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1 INTRODUCTION: BACKGROUND AND MOTIVATION 11 Introduction: Background and MotivationThis paper is primarily a numerical study of certain properties of the family ofmaps of the complex planef(C;A)(z) = z2 + z + C +Az; (Model)where z is a complex dynamic (phase) variable, z its complex conjugate, and Cand A are complex parameters. In particular, we study the loci of the bifurca-tions of the �xed points present in this family: the saddle-node, period-doublingand Hopf bifurcations.For A = 0, the family is equivalent to the complex quadratic family, Q ~C :z 7! z2+ ~C, but for nonzero A, our family is non-complex-analytic. So it makesmore sense to view the whole family as maps of R2 rather than as maps ofC. This is done by considering as real variables both the real and imaginaryparts of z. Similarly, we view all complex parameters as two real parameters.Our family can then be considered as a four-real-parameter family of maps ofthe real plane. We prefer, however, for reasons discussed below, to consider itas a two-parameter family of two-parameter families of maps of the plane. Inthis context C codes the two real primary parameters and A codes the two realauxiliary parameters.Our model family is of interest for a variety of reasons. Not the least is thatit contains the family f(C;0) which is equivalent to the quadratic family, Q ~C . Seesubsection 1.1 for details on the equivalence. The family f(C;0) demonstrates afascinating richness on its own. This is evident in particular in the Mandelbrotset M in the C plane, de�ned as the set of C values for which the orbit ofthe critical point under f(C;0) stays bounded. Many facts about the intricatestructure of M are known. For example, the interior of M contains an in�nityof bulbs (hyperbolic components), each bulb corresponding to maps with anattracting periodic orbit of a given period. That the union of the bulbs gives thewhole interior of M is widely conjectured, but to our knowledge still unknown(Carleson and Gamelin [1993], for example). As such, a complete bifurcationstudy of our model family, which includes the complex quadratic family, isnecessarily impractical. Some restrictions are necessary in order to design amore practical study.One possibility is to restrict our auxiliary parameter A to be small and/orreal. Studies in this direction include Bielefeld, Sutherland, Tangerman andVeerman [1993] (r2�e2i�+ ~C), Drexler [1996] (z2+ ~C+�x), and Peckham [1998](z2 + ~C + �z). In all three studies, the parameter � is real, and for � = 1; 0; 0,respectively, each corresponding family is the quadratic family z2 + ~C.Our choice, however, was to restrict the types of bifurcations we considered.The natural �rst choice for us was to restrict to local �xed-point bifurcations:saddle-nodes, period doublings, and Hopf bifurcations. This drastic restrictionstill left us with an incredible number and complexity of phenomena to study.



1 INTRODUCTION: BACKGROUND AND MOTIVATION 2With regard to the Mandelbrot set, this restricts our attention to only its maincardioid. Inside this cardioid, each corresponding map has an attracting �xedpoint. On the cardioid itself, each corresponding map has a �xed point withneutral linear stability. As A is perturbed from zero, the cardioid undergoesan interesting evolution, largely as the Hopf bifurcation curve of the perturbedfamilies. The bifurcation evolution (as A varies from zero) in a neighborhoodof each C value on the cardioid is fascinating, but by restricting to only �xed-point phenomena, two points are distinguished from the rest: the cusp point atC = 0 ( ~C = 14 in z2 + ~C), which we call the saddle-node point in this paper,and the point halfway around the cardioid at C = �1 ( ~C = � 34 in z2 + ~C),called the period-doubling point. These two points are distinguished because�xed-point bifurcations grow from them as A is perturbed from zero: a �xed-point saddle-node curve evolves from the saddle-node point and a �xed-pointperiod-doubling curve evolves from the other (period-doubling) point. It is theinteraction of these three bifurcation curves: saddle-node, period-doubling, andHopf, that occupies most of this paper.Interest in the saddle-node point in particular led to the form of our modelfamily: z+z2+C+Az is obtained from z2+C+Az by translating the saddle-nodepoint (in both C and z) to the origin. The Az perturbing term was chosen as thesimplest one which breaks the complex analyticity of the family. The complexparameter A was deemed necessary because our early numerical studies showedthat several bifurcation scenarios which were obtained for complex values of Awere not obtainable for real values of A. This was true even when we consideredphenomena which were restricted to a neighborhood of the saddle-node point.That is, the numerics indicated the real codimension of the cusp point was atleast two (in the auxiliary parameter space). This is also consistent with thefact that the linearization at the saddle-node �xed point, being the identity, is ofcodimension four (in the total parameter space { primary plus auxiliary). Thusa four-total-parameter unfolding, which we have via the complex parameters Cand A, was for us, necessary.Separating our parameters as primary vs. auxiliary coincides with the treat-ment adopted by Golubitsky and Schae�er [1985], where they identify a singleprimary bifurcation parameter and view all other parameters as auxiliary pa-rameters. In our work it seems more natural to designate two primary parame-ters. This is largely because of the original motivation: studying maps which arenon-complex-analytic perturbations of one-complex-parameter families, such asz2 + ~C. The original complex parameter ( ~C in z2 + ~C) gives a natural choicefor the two real primary parameters.The general goal of the study of our family f(C;A) is to understand how bifur-cation diagrams in the C plane change as the auxiliary parameter A is varied.More precisely, we would like to divide the A plane into equivalence classes,where equivalence of two A values Â and ~A is de�ned by having equivalent cor-responding C plane bifurcation diagrams. There are, however, many ways to



1 INTRODUCTION: BACKGROUND AND MOTIVATION 3de�ne equivalence of C plane bifurcation diagrams. Our notion of equivalencewith respect to speci�ed bifurcation phenomena is further described at the begin-ning of section 2. The loci we deal with are �xed-point saddle-nodes, �xed-pointperiod-doublings, and �xed-point (extended) Hopf bifurcations. We �rst treateach of these sets individually, then together. There is a surprising amount ofcomplexity added to the study when loci are grouped together.What we believe to be new in this paper are the use of a complex ratherthan real auxiliary parameter, the idea of equivalence with respect to speci�edbifurcation loci, the numerical results for our family, including a global divisionof the auxiliary parameter space (we consider all A values in the plane), theclassi�cation of types of bifurcations present in more general families of two-real-parameter-families of maps of the plane, and the relationship between certaincodimension-one phenomena in the space of two-real-parameter-families of mapsof the plane to codimension-three phenomena in the space of maps of the plane.Some of the continuation techniques may also be new.The rest of the paper is organized as follows. In the rest of the introduction,we relate our model to the quadratic family (sec 1.1), and then present a fewof the results of a previous study [Peckham, 1998] to better explain the settingand the context of the current study (sec 1.2). In sec 2, we present our casestudy of the model family. We derive explicit formulas for our three bifurcationloci, and we use these formulas to determine certain bifurcation curves in the Aplane. Other A-plane bifurcation curves are located and computed numerically.In sec 3 we classify the bifurcations which are codimension-one in the auxiliaryparameter space. In sec 4 we comment on the continuation algorithms used tocompute the bifurcation diagrams in the paper.1.1 The complex quadratic familyNote that when A = 0 our family f(C;A)(z) = z2 + z + C + Az, is equiva-lent (conjugate) to what is usually referred to as the complex quadratic familyQ( ~C;0)(w) = w2 + ~C via a change of parameter: f(C;0) ' Q(C+1=4;0), wherethe equivalence is given by the translation w = z + 12 . The form z + z2 + Cis more suited to our purposes because it moves a primary point of interest,the \saddle-node point" of the complex quadratic family, to the origin in bothvariables z and C.Furthermore, when either quadratic family, f(C;0) orQ ~C;0), is perturbed withthe simplest possible non-complex-analytic term, Az (resp. Aw), the resultingfamilies f(C;A)(z) and Q( ~C;A)(w) � w2 + ~C + Aw, are conjugate, again by thetranslation w = h(z) = z + 12 . That is, h � f(C;A) = Q(C+ 14�A2 ;A) � h. Thus,for any �xed A, the geometry of the C plane bifurcation sets for the f(C;A) is atranslation of the bifurcation sets for Q( ~C;A).



1 INTRODUCTION: BACKGROUND AND MOTIVATION 41.2 Points to regionsWe now recall a few of the results of previous work [Peckham, 1998] to betterdescribe the setting and context of the current study. More complete expla-nations are included in that reference. Figure 1 summarizes the results of thatwork. Figures 1a and 1b show partial C-plane bifurcation diagrams for the fam-ily Q(C;A) for A = 0 and A = �0:1, respectively. By the above subsection, thesebifurcation diagrams are translates of those for the family f(C;A)(z) studied inthis paper.Place Figure 1 near here.The primary C-plane bifurcation diagram for A = 0 are the boundaries of thebulbs (i.e., hyperbolic components) of the Mandlebrot set. When considered asa two-real-parameter family of maps of the plane, the bulb boundaries are Hopfbifurcation curves. Some of these bulb boundaries are shown in Fig. 1a. WhenA 6= 0, these bulb boundaries evolve into much more interesting bifurcationscenarios. More speci�cally, certain bifurcation points in the Mandlebrot set(the cusp H0=1 of the main cardioid and the contact points between bulbs suchas H1=2) evolve into bifurcation regions. An example, with A = �0:1, is shownin Fig. 1b. All curves shown are local periodic-point bifurcations: saddle-nodes,period-doublings, or Hopfs. They are determined by the following equations,respectively, where Q ~C;A) is the four-real-parameter family of maps of the planede�ned above in sec 1.1 (interpreting the complex plane as equivalent to R2)and DQ( ~C;A) is its two-by-two Jacobian derivative matrix. Recall that A is �xedin each part of Fig. 1. Qn( ~C;A)(x; y)� (x; y) = 01� tr(DQn( ~C;A)(x; y)) + det(DQn( ~C;A)(x; y)) = 0 (SNn)Qn( ~C;A)(x; y)� (x; y) = 01 + tr(DQn( ~C;A)(x; y)) + det(DQn( ~C;A)(x; y)) = 0 (PDn)8><>: Qn( ~C;A)(x; y)� (x; y) = 0det(DQn( ~C;A)(x; y))� 1 = 0) (EHn)j tr(DQn( ~C;A)(x; y))j < 2: (Hn)The �rst vector equation for all three loci is equivalent to two scalar equationsand requires (x; y) to be a period-n point ofQ( ~C;A). The remaining equations arerestrictions on the eigenvalues. They are obtained by recalling that an eigenvalue� of a 2 � 2 matrix B satis�es �2 � tr(B)� + det(B) = 0. Thus the period-nsaddle-node (SNn) requires an eigenvalue of one for DQ( ~C;A), the period-nperiod-doubling (PDn) requires an eigenvalue of negative one for DQ( ~C;A), andthe period-n Hopf (Hn) requiresDQ( ~C;A) to have complex conjugate eigenvalues



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 5on the unit circle. Nondegeneracy conditions which would ensure nodegeneratebifurcations are not considered here. Note that the Hopf condition can bereformulated by requiring the product of the two eigenvalues to be one andthe trace to be less than two in magnitude. Without the trace restriction, theproduct of the eigenvalues equalling one would extend the true Hopf set to alsoinclude nonbifurcation points which are saddles with eigenvalues such as 2 and1=2. The label (EHn) stands for this period-n Extended Hopf locus. It is thealgebraic closure of the Hopf locus.As explained, for example in Peckham [1998], saddle-node and period-doublingloci are points in generic one-complex-parameter families of complex analyticmaps of the complex plane, but curves in generic two-real-parameter families ofanalytic (or C1 or Ck) maps of the real plane. One of the primary di�erencesbetween Fig. 1a and Fig. 1b is the presence in the latter �gure of saddle-nodeand period-doubling curves. For example, there is a circle of �xed-point period-doubling points (PD1) in Fig. 1b which has grown out of the period-doublingpoint (the contact point H1=2 between the main cardioid and the period-twobulb in Fig. 1a). Similarly, there is a triangular curve of saddle-node points(SN1) in Fig. 1b near where the cusp, H0=1 of Fig. 1a's main cardioid was. (Thetriangular saddle-node curve is barely visible, but if it were enlarged, it wouldbe topologically equivalent to the triangular saddle-node curve and nearby ex-tended Hopf curve displayed in C-plane 1 in Fig. 9b.) All other period-n bulbsin Fig. 1b have been deformed from Fig. 1a, and the bulb contact points of 1ahave evolved into period-n saddle-node curves, SNn. Details are in Peckham[1998].In one sense this paper narrows the focus of Peckham [1998] by restrictingattention to only the �xed-point bifurcations. That is, of the bifurcations inFig. 1a, this paper deals only with the �xed-point (extended) Hopf curve EH1,the saddle-node point H0=1, and the period-doubling point H1=2; of the bifur-cations in Fig. 1b, this paper deals only with the �xed-point extended Hopfcurve EH1, the �xed-point period-doubling curve PD1, and the �xed-pointsaddle-node curve SN1. On the other hand, this restriction to local �xed-pointbifurcations allows us to more easily broaden the consideration of the auxiliaryparameter: we consider all values of the complex auxiliary parameter A ratherthan merely values which are real and close to A = 0.2 Equivalence w.r.t. speci�ed bifurcation lociIn this section, we study the model family of maps f(C;A) : R2 ! R2, recopiedfrom the Introduction: f(C;A)(z) = z2 + z + C +Az:We describe the evolution of the three principal local �xed-point C-planebifurcation loci: saddle-nodes, period-doublings, and (extended) Hopfs as the



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 6auxiliary parameter A is varied. Of course restricting to these three bifurca-tions ignores many bifurcation aspects of the problem, but as we shall see, theinformation contained in these sets includes much more than one might at �rstsuspect.Note that any one of our bifurcation points is really associated to a singlepoint in the six-real-dimensional space coded by (z; C;A). It is the ways inwhich, for �xed values of the auxiliary parameter A, these bifurcation pointsproject to the C parameter plane that we wish to now classify. We will viewtwo A values as equivalent with respect to a speci�c collection of bifurcation lociif the collection of bifurcation loci projected to the C plane \looks the same."The following de�nition makes \looks the same" more precise, although weuse it only as a guide for our bifurcation study. We don't actually prove thatbifurcation diagrams which we view as equivalent are, in fact, equivalent.De�nition 2.1 Let g(C;A)(x) be an k+ l parameter family of maps of Rn whereC 2 Rk, A 2 Rl, and x 2 Rn. Assume C codes the primary parametersand A codes the auxiliary parameters. Two auxiliary parameters Â and ~A areequivalent with respect to a speci�c collection of bifurcation loci if there is adi�eomorphism h : Rk ! Rk which maps the C space for Â to the C spacefor ~A and maps the corresponding bifurcation loci in the C plane for Â to theirrespective counterparts in the C plane for ~A.We remark that our de�nition of equivalence is of course only one of manypossible notions one might employ. At one end of the spectrum would be theestablishment of a di�eomorphism h for which f(C;Â) and f(h(C); ~A) are topo-logically conjugate. That is, f(C;Â)(z) = ��1C � f(h(C); ~A) � �C(z), with �C atwo-real-parameter family of homeomorphisms of R2 which varies at least con-tinuously with C. Of course, establishing topological conjugacy for even onepair of maps of the plane is in general a di�cult problem, so doing this for pairsof whole two-parameter families of maps, except in special cases, is not verypractical.Note that if two families f(C;Â) and f(h(C); ~A) were shown to be topologicallyconjugate, then the di�eomorphism h would necessarily map bifurcation setsin the C plane for Â to corresponding bifurcation sets in the C plane for ~A.For example, the set of �xed-point saddle-node bifurcations in the C plane forÂ would map to the �xed-point saddle-node bifurcations in the C plane for ~A.One way to weaken the equivalence de�ned by topological conjugacy would be tomerely require that h map all corresponding bifurcation sets to each other, butnot require that the corresponding maps, f(C;Â) and f(h(C); ~A), be topologicallyconjugate.Since a typical family has an in�nity of bifurcation curves: saddle-nodes,period-doublings and Hopf bifurcations for all periods, not to mention a multi-tude of global bifurcations, requiring h to map all corresponding bifurcation setsto each other is still an impractical requirement. Instead, we restrict attention



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 7to a speci�ed set of bifurcation loci. Note that the larger the set of bifurcationloci speci�ed, the �ner the division of the A plane into equivalence classes.Our de�nition requires h to be a di�eomorphism rather than a homeomor-phism because we want cusps in the primary parameter plane (the C plane) tobe preserved. The smoothness of h should in general match the smoothness ofthe maps under consideration. Orientation preservation for h may desirable insome cases, but we do not require it in our de�nition. The idea of the de�ni-tion is motivated by wanting g(C;Â) and g(h(C); ~A) to have the same number andstability of period-n points when the speci�ed collection of bifurcation loci in-cludes all three local period-n bifurcations: saddle-nodes, period-doublings andHopfs. This correspondence is not guaranteed in general by the de�nition, butis satis�ed when Â and ~A are in the same connected component of equivalenceclasses of the auxiliary parameter space.In our model family, the dimensions of the phase space (n), the primaryparameter space (k), and the auxiliary space (l) are all two. Note that withthis heierarchical approach for four real parameters coded by the two complexparameters C and A, curves such as the saddle-node, period-doubling and Hopfbifurcations in the C plane will describe bifurcations which are codimension-onein the traditional sense (with no distinguished parameters), while curves in the Aplane will describe codimension-one phenomena in the space of two-parameterfamilies of maps (that is, codimension-one in the auxiliary parameter space).These codimension-one phenomena in two-parameter families, when they cor-respond to traditional bifurcations, are typically codimension-three phenomenain the traditional sense.Because the quadratic family admits explicit calculation, we provide manyexplicit formulas for bifurcation sets in the this section. In particular, we pro-vide both the equations de�ning our bifurcation sets and explicit parametricrepresentations of their solutions.We �rst treat each bifurcation locus separately; then we treat them as agroup. Speci�cally, we discuss A-plane bifurcation diagrams for projections ofthe following loci to the C-plane: Saddle-node (sec. 2.1), Period-doubling (sec2.2), Extended Hopf (sec 2.3), Hopf (sec 2.4), Saddle-node{Period-doubling{Extended Hopf (sec 2.5), and Saddle-node{Period-doubling{Hopf (sec 2.6). Insec 2.7, we \zoom in" on a special point in the Saddle-node{Period-doubling{Hopf A plane: the local \saddle-node" bifurcation.Preliminary calculations. Since all of our bifurcations involve �xed points,we �rst describe that locus. The map f(C;A)(z) = z + z2 + C + Az has a �xedpoint z if ~f(C;A)(z) := z2 + C +Az = 0; (FP )The �xed points in R2�R2�R2 can thus be parametrized by (A; z) 2 R2�R2:(z; A) 7! (z; C;A) = (z;�z2 �Az;A); (FPpar)



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 8and so de�nes a 4-dimensional submanifold of R2 �R2 �R2.For each value of A, the �xed point set is a 2-dimensional manifold (surface),parametrized by z. For A = 0 the projection of this surface from (z; C) spaceto the C plane is two-to-one, except at C = 0 where it is one-to-one. For any�xed nonzero A, the projection of the surface to the C-plane is two- three- orfour-to-one. We will see in sec 2.1 that for nonzero A there is a triangulardeltoid curve of saddle-nodes in the C plane. The projection of the �xed-pointsurface is four-to-one for C values inside the deltoid, two-to-one outside thedeltoid, two-to-one at the three cusp points of the deltoid, and three-to-one onthe rest of the deltoid. This allows many intersections of loci to be introducedwhen the loci are projected from the four-real-dimensional (z; C) space to thetwo-real-dimensional C plane, leading to numerous distinct A-plane equivalenceclasses.To describe the three bifurcation sets, it is useful to have the expression forthe di�erential of f(C;A):Df(C;A) = � 2x+ 1 +A1 �2y +A22y +A2 2x+ 1�A1 � ;where z = x+ iy, A = A1+ iA2 and C = C1+ iC2. This is most easily obtainedby writing our map f(C;A) in rectangular coordinates:(x; y) 7! (x+ x2 � y2 + C1 +A1x+ A2y; y + 2xy + C2 +A2x�A1y)and computing the Jacobian derivative matrix. We will also use z = rzei�z andA = aei�A .2.1 Saddle-node locus.A �xed point of f(C;A) with an eigenvalue of one is generally referred to as asaddle-node point, and corresponds to a degenerate zero of ~f(C;A). Such pointssatisfy � z2 + C +Az = 04jzj2 � jAj2 = 0: (SN)The �rst equation ensures that z is a �xed point of f(C;A). The second ensures aneigenvalue of one; it is derived from setting 1� tr(Df(C;A)) + det(Df(C;A)) = 0.Compare (SN) to (SN1) in sec 1.2. We ignore any conditions which wouldensure the nondegeneracy of the saddle-node bifucation.For A = 0, the only saddle-node point is at (z; C) = (0; 0). If A 6= 0, thesecond equation describes a circle in the z plane with center at the origin andradius jAj=2. See the projection to the z plane in Fig. 2. It can be parametrizedby �z 2 [0; 2�) ' S. In the full phase � parameter space the saddle-node set isparametrized by (A; �z) 2 R2 � S, identifying all angles �z at A = 0:(A; �z) 7! (z; C;A) = ( jAj2 ei�z ;�jAj24 e2i�z �A jAj2 e�i�z ; A): (SNpar)



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 9Place Figure 2 near here.Place Figure 3 near here.The saddle-node curve projected to the C plane is equivalent for all nonzerovalues of A. It is a hypocycloid of three cusps. Its size depends on jAj and itsrotational orientation depends on arg(A). The only distinguished A value, asillustrated in Fig. 3a, is thus the origin. For all nonzero values of A, we can �nda di�eomorphism h which maps the saddle-node set for f(C;1) (the arbitrarilychosen equivalence class representative) to the saddle-node set for f(C;A). Infact, the di�eomorphism can be explicitly expressed ash(C) = a2Ce 2i�A3 ;where A in polar coordinates is aei�A These statements can be veri�ed by con-sidering the parametric expression SNpar above. It indicates that, for any �xedvalue of A, the projection of the saddle-node set to the C parameter plane isC = �jAj24 e2i�z �A jAj2 e�i�z ;�z 2 [0; 2�), which is a classical parametrization of a deltoid curve (a hypocy-cloid of 3 cusps). Note that the full saddle-node set as determined by (SN) isinvariant under the two substitutions(z; C;A) 7! (ze i�3 ; Ce 2i�3 ; Aei�); � 2 S;and (z; C;A) 7! (azei�; a2Ce2i�; aAe3i�); a 2 [0;1):The �rst invariance implies that as the origin in the A plane is circled once, thesaddle-node deltoid makes 2=3 of a complete rotation in the C plane. This isillustrated in Fig. 3b, C planes 2 and 3. The corresponding C plane �gure hasrotated by 1=12 of a full rotation while the argument of A has changed by 1=8of a full rotation. Together, the two invariant substitutions imply the formulagiven above for h.Saddle-node Cusps. The two invariances above, along with the observationthat for A real and positive (A = jAj) a cusp occurs at �z = 0, lead to the set ofsaddle-node cusps being a topological disk, parametrized by (a; �z) 2 [0;1)�S,identifying all angles �z at a = 0:(a; �z) 7! (aei�z2 ; �3a2e2i�z4 ; ae3i�z) (SNcusppar)



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 10Note that there are three cusps in the C plane for each �xed nonzero A. Sincethe cusps persist as the auxiliary parameter A is varied, they are classi�ed ascodimension-zero in the auxiliary parameter space. This is consistent with thetraditional no-distinguished-parameter classi�cation of a cusp as a codimension-two phenomenon: an eigenvalue one and a higher order degeneracy. We will seelater that, in contrast, cusps on the period-doubling and Extended Hopf curvesare codimension-one in the auxiliary parameter space.2.2 Period-doubling locus.A �xed point of a map f : R2 ! R2 is a period doubling point if one of theeigenvalues of Df(C;A) is equal to �1. Thus we de�ne the period doubling locusto be, � z2 + C +Az = 04jz + 1j2 � jAj2 = 0: (PD)Compare (PD) to (PD1) in sec 1.2. The second equation, derived from 1 +tr(Df(C;A)) + det(Df(C;A)) = 0, ensures an eigenvalue of negative one. Nonde-generacy conditions are not considered. The second equation implies that foreach �xed value of A, the period-doubling points project to a circle in the zplane with center �1 and radius jAj=2, as illustrated in Fig. 2. Labelling theangle of this circle �D 2 [0; 2�) ' S, we can parametrically represent thesepoints for (A; �D) 2 R2 � S, identifying all angles �D at A = 0, as:(A; �D) 7! (z; C;A) = (�1+ jAj2 ei�D ;�(�1+ jAj2 ei�D )2�A(�1+ jAj2 e�i�D); A):(PDpar)Place Figure 4 near here.The parametrization implies that for each �xed nonzero value of A, theperiod-doubling set in the four-real-dimensional (z; C) space is a topologicalcircle. This topological circle always projects to a geometric circle in the z plane.The projection to the C plane, however, varies greatly with A. It projects as atopological circle for small values of A, but for larger values of A the projectioncan change its topology at points where the curve either develops a cusp, ora self tangency. The A-plane bifurcation diagram and representative C planesare shown in Fig. 4. There is one curve in the A plane corresponding to selftangent projections of the PD curve (C planes 6,10), and a line in the A planecorresponding to PD curves with cusps (C planes, 2,8,9). The two endpoints ofthe self tangent projection curve, where the curve terminates on the PD cuspline, are \rhomboid" cusp points | cusp points with an additional higher orderdegeneracy (C plane 8). The origin is distinguished because the period-doublinglocus has shrunk to a point (C plane 4). This leaves us with three generic regions,



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 11distinguished by the number of self intersections of the period-doubling locus:0 (C planes 3,5), 1 (C plane 1), 2 (C plane 7).Remarks. The line of period-doubling cusps in the A plane indicates thatthis set is codimension-one in the auxiliary parameter space, so it is quite di�er-ent from the saddle-node cusps, which were codimension-zero in the auxiliaryparameter space. It turns out that the period-doubling cusps correspond to atraditional codimension-three local bifurcation: a one-negative-one eigenvaluepoint (ONO) with a speci�c degeneracy in the quadratic terms of its normalform. Because of this, we can compute it's formula directly. We do so below insec 3.The curve of period-doubling self tangencies was located and computed nu-merically. It has no corresponding traditional bifurcation since it involves twoperiod-doubling bifurcations which are located at two distinct z values; theyjust happen to also have the same C value, so when projected to the C plane,they \interact."2.3 Extended Hopf locus.A �xed point of a map f : R2 ! R2 is a Hopf point if the eigenvalues lie on theunit circle, that is, if det(Df(C;A)) = 1 and j trDf(C;A)j < 2: These equationsbecome, 8<: z2 + C +Az = 04jz + 1=2j2 = jAj2 + 1� (EH)jx+ 1=2j < 12 : (H)As in the Introduction, we call the locus without the inequality the ExtendedHopf locus. Compare (H) and (EH) here to (H1) and (EH1) in sec 1.2. For�xed A, the Extended Hopf set also projects to a circle in the phase plane. Ithas center � 12 and radius pjAj2+12 , as illustrated in Fig. 2. It is most naturallyparametrized by the angle in this circle, which we label �H . Its parametricrepresentation, for (A; �H) 2 R2 � S, is (A; �H) 7! (z; C;A) with8<: z = (� 12 + pjAj2+12 ei�H ;C = �(� 12 + pjAj2+12 ei�H )2 �A(� 12 + pjAj2+12 e�i�H ):(EHpar; Hpar)The parametric formulas are identical for both the Extended Hopf and true Hopfsets, but the parameter �H is restricted to two arcs on the circle for the trueHopf set: �H 2 (�TB ; �� �TB)[ (�+ �TB ; 2�� �TB), where �TB = arctan(jAj).More details are in sec 2.4.Place Figure 5 near here.



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 12The bifurcation diagram and corresponding C planes are shown in Fig. 5.There is one curve each in the A plane corresponding to self tangent projec-tions of the EH curve (C planes 6,10,15), cusps on the EH curve (C planes2,8,12,13,14), and triple intersection of EH points (C plane 4). Note that the Aplane's EH cusp curve goes through the origin. This is consistent with the factthat that at A = 0 the EH curve is the main cardioid of the Mandlebrot set (Cplane 8), which does include a cusp. There are three labelled codimension-twopoints: at A values labelled by numbers 2, 6, and 12. At number 2, the corre-sponding EH curve in the C plane has two distinct cusps; at number 6, the twopoints of the EH curve that are self tangent also have the same curvature; atnumber 12, the EH curve has a cusp that also projects to another point on theEH curve. The bifurcation curves divide the A plane into six generic regions,partially distinguished by the number of self intersections: 0 (C plane 9), 1 (Cplanes 1,7), 2 (C plane 11), and 3 (C planes 3,4). C planes 1 and 7 can bedistinguished by the winding number as one travels around the EH locus, butthe winding number does not distinguish between C planes 3 and 5.Remarks. Similar to the period-doubling cusp curve, the A plane's EH cuspcurve corresponds (except at A = 0) to a traditional codimension-three bifur-cation: a Takens-Bogdanov point with a speci�c degeneracy in the quadraticterms of its normal form. More details about this degeneracy are discussed be-low in sec 3. The other two codimension-one bifurcation curves, the self tangentprojections and the triple projection intersections, do not correspond to tradi-tional codimension-three bifurcations. The former involves two EH points withdistinct z values; the latter involves three EH points with distinct z values.2.4 Hopf locus.The equations for Hopf points were already given by (H) in the previous subsec-tion. The equivalence classes for true Hopf bifurcations are, of course, relatedto the equivalence classes for the Extended Hopf bifurcations, since Hopf pointsare the Extended Hopf points that also satisfy the inequality in (H) above. Inorder to identify which Extended Hopf points are true Hopf points, we must�rst investigate intersections of our three �xed-point bifurcation loci.Pairwise intersections of bifurcation loci. The intersections of the threebifurcation loci is most easily seen in their projections to the phase plane. Allthree loci are circles and are pictured in Fig. 2 for jAj � 0:5. The only feature ofFig. 2 which depends on the argument of A is the placement of the three pointson the saddle-node curve which are cusp points when projected to the C-plane.Since the �xed points are parametrized by z and A (recall eqn. (FPpar)before sec 2.1), for any �xed A value intersections in the projection to the zplane will in fact be true intersections of (z; C;A) 2 R6. It is obvious from the



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 13�gures that intersections of the saddle-node and period-doubling curves can onlyoccur if jAj � 1. The x value at any intersection is � 12 . A short calculationshows that an intersection of the saddle-node set and the Hopf set requiresx = 0, and the intersection of the period-doubling set with the Hopf set requiresx = �1. Using � = �1 leads to the following parametrizations of simultaneoussolutions.The intersections of the saddle-node locus with the Extended Hopf locusare parametrically represented for (A; �) 2 R2 � Z2, with (0; 1) and (0;�1)identi�ed, as:(A; �) 7! (z; C;A) = (� jAji2 ; jAj24 + �AjAji2 ; A): (TBpar)These points must have both eigenvalues equal to one, and are traditionallycalled Takens-Bogdanov points (TB).The intersections of the period-doubling locus with the Extended Hopf locusare parametrically represented for (A; �) 2 R2 � Z2, with (0; 1) and (0;�1)identi�ed, as: (A; �) 7! (z; C;A) =(�1 + � jAji2 ;�(�1 + � jAji2 )2 �A(�1� � jAji2 ); A): (DNOpar)These points must have both eigenvalues equal to negative one, and are calleddouble negative one points (DNO).The intersections of the saddle-node locus with the period-doubling locus areparametrically represented for (A; �) 2 (R2nfA21 + A22 < 1g) � Z2, with (A; 1)and (A;�1) identi�ed whenever jAj = 1, as:(A; �) 7! (z; C;A) =(� 12 + �pjAj2�1i2 ;�(� 12 + �pjAj2�1i2 )2 �A(� 12 � �pjAj2�1i2 ); A);(ONOpar)These points must have one eigenvalue of one and the other of negative one,and are called one-negative-one points (ONO).Hopf vs. Extended Hopf points. It is now convenient to separate theExtended Hopf set into true Hopf bifurcation points (de�ned by (H) above) andits complement in the Extended Hopf set, the saddle points with real eigenvalueswhose product is equal to one. The inequality in (H), is easy to visualize inFigure 2. Thus the Hopf points are the Extended Hopf points which lie in thestrip �1 < x < 0 in the z plane. The two Takens-Bogdanov points, TB1 andTB2, and the two double negative one points, DNO1 and DNO2, mark thedivisions between the Extended Hopf points which are true Hopfs points andthose that are not true Hopf points. If jAj were greater than one, the period-doubling and saddle-node curves would intersect at two points we would labelONO1 and ONO2.



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 14As one traverses the EH circle counterclockwise from the TB1, the eigenval-ues of the corresponding �xed point for the original map start both at +1. Asthe circle is followed across the strip �1 < x < 0, the eigenvalues separate, bothremaining on the unit circle and each being the complex conjugate of the other.The eigenvalues arrive together at negative one as z arrives at DNO1. Continu-ing toward DNO2, the eigenvalues separate, but now are real and negative (andof course still satisfying the property that their eigenvalues multiply to one).They obtain a maximum separation at some point, then reverse direction backtoward each other, and meet again at negative one as z arrives at DNO2. Theother half of the trip around the Extended Hopf circle is similar. The eigenvaluesonce again separate and run around opposite sides of the unit circle and meetat one when z arrives at TB2. They then separate as real positive eigenvalues,reach a maximum separation, head back toward each other, and meet again atone, as z returns to its starting point at TB1.The parametric representation of the true Hopf points is the same as forthe Extended Hopf points, except that the argument �H is restricted to traceout only the part of the circle that projects to the strip �1 < x < 0: �H 2(�TB ; � � �TB) [ (� + �TB ; 2� � �TB), where �TB = arctan(jAj).Back to the Hopf locus. We now know that the true Hopf locus for any �xed(nonzero) A value is a pair of curve segments, each segment having a Takens-Bogdanov point at one end and a double-negative-one point at the other. TheA-plane bifurcation diagram and corresponding Hopf curves in the C plane areshown in Fig. 6. In going from Fig. 5 to Fig. 6, we have eliminated partsof the Extended Hopf A-plane bifurcation curves that involve saddle points(rather than true Hopf points). None of the EH-EH-EH triple intersectioncurve survived; none of the EH cusp curve survived; only a small portion of theEH-EH tangency curve survived to become the H-H tangency curve: from Aplane location 11 to 7 and its complex conjugate in the upper half plane. Butwe added curves where the endpoints of the Hopf curves project to the sameC value as some other Hopf point (TB-H-projection-intersections (C planes5, 9,11,12) and DNO-H-projection-intersections (C planes 2,12)). Most of thephase portraits corresponding to the numbered points on A-plane bifurcationcurves actually correspond to A values which are codimension-two points in theauxiliary parameter space: 2 { C plane intersection of a a DNO point withanother DNO point (instead of just a DNO point with a Hopf point), 5 { Cplane intersections of two separate TB points with Hopf points, 7 { C planeself tangent intersection with curvature matching as well (same as C plane 6in Fig. 5), 11 { C plane intersection of a TB point with a Hopf point with thefurther degeneracy that it is an endpoint of a curve of C plane self tangenciesof Hopf points, and 12 { C plane intersection of a TB point and a DNO point.The division of the A plane leaves us with six generic regions. We list themaccording to how many intersections there are of the two Hopf segments: 0



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 15(C planes 1,10), 1 (C planes 3,8), 2 (C plane 4 and its conjugate), 3 (C plane6). C planes 1 and 10 are equivalent; C planes 3 and 8 are distinguished bythe orientation of the crossing, assuming that the DNO endpoints of the Hopfsegments are mapped to DNO endpoints and TB endpoints are mapped to TBendpoints.Place Figure 6 near here.2.5 Saddle-node, Period-doubling, and Extended Hopf locitogether (SN-PD-EH).We now view equivalence classes of C-plane bifurcation diagrams for diagramswhich include all three bifurcation loci at once. Not surprisingly, the A-planedivisions are much �ner than when each locus was considered individually. Theresult, along with only a few of the representative C-plane bifurcation diagrams,is shown in Fig. 7. There are thirty-three distinct regions, numbered in Fig. 7a,along the real A axis. Not numbered on the diagram are 300 regions we countedin the upper half A plane and 300 \conjugate" regions in the lower half plane.This gives 633 distinct A-plane regions. This doesn't count points on the bi-furcation curves. To get a feel for the information contained in the bifurcationdiagram, an enlargement of path points 15 through 24 is shown in 7b, withcorresponding C planes in Fig. 7c.Between A values numbered 15 and 16, the left-hand saddle-node cusppushes through the right-hand part of the period-doubling (curve s, SNcusp-PD projection intersections). Between 16 and 17, the part of the EH curvebetween the two Takens-Bogdanov points pushes through the right-hand partof the period-doubling curve (curve o, EH-PD tangent projection intersections).Between 17 and 18, the left-hand saddle-node cusp pushes through the left-handpart of the Extended Hopf curve (curve j, SNcusp-EH projection intersections).Between 18 and 19, the two Takens-Bogdanov points cross from outside theperiod-doubling curve to inside it (curves v and v, TB-PD projection intersec-tions). Between 19 and 20, three curves are crossed simultaneously on the realA axis at A=1. The left hand saddle-node cusp pushes through the left-handpart of the period-doubling curve (a di�erent part of the same SNcusp-PD curves which is between A values 15 and 16); two parts of the Extended Hopf curvebecome tangent and push through (curve d, EH-EH tangent projections); anda pair of one-negative-one points is born (curve t, double ONO points). ByFig. 20 the two ONO points have separated from the real C axis where theywere born at A=1 and have travelled | one up and one down | along theright-hand side of the saddle-node deltoid toward the top and bottom cuspsrespectively of the deltoid). Between 20 and 21, the left-hand parts of the Ex-tended Hopf and period-doubling curves have become tangent (curve l, PD-EHtangent projections). The bifurcation between 21 and 22 is di�cult to see: the



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 16two one-negative-one points are to the right of the right-hand part of the Ex-tended Hopf curve in C plane 21, but to the left of the right-hand part of theExtended Hopf curve in C plane 22. In between are curves w and w, ONO-EHprojection intersections. Between 22 and 23, the right-hand part of the period-doubling curve has pushed through the right-hand part of the Extended Hopfcurve, crossing curve 0, the PD-EH tangent projection. Between 23 and 24, weagain cross three curves simultaneously at A=2. Two of them are part of thesame SNcusp-PD intersection curve labelled q; this bifurcation is di�cult to seeat the scale of Fig. 7c, but the two one-negative-one points are on the right-handedge of the saddle-node deltoid in C plane 23, but on the top and bottom edges,respectively, in C plane 24. The third bifurcation, corresponding to A valuesfor which two parts of the C-plane period-doubling curve are tangent, is easilyunderstood by comparing the period-doubling curves in C planes 23 and 24.We realize that more regions would need to be enlarged and a completeset of C-plane bifurcation diagrams provided to fully explain the bifurcations.But a full explanation is not our goal. We have merely tried to illustrate thekinds of bifurcations and complexity of bifurcation diagrams one would expectto encounter in such a study. Those interested in more details are encouragedto contact the authors.Place Figure 7 near here.2.6 Saddle-node, Period-doubling, and Hopf loci together(SN-PD-H).This combination of three bifurcation loci is possibly the one of most relevancefor understanding the dynamics of our model family. This is because, for thisspeci�ed collection of bifurcation loci, families which have equivalent auxiliaryparameters A, have the same qualitative dependence on the primary parameterC with respect to the �xed points. That is, if Â and ~A are in the same connectedequivalence class component with respect to �xed-point saddle-nodes, period-doublings and Hopfs, then there is a di�eomorphism h with maps the C-planebifurcation loci for A = Â to the bifurcation loci for A = ~A, and each pair ofindividual maps f(C;Â) and f(h(C); ~A) has the same number and correspondingstability of the respective �xed points.Place Figure 8 near here.It turns out that the SN-PD-H bifurcation diagram is obtained from theSN-PD-EH bifurcation diagram by removing portions of A-plane bifurcationcurves for which the corresponding C-plane bifurcation curves involve EH pointswhich are saddles rather than true Hopf points. In all cases, the A-plane bi-furcations with \H" are contained in the corresponding A-plane bifurcations



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 17with \EH." More speci�cally, we remove all of curves e and l, and portionsof curves d; h; j;m;m; n; o; w, and w. No new curves are added in going fromthe SN-PD-EH diagram to the SN-PD-H diagram because the A-plane curvesfor SN-PD-EH already include intersections of Hopf curve endpoints (Takens-Bogdanov and double-negative-one points) with other curves when projected tothe C plane. Our count was 380 distinct regions: 26 on the real A axis, 177 inthe upper half A plane and 177 conjugate regions in the lower half A plane. Theresult is diaplayed in Fig. 8. For comparison with Fig. 7, we have included thesame 33 marked points on the real A axis in Fig. 8. Several of the A values thatcorresponded to distinct equivalence classes in Fig. 7 are in the same equiva-lence classes in Fig. 8. See, for example, A values numbered 16-18, 20-21, and22-23 in Fig. 8b. The corresponding C-plane bifurcation diagrams are the sameas pictured in Fig. 7c. We merely ignore the cyan portions of the EH curve. Forexample, from C plane 17 to 18, the left-hand (green) saddle-node cusp pushesthrough a cyan portion of the EH curve. Numbers 16 and 17 appear in the sameequivalence class in Fig. 8b, but were in distinct equivalence classes in 7b.As was the case for Fig. 7, we have tried to make the bifurcation diagram inFig. 8 as complete as possible but make no claims as to its completeness. Wealso have not made any attempt to fully explain the diagram to the reader. Wehave only attempted to communicate the type of information one might obtainfrom such a bifurcation diagram.2.7 The local saddle-node unfolding.There are many points in the SN-PD-EH and SN-PD-H A-plane bifurcationdiagrams that would be interesting to investigate in more detail. We treatonly one such point, the local saddle-node point, here. More speci�cally, weinvestigate the bifurcations of the SN-PD-EH (resp. SN-PD-H) curves near(z; C;A) = (0; 0; 0). This point is of interest because at A = 0, (z; C) = (0; 0)is the cusp of the main cardioid of the Mandelbrot set (point H0=1 in Fig.1a). This point is often called the saddle-node point of the Mandelbrot set.By considering the �xed-point bifurcations for A values near zero, we are in-vestigating what happens to these sets as a complex analytic family (A = 0)is perturbed with a non-complex-analytic term. In Peckham [1998] we showedthat for A 6= 0 the saddle-node set was a topological circle in the (z; C) vari-ables. It projected to a three-cusped triangular shape in the C plane. We didnot consider in that paper the EH curve or its interaction with the saddle-nodetriangle. The period-doublings play no role in this bifurcation since there arenone in the neighborhood of (z; C;A) = (0; 0; 0). (There are period-doublingsin the neighborhood of (z; C;A) = (�1;�1; 0).)The bifurcation diagram, an enlargement of Fig. 7 near A = 0, is shown inFig.9. The numbering of the regions does not match that of Fig.7.



2 EQUIVALENCE W.R.T. SPECIFIED BIFURCATION LOCI 18Place Figure 9 near here.As one approaches A = 0 along any one of the six bifurcation curves thatruns through the origin, the phase (z) and primary parameter (C) value of anypoint involved in the bifurcation approaches (z; C) = (0; 0). These six curvestherefore are the bifurcation curves for a two-real-parameter (A) local unfoldingof the saddle-node point (z + z2 +C near (z; C) = (0; 0)). Because the A-planebifurcation diagram has more than one bifurcation curve passing through theorigin it must be of codimension at least two in the space of local two-real-parameter families of maps of the plane. We conjecture that the codimensionis exactly two. In contrast, when considering either the saddle-node locus orthe Hopf locus by itself, the saddle-node bifurcation appears to be of real codi-mension one in the sense that all equivalence classes of local primary parameterplane bifurcation diagrams for nearby auxiliary parameter values are present ina typical (transversal) one-auxiliary-parameter family.The bifurcation sequences are best understood via Fig. 9. For the details ofthe transition between C-planes 1-2-3-4 look at the blowup of C-plane number2 in the inset. Label the two branches of Hopf points as upper and loweraccording to the Takens-Bogdanov point from which they come. As the A valueprogresses from locations 1 through 4 in Fig. 9a, the lower branch of the Hopfbifurcations (the closer to vertical in the insert of Fig.9b) moves from right toleft. Bifurcations occur when this lower Hopf branch crosses through the threepoints indicated by the arrows: the saddle-node cusp point, the point wherethe upper Hopf branch intersects the right-hand side of the saddle-node triangle(labelled H-SN projection intersection), and the Takens-Bogdanov point. Wenote that the bifurcation diagram is the same whether we consider extendedHopf or Hopf points. In all cases except along the EH cusp curve, this isrelatively obvious since the EH point in question is always a true Hopf point.The EH cusp curve is more subtle. This curve was included in the EH-onlybifurcation diagram of Fig. 5, but not in the H-only bifurcation diagram of Fig. 6since on either side of the bifurcation curve, the corresponding Hopf curve wasmerely a line segment with an endpoint. Here, however, we are considering allthree sets together. In particular, the intersection of the (lower) Hopf segmentwith the lower left side of the period doubling triangle changes orientation asA passes through a value for which the EH curve has a cusp: the lower Hopfbranch approaches the lower Takens-Bogdanov point tangent to the saddle-nodecurve from below in C-plane 5, but from above in C-plane 6. On the dividingline, the Hopf curves approaches transverse to the saddle-node curve (where thefull EH curve forms a cusp). Between C-planes 6 and 7 the saddle-node trianglerotates roughly one-sixth of a full rotation in the clockwise direction. In theprocess, the TB point on the right in C-plane 6 passes through the saddle-nodecusp and ends up on the lower left leg of the triangle in C-plane 7.



3 CLASSIFICATION OF CODMENSION-ONE BIFURCATIONS 193 Classi�cation of codmension-one bifurcationsIn the previous section we discussed bifurcation curves in the auxiliary A planethat separated equivalence classes of C-plane bifurcation diagrams. These curvesare all codimension-one in the auxiliary parameter plane. We now classify thesebifurcation curves. More generally, we are classifying bifurcations for familieswith two real primary parameters. The statements below assume two auxiliaryparameters although analogous statements hold for any number of auxiliaryparameters. We divide the classi�cation into two primary groups: those thatinvolve bifurcation points which are local in the six-dimensional (z; C;A) space,and those that are not. Actually, the only variable which is allowed to be \non-local" is the phase variable z. This is because we are considering local featuresof the primary (C) plane that change as the auxiliary parameter (A) is varied(by an arbitrarily small amount). We treat the nonlocal group �rst.3.1 Bifurcations which are nonlocal in zConjecture 3.1 Consider a region of auxiliary parameter space where the spec-i�ed primary plane (traditional codimension-one) bifurcation curves are in factcurves | immersed one-manifolds in the full six-dimensional space, either withor without endpoints. The only nonlocal codimension-one bifurcations in thespace of two-real-parameter families of maps of the plane are of the followingthree types:1. Tangent projection of two traditional codimension-one curves.2. Triple projection intersection of traditional codimension-one curves.3. Projection intersection of a traditional codimension-one curvewith a distinguished point on a traditional codimension-one curve.Note that the assumptions of our hypothesis are satis�ed for the �xed-point SN,PD, EH, and H curves except at A = 0, where the SN and PD points degenerateto a point. For A 6= 0 the �rst three are closed curves and the H set is a pair ofline segments.3.1.1 Tangent projection of two traditional codimension-one curves.Two bifurcation curves which are traditionally codimension-one (saddle-nodes,period-doublings, and Hopfs, for example) live in the four-dimensional (z; C)space for �xed auxiliary parameter values. These curves, or di�erent parts ofthe same curve, can have points which have distinct z values but a commonC value. When the curves are also tangent in their C plane projection, thelocal topology of their intersection in the C plane is unstable with respect toperturbation by the auxiliary parmeter: the curves can either push through eachother or separate from each other. Such bifurcations include those labelled in



3 CLASSIFICATION OF CODMENSION-ONE BIFURCATIONS 20this paper as PD-PD, EH-EH, H-H, SN-EH, SN-H, PD-EH, PD-H and SN-PDtangent projection intersections.3.1.2 Triple projection intersection of codimension-one curvesIf three points are on traditional codimension-one curves and have distinct zvalues but a common C value, then the local topology of the projection to theC plane can change as the auxiliary parameter is varied. Such bifurcations ininclude those labelled in this paper as EH-EH-EH, EH-EH-SN, H-H-SN, EH-EH-PD, H-H-PD, PD-PD-EH and PD-PD-H projection intersections.3.1.3 Projection intersection of a traditional codimension-one curvewith a distinguished point on a traditional codimension-onecurveIf two points, one a distinguished point of a speci�ed bifurcation curve (a tra-ditional codimension-two point) and the other on a speci�ed bifurcation curve,have distinct z values but a common C value, then the topology of their pro-jection to the C plane can change as the auxiliary parameter is varied. Thedistinguished point can either be interior to the speci�ed bifurcation curve, as isa saddle-node cusp on a saddle-node curve, or a ONO point on either a saddle-node or period doubling curve, or it can be an endpoint of a speci�ed bifurcationcurve, as is a TB point or a DNO point on a Hopf curve. Such bifurcations in-clude those labelled in this paper as TB-EH, SNcusp-EH, SNcusp-H, DNO-PD,DNO-EH, DNO-H, ONO-PD, SNcusp-PD, DNO-SN, TB-PD, ONO-EH andONO-H projection intersections.3.2 Bifurcations which are local in R6The codimension-one A-plane bifurcation curves which in this paper involvepoints which are local for (z; C;A) 2 R6 all correspond to traditional localcodimension-three bifurcations. There are �ve such bifurcations present in ourstudy, each related to a traditional codimension-two point with an additionaldegeneracy. The codimension-two points are either Takens-Bogdanov points orone-negative-one points, so we �rst recall the model normal form unfoldingsfor these two traditional codimension-two points. We note that although theuniversal unfolding and corresponding dynamics of a Takens-Bogdanov for adi�erential equation has been established ([Ta, 1974], [Bo 1976]), results for theTB and ONO points for maps are less complete. This is not an issue for us,however, since we are only considering �xed points and bifurcation sets but notthe full dynamics of the maps.



3 CLASSIFICATION OF CODMENSION-ONE BIFURCATIONS 21Takens-Bogdanov points. A model normal form unfolding of a Takens-Bogdanov point is(x; y)! (x+ y; �1 + �2y + b20x2 + b11xy): (TBnormal)A generic two-parameter family of maps of the plane which has a �xed point witha double one eigenvalue but only a one-dimensional corresponding eigenspacecan be put into this form up through its quadratic terms by standard localchanges of variables (phase variables and parameter variables). The unfoldingparameters are �1 and �2. The higher order terms have been dropped. Theunfoldings are divided into cases, depending on the signs of b20 and b11 � 2b20.These two quantities being nonzero are nondegeneracy conditions.One-negative-one points. The model normal form unfolding of a one-negative-one point is(x; y)! (�1 + x+ a20x2 + a02y2; �2y � y + b11xy + b03y3): (ONOnormal)A generic two-parameter family of maps of the plane which has a �xed point witheigenvalues of one and negative one can be put into this form by making standardlocal changes of variables and dropping higher order terms. The unfoldings aredivided into cases depending on the signs of b11 and a20. These two coe�cientsbeing nonzero are nondegeneracy conditions.We are now able to state, in the following proposition, the relationship be-tween the �ve codimension-one auxiliary parameter bifurcations and their cor-responding traditional codimension-one bifurcations.Proposition 3.2 The following auxiliary parameter space codimension-one bi-furcation loci correspond to the respective traditional codimension-three bifurca-tions: auxiliary parameter space Traditional codimension-threecodimension-one bifurcation bifurcation (in normal form)1. EHcusp T-B point with b11 � 2b20 = 02. EH{SNcusp T-B point with b20 = 03. PDcusp ONO point with b11 = 04. PD{SNcusp ONO point with a20 = 05. Double ONO ONO point with a parametric degeneracy**Explained further belowProof (Sketch.) The most interesting observation in this proof is the factthat cusps on Extended Hopf curves or on period-doubling curves are possibleonly when these points also have an eigenvalue of 1. The rest of the details arerelatively straightforward computations, albeit not trivial.1. We note from eq. (EHpar) in sec 2.3 that for A �xed, the Extended Hopfcurve in R4 ((z; C)-space) is a smooth curve parametrized by



3 CLASSIFICATION OF CODMENSION-ONE BIFURCATIONS 22
�H 7! (�12+pjAj2 + 12 ei�H ; �(�12+pjAj2 + 12 ei�H )2�A(�12+pjAj2 + 12 e�i�H )):(The derivative with respect to �H in the z-component is nonzero, so the curveis smooth even if the C-component has zero derivative.) Moreover, this curvelies on the smooth surface of �xed points given by C + z2 +Az = 0.Thus, we have a smooth curve lying on a smooth surface in R4. Moreover,the projection of this surface to the C-plane is a local di�eomorphism awayfrom the branch points, or the saddle-node points. It follows that away fromthe saddle-node curve the projection of the Extended Hopf curve into the C-plane is non-singular. Thus singular points of the Extended Hopf curve can onlyoccur when the Extended Hopf curve intersects the saddle-node curve. Beingon both the Extended Hopf and saddle-node curves forces both eigenvalues tobe one. Such a point is (generically in two-parameter families) a nondegenerateTakens-Bogdanov point.Further, at a nondegenerate Takens-Bogdanov point, the Extended Hopfbifurcation curve and the saddle-node curve both are smooth curves whose pro-jections to the (�1; �2) parameter plane intersect at the origin with quadratictangency. More speci�cally, from the Takens-Bogdanov normal form of eq.(TBnormal), one can calculate that if the quantities b20 and b11 � 2b20 are bothnonzero, the saddle-node curve projects to the �2 axis in the (�1; �2) parameterplane, and the Extended Hopf curve projects to the parameter plane as theparabola (2b20 � b11)2�1 = �b20�22. Thus, a cusp on the Extended Hopf curvecan only occur when the Takens-Bogdanov point has an additional degeneracy.That the cusp corresponds to the degeneracy b11� 2b20 = 0 rather than b20 = 0is a calculation.Instead of performing that calculation here, we provide Fig. 10. The Fig. 10sequence was computed using eq. (TBnormal) with b20 = 1, b11 taking on thethree values 1; 2; 3, and some higher order terms (x3 + x4), chosen to make thefamily generic when the nondegeneracy condition b11 � 2b20 6= 0 fails, added tothe second component.Place Figure 10 near here.In all three parts of Fig. 10, the �xed-point surface, the green saddle-nodecurve along the surface \folds," and the projection of the saddle-node curve tothe (�1; �2) parameter plane are similar. The projection of the Extended Hopfcurve to the parameter plane, however, changes. When b11 = 1, 2b20 � b11 > 0and the Extended Hopf curve (including both the red branch labelled H and thecyan branch labelled EH) is tangent to the saddle-node curve when projectedto the parameter plane, shown at the bottom of the box. When b11 = 2,2b20�b11 = 0 the projected Extended Hopf curve forms a cusp where it intersects



3 CLASSIFICATION OF CODMENSION-ONE BIFURCATIONS 23the saddle-node curve. When b11 = 3, 2b20 � b11 < 0 the projected ExtendedHopf curve is again tangent to the saddle-node curve, but the true Hopf andExtended Hopf branches have switched sides.2. This correspondence will be relatively obvious to those who are familiarwith the two-parameter unfolding of the cusp bifurcation for maps of the line:x 7! x + �1 + �2x + x3. It is straightforward to calculate from eq. (TBnormal)that the saddle-node curve can only have a cusp if b20 = 0.3. This proof is similar to the proof of part 1. For the same reasons, a cuspon a period-doubling curve must also have an eigenvalue of one. Consequently,it must be a ONO point. The PD curve and SN curve typically have a tangentintersection in the (�1; �2) parameter plane, but when b11 = 0 in the period-doubling curve has a cusp.4. This proof is similar to the proof of 2. Details are omitted.5. This (traditional) codimension-three bifurcation is somewhat di�erentfrom the other four. Two degeneracies are the one and negative one eigenvalues.The third is not a degeneracy in the normal form at the bifurcation point, butrather a degeneracy in the unfolding. It would be modelled by a three-parameterfamily obtained from eq. (ONOnormal) by replacing �2 with �3 + �22. The third(auxiliary) parameter �3 in the model corresponds to jAj in the paper's model.When �3 is �xed negative (jAj is �xed greater than one), the resulting two-parameter family has two ONO points; when �3 is �xed positive (jAj is �xedless than one), the resulting two-parameter family has no ONO points. 2Explicit Calculations. The above proposition, especially for cases 1 and 3,changes the task of the explicit computation of the bifurcations loci for each ofthe 5 cases listed above from nearly impossible to merely tedious. For example,to compute the EHcusp points, we know from the proposition that they occurwhen we have a Takens-Bogdanov point with a higher order degeneracy. Sowe start with the parametrization for a Takens-Bogdanov point, convert it tonormal form, and set the combination b11 � 2b20 = 0. We include only theresults but not the intermediate calculations here. Note in 1,3, and 4, the Cvalues are not explicitly written out, but are given by the �xed-point conditionC = �z2 �Az.Parametric versions are, respectively:1. �A 7! (z; C;A) = (� (sin(�A)�1)i2 cos(�A) ; C; sin(�A)�1cos(�A) ei�A); �A 2 S (EHcusppar)(which is equivalent to the nonparametric cubic curve:A1 + (2 +A1)(A21 +A22) = 0): (EHcusp)



4 CONTINUATION COMMENTS 242. y 7! (z; C;A) = (yi; 3y2;�2yi); y 2 Rnf0g ((EH � SNcusp)par)3. A2 7! (z; C;A) = (� 12 + iy; C;�1� i2y); y 2 R: (PDcusppar)4. �A 7! (z; C;A) = (� 12 + yi; C;�( 14 + y2) 12 e3i arctan(2y)); y 2 R:((PD � SNcusp)par)5. �A 7! (z; C;A) = (� 12 ;� 14 + 12ei�A ; ei�A); �A 2 S: ((double�ONO)par)4 Continuation CommentsThe �ve bifurcation curves whose explicit formulas were just presented abovein sec 3.2 were computed using those formulas. All other bifurcation curveswere computed via numerical continuation using the dynamical systems softwarepackage To Be Continued ... [Peckham, 1988{present]. Previously developedsoftware allowed computation of traditional codimension-one C-plane curvessuch as saddle-nodes, period-doublings and Hopfs. New routines were writtento handle the bifurcation curves in the A plane.For example, for the triple intersections of the extended Hopf locus, we solvedfor (�1; �2; �3; A) 2 S � S � S �R2:C(A; �1) = C(A; �2); C(A; �2) = C(A; �3)where C(A; �) was explicitly de�ned by the middle coordinate of eqn. (EHpar) insec 2.3. This is equivalent to four real equations in �ve real variables, resultingin a curve. Projecting to the A plane then gave us our A-plane bifurcationcurves.Cheating for tangent intersections. The tangent intersections of two bi-furcation curves projected to the C-plane, written parametrically as 1(A; t)and 2(A; s), where i : R2 � R ! R2 (as in the middle component of eqs.(SNpar); (PDpar); (EHpar)), were computed using the following observation.The direct tangency conditions are:1(A; t) = 2(A; s); ddt1(A; t) = � dds2(A; s)where � is any nonzero real number. They are satis�ed precisely at the pointswhere the related family of map of the plane:GA(t; s) � (t+ �1(1(A; t)� 2(A; s); s+ 2(A; t)� 2(A; s)



5 SUMMARY 25has a �xed point with eigenvalue 1. That is, GA has a saddle-node bifurcation.This meant no new software had to be created for these bifurcations. We merelyentered the appropriate related map \G" and found its saddle-node bifurcationpoints. We note that the cusp points (saddle-nodes with a higher order degen-eracy) for the related map correspond to curves which intersect not only withmatching tangent vectors but also with matching curvature. See C plane 7 inFig.6, for example.5 SummaryIn this paper we have studied the evolution of parameter plane bifurcation dia-grams as auxiliary parameters are varied. In retrospect, it is not so surprisingthat the bifurcation analysis is so complicated since the family has four pa-rameters, especially because we did not restrict the parameters to some localneighborhood. Nevertheless, we feel that the evolution of planar bifurcation dia-grams is of enough general interest to warrant its study. Further, we believe theparticular family we studied, z 7! z + z2 +C +Az | being a familiar complexquadratic map at A = 0 and being perturbed by the simplest non-complex-analytic term, Az | is a reasonable prototype for studying parameter planeevolution. Thus we have worked to obtain complete bifurcation diagrams forthis example. We conjecture that the A-plane bifurcation diagrams of �gures 4through 9 are complete, with respect to the bifurcation loci speci�ed for each�gure.With this study, global in the parameters C and A, as a guide, we hopeto return to certain points in our A-plane bifurcation diagrams which seem torequire further study. Neighborhoods of A = 0 are of particular interest sincethey represent bifurcation diagrams of maps which are close to complex analytic.For example, we would like to be able to verify our conjecture that the saddle-node point (near (z; C;A) = (0; 0; 0)) is codimension one with respect to saddle-node or Extended Hopf points separately, but codimension-two with respect toboth loci together. Similar studies near bulb contact points of the Mandlebrotset (also near A = 0 but not near (z; A) = (0; 0)) require further attention.They will require looking at additional bifurcation loci beyond the �xed-pointloci considered in this paper. For example, for the period doubling bifurcation,near (z; C;A) = (�1;�1; 0), at least period-two saddle-node bifurcations shouldbe added to the mix.Note that while the focus on bifurcation sets allows us to more easily dealwith whole families of maps, it also necessarily ignores many interesting ques-tions about the dynamics of these noninvertible maps of the plane. For example,a complete description of the dynamics would necessarily involve the study ofthe critical set and its images, such as in Nien [1998]. There is a need for muchadditional research in this area.Ideally, we hope this work will encourage and complement further work on
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8 FIGURES 288 FiguresFig. 7 and Fig. 8 labels. The A-space curves that appear for the above setsof loci have the following common labels. We abbreviate saddle-node as SN,period-doubling as PD, Extended Hopf as EH, Hopf as H, Takens-Bogdanovpoint as TB, double negative one point as DNO, and a one, negative one pointas ONO.a PD cuspb PD-PD tangent projection intersectionc EH cuspd EH-EH tangent projection intersectione EH-EH-EH projection intersectionf SN-EH tangent projection intersectiong SNcusp-EH intersectionh TB-EH projection intersectioni EH-EH-SN projection intersectionj SNcusp-EH projection intersectionk DNO-PD projection intersectionl PD-EH tangent projection intersectionm DNO-EH projection intersectionn EH-EH-PD projection intersectiono PD-EH tangent projection intersectionp SN-PD tangent projection intersectionq SNcusp-PD intersectionr ONO-PD projection intersections SNcusp-PD projection intersectiont double ONO points (the two ONO points have coalesced)u DNO-SN projection intersectionv TB-PD projection intersectionw ONO-EH projection intersectionx PD-PD-EH projection intersection
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Figure 1: For Q( ~C;A)(z) = z2 + ~C +Az: a) Some numerically computed bulb bound-aries of the Mandlebrot set (A = 0). b) Numerically computed ~C plane bifurcationdiagrams for A = �0:1. Period-doubling curves are in blue; saddle-node curves are ingreen. Curves of interest to the current paper are wider: EH1; SN1; PD1. Reprintedfrom Peckham [1998].
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Figure 2: Projection of the three loci to the phase plane. (0 < jAj < 1). Symbols:SN: saddle-node, PD: period-doubling, EH: extended Hopf (true Hopf points are thebold red part of the EH circle), TB: Takens-Bogdanov point (double one eigenvalues),DNO: double negative one eigenvalue point, ONO: eigenvalues of one and negativeone (present only if jAj � 1), �TB : angle of �rst quadrant TB point. The radii ofthe PD and SN circles are both jAj2 ; the radius of the EH circle is (jAj2+1)1=22 . Thethree marked points on the saddle-node curve are the cusps; their location on thesaddle-node circle was determined by assuming arg(A) = 0.
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Figure 3: Fixed-point saddle-nodes only. a) The A-value at which the saddle-nodelocus bifurcates. The origin (number 1) is the only bifurcation value. Numbers 2through 10 (arbitrarily chosen on the unit circle), as well as any A value except theorigin, are in the same equivalence class since only �xed-point saddle-node curves areconsidered. b) Some of the orresponding saddle-node curves in the C plane.
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Figure 4: Fixed-point period-doublings only. a) The A-values at which the period-doubling locus bifurcates. b) Corresponding period-doubling curves in the C plane


