Þ
Example 12. (IOWQA) : Assuming the same information as in Example 1, but now with k = 2, the aggregation becomes
IGOWA ¼ 0:2� 202 þ 0:2� 252 þ 0:3� 602 þ 0:3� 402
� �1=2

¼ 42:0119:
Remark 16. Note that other families could be constructed by choosing different values in the parameter k. It is also possible
to study these families individually. We could then develop analyses for each case similar to the ones carried out in Sections
3 and 4.1, and study different properties and families of the induced aggregation operators.
5. Induced Quasi-OWA operators

As it is explained in [3], a further generalization of the GOWA operator is possible by using quasi-arithmetic means in-
stead of the ordinary means. Following a similar methodology, we can suggest a similar generalization of the IGOWA oper-
ator, to obtain the Quasi-IOWA operator. The main advantage of using this operator is that it provides a more complete
generalization, including a lot of cases that are not included in the IGOWA operator. It can be defined as follows:

Definition 6. A Quasi-IOWA operator of dimension n is a mapping QIOWA: Rn ? R defined by an associated weighting vector
W of dimension n such that the sum of the weights is 1 and wj 2 [0,1], and by a strictly monotonic continuous function g(b),
as follows:  !
QIOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼ g�1
Xn

j¼1

wjgðbðjÞÞ ð34Þ
where the bj are the argument values ai of the Quasi-IOWA pairs hui,aii ordered in decreasing order of their ui, values.

As we can see, the difference between the IGOWA and the Quasi-IOWA, is that we replace bk with a general continuous
strictly monotonic function g(b).

In this case also, we can distinguish between descending (Quasi-DIOWA) and ascending (Quasi-AIOWA) orders. The
weights of these operators are related by wj ¼ w�nþ1�j, where wj is the jth weight of the Quasi-DIOWA (or Quasi-IOWA) oper-
ator and w�nþ1�j the jth weight of the Quasi-AIOWA operator.

Note also that all the properties and particular cases of the IGOWA operator also apply in this generalization. As such, the
Quasi-IOWA operator is monotonic, bounded, idempotent and commutative. The problem of ties is solved by replacing the
tied arguments by the quasi-arithmetic mean. And it is possible to analyze different families of Quasi-IOWA operators such
as the olympic-Quasi-IOWA, the S-Quasi-IOWA, the IOWA itself, the IOWQA, etc.

The Quasi-IOWA operator also includes a lot of other particular cases that are not included in the IGOWA operator. For
example, we could mention the trigonometric IOWA operator, the exponential IOWA operator and the radical IOWA
operator.

The trigonometric IOWA is found when g1(t) = sin((p/2) t), g2(t) = cos((p/2) t) and g3(t) = tan((p/2) t) are the generating
functions. Thus, the trigonometric IOWA functions are:
QIOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼
2
p

arcsin
Xn

j¼1

wj sin
p
2

bj

� � !
; ð35Þ

QIOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼
2
p

arccos
Xn

j¼1

wj cos
p
2

bj

� � !
; ð36Þ
and
QIOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼
2
p

arctan
Xn

j¼1

wj tan
p
2

bj

� � !
: ð37Þ



Table 6
Ordering of the investments.

Ordering Ordering

AM
A1 = A3 A2 A4 = A5

QA

A3 A2 A5 A1 = A4

WA A3 = A5 A1 = A4 A2 IOWQA A3 A1 A5 A2 A4

OWA A1 A2 = A3 = A4 A5 IOWG A1 A3 A4 A2 A5

AOWA A3 A1 A2 A5 A4 Step-IOWA A1 = A2 = A5 A3 A4

IOWA A3 A1 A5 A2 = A4 Median-IOWA A5 A1 A4 A2 A3

AIOWA A2 A1 A3 = A4 A5 Olympic-IOWA A1 A5 A2 A4 A3

Table 2
Payoff matrix.

S1 S2 S3 S4 S5

A1 80 50 70 40 60
A2 60 30 80 80 40
A3 70 50 20 70 90
A4 50 40 60 60 70
A5 20 50 50 80 80

Table 3
Inducing variables.

S1 S2 S3 S4 S5

A1 17 10 15 22 12
A2 15 20 22 25 13
A3 24 18 20 22 15
A4 16 19 21 25 28
A5 18 12 26 23 21

Table 4
Aggregated results 1.

AM WA OWA AOWA IOWA AIOWA

A1 60 58 56 64 61 59
A2 58 56 53 63 54 62
A3 60 62 53 67 62 58
A4 56 58 53 59 54 58
A5 56 62 50 62 56 56

Table 5
Aggregated results 2.

QA IOWQA IOWG Step Median Olympic

A1 56.92 62.36 59.58 80 70 70
A2 61.48 57.44 50.41 80 30 56.6
A3 64.49 66.93 54.92 70 20 46.6
A4 56.92 54.77 53.19 60 60 53.3
A5 60.33 60.33 50.23 80 80 60
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The exponential IOWA is obtained by setting g(t) = ct, if c – 1, and g(t) = t, if c = 1. Then, the exponential IOWA operator is:
logc

Pn
j¼1wjcbj

� �
, if c – 1, and is equal to the ordinary IOWA if c = 1.

The radical IOWA is found by taking as the generating function g(t) = c1/t, for some parameter c > 0, c – 1. Thus, the radical
IOWA operator is
QIOWAðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ ¼ logc

Xn

j¼1

wjc1=bj

 ! !�1

: ð38Þ
Finally, note that it is also possible to study the properties and different particular cases of all these operators by analogy
with Sections 3 and 4.1.

6. Numerical example

In the following, we present an illustrative example of the new approach in a decision-making problem. We study an
investment selection problem where an investor is looking for an optimal investment. Note that other decision-making
applications could be developed along similar lines, such as the selection of financial products [19], human resource man-
agement, strategic decision-making, and product management.

We will analyze different particular cases of the IGOWA operator such as the AM, the WA, the OWA, the AOWA, the IOWA,
the AIOWA, the QM, the IOWG, the IOWQA, the step-IOWA (k=2), the median-IOWA and the olympic-IOWA. Note that with
this analysis, we obtain ‘‘optimal” choices that depend on the aggregation operator used. Then, we will see that each aggre-
gation operator may lead to different results and decisions. Obviously, the question, as in other decision-making problems, is
the selection of the aggregation operator. By now, the answer we can give is that each decision-maker will select one or more
aggregation operators that reflect his interests. Furthermore, depending on the aggregation operator used, his decisions will
be different. The main advantage of the IGOWA is that it includes a wide range of particular cases, reflecting different po-
tential factors to be considered in the decision-making problem. Thus, the decision-maker is able to consider a lot of possi-
bilities and select the aggregation operator that is in closest accordance with his interests.

Assume that an investor wants to invest some money in an enterprise in order to get the highest possible profits. Initially,
he considers five possible alternatives.

� A1 is a computer company.
� A2 is a chemical company.
� A3 is a food company.
� A4 is a car company.
� A5 is a TV company.

In order to evaluate these investments, the investor has brought together a group of experts. This group considers that the
key factor is the economic environment in the global economy. After careful analysis, they consider five possible situations
for the economic environment:S1 = negative growth rate, S2 = growth rate near 0, S3 = low growth rate, S4 = medium growth
rate, S5 = high growth rate. The expected results of the investment, depending on the situation Si that occurs and the alter-
native Ak that the investor chooses, are shown in Table 2.

In this problem, the experts assume the following weighting vector: W=(0.1,0.2,0.2,0.2,0.3). Due to the fact that the atti-
tudinal character is very complex because it involves the opinion of different members of the board of directors, the experts
use order-inducing variables to represent it. The results are shown in Table 3.

With this information, we can aggregate the expected results for each state of nature in order to make a decision. In Ta-
bles 4 and 5, we present different results obtained using different types of IGOWA operators.

If we establish an ordering of the alternatives, a typical situation if we want to consider more than one alternative, then
we get the results shown in Table 6. Note that the first alternative in each ordering is the optimal choice.

As we can see, depending on the aggregation operator used, the ordering of the investments may be different. Therefore,
the decision about which investment or investments to select may be also different.

7. Conclusions

In this paper, we have presented the IGOWA operator. It has the main characteristics of the GOWA and the IOWA oper-
ator. That is to say, it uses generalized means and order-inducing variables in the reordering process of the OWA operator.
Therefore, it can be seen as a generalization of the IOWA operator to use generalized means or as an extension of the GOWA
operator to use order-inducing variables in the reordering of the arguments. With the IGOWA operator, we have been able to
generalize a wide range of OWA operators, including all the cases of the IOWA and the GOWA operator, as well as many oth-
ers such as the IOWG and the IOWQA operators. Moreover, we have further generalized the IGOWA operator by using quasi-
arithmetic means. We thus obtained the Quasi-IOWA operator, which is a wider generalization that includes the IGOWA
operator along with many other useful operators as special cases.
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We also presented a numerical example of the new approach, in order to see the applicability of the IGOWA operator in a
financial decision-making problem. The main advantage of this aggregation operator is that it includes a wide range of spe-
cial cases; depending on the aggregation used, the results and decisions may be different. Thus, by using the IGOWA oper-
ator, we are able to assess all these situations in the same framework.

In future research, we expect to develop further extensions by adding new characteristics, such as the use of uncertain
information (represented in the form of interval numbers, fuzzy numbers, linguistic variables, etc). We will also consider
other decision-making problems, such as strategic decision-making and product management.
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