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Abstract
Recent rapid advances in low-power portable electronic applications have motivated researchers
and industry to explore schemes to embed an endless power supply mechanism within these
systems. These self-charging embedded power supply systems convert ambient energy
(vibration, solar, wind, etc) into electrical energy and subsequently provide power to these
portable applications. Ambient vibration is one of the most promising sources of energy as it is
abundantly present in indoor/outdoor systems. This paper discusses briefly the mathematical
model of a bimorph piezoelectric cantilever beam with distributed inertia, and its experimental
validation. Research on such a component typically included a tip mass, which reduced the
influence of the distributed inertia of the beam and restricted effective operation to low
frequencies. The present work excludes the tip mass and only the distributed mass of the
harvester is considered. Due to the coupled electromechanical nature of piezoelectric materials,
the effects of electrical coupling on the mechanical properties of the harvester are investigated,
particularly the dependence of the induced additional stiffness and damping on the electrical
load. Both the model and the experimental results show that the resonance frequency and the
response amplitude of the harvester exhibit considerable shifts due to the electrical coupling.
The experimental work uses both magnitude and Nyquist plots of the electromechanical
frequency response functions to thoroughly validate the accuracy and applicability of the
distributed parameter model at higher frequencies than previously considered.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Unused energy is ubiquitous in the environment in various
forms. The potential ambient sources of energy include
solar, thermal, wind and mechanical energy. Energy from
these ambient sources is dissipated in the form of heat
without being utilized for any useful purpose. The idea of
extracting energy from these wasted or unused sources and
then accumulating and storing it for a useful purpose is called
energy harvesting. Among these sources, ambient vibration
is one of the most promising sources of harvesting energy
since it is present in most engineering systems and does not
require any external electrical power source to initiate the

1 Author to whom any correspondence should be addressed.

energy harvesting process. Piezoelectric materials have the
ability to generate an electric potential when deformed due
to vibrations (sensor effect). Conversely, they deform when
subjected to an externally applied electric voltage (actuator
effect). A range of devices that exploit this property have been
investigated by many researchers working in the vibration-
to-electricity energy harvesting field. The amount of power
generated by vibration-to-electricity piezoelectric harvesters is
quite low (in the range of micro to milliwatts [1, 2]). However,
this low amount is mainly due to the small size of these devices
and their specific power can be quite high [1]. Moreover,
over the past few years, rapid developments in low-power
electronics and sensor technology have significantly reduced
the power consumption within these systems. This low-power
requirement has attracted researchers of diverse backgrounds
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to explore useful energy harvesting techniques that can provide
continuous power to these portable systems.

Typically, portable electronic systems are powered by
electrochemical batteries that need periodic recharging or
replacement. Moreover, the progress in conventional battery
technology has not been rapid enough to meet the continuous
power requirements of these electronic systems [3]. Therefore,
periodic battery recharging or replacement is required for the
smooth functioning of these devices, which is not a suitable
option in many cases, e.g., in remote areas where a regular
electrical supply is not available. The idea of integration of
a power harvesting system within these portable electronic
devices and sensors will eliminate the need for periodic
recharging or replacement of electrochemical batteries and will
ensure uninterrupted functioning of these devices for a longer
life span.

Preceding research work extensively investigated the use
of piezoelectric materials in vibration-to-electricity energy
harvesters [3, 4]. To investigate the practicability of the
energy harvesting technique from vibrations, researchers not
only presented different mathematical models [5–11] but also
provided experimental results [1] to support their proposed
models. Energy harvesting from ambient vibrations is a
multidisciplinary field and involves extensive knowledge of the
mechanics and electrical circuitry of the system. Researchers
from different backgrounds are engaged extensively in the
vibration-to-electricity energy harvesting field. Therefore,
different oversimplified mathematical modeling assumptions
were used in the literature to elucidate the vibration-
to-electricity energy harvesting process. However, some
major issues relating to the mathematical modeling of
piezoelectric energy harvesters have been highlighted and
addressed recently [12]. More generally, the research work
in energy harvesting is focused on evaluating the performance
of different piezoelectric materials [13], improving the
geometrical and physical configuration of harvesters [2, 14] for
maximizing output, improvements in mathematical modeling
techniques [2, 5, 9, 12, 14], enhancing the capability of
electrical circuitry to extract more power [15–17], and
improving the power storage media [18, 19].

An energy harvester is typically a cantilevered beam with
one or two piezoelectric layers (unimorph or bimorph respec-
tively). This is attached at its base to a vibrating host structure.
In practical implementations, a sophisticated electrical circuit,
involving alternating-current-to-direct-current conversion, is
connected to enable charging of a battery or storage capacitor.
However, researchers typically consider a simple resistive load
connected across the harvester to come up with mathematical
models to predict the electrical output for a given base
motion input [1]. The mathematical modeling used in energy
harvesting literature includes lumped parameter single degree
of freedom (SDOF) models [2, 20], the discrete parameter
Rayleigh–Ritz method [9] and the distributed parameter
modeling approach [1, 21]. Although the SDOF approach
provides preliminary understanding of an energy harvesting
system, it is oversimplified and overlooks several important
features such as the dynamic mode shapes and the accuracy
of the strain distribution along the bender [21]. Therefore,

a more detailed distributed parameter modeling approach is
required to correctly model the behavior of the structure at any
point along its length. Conversion of mechanical energy of the
vibrating structure into electrical energy introduces additional
damping [22] and affects other dynamic properties of the
device, namely its effective stiffness, and consequently its
resonance frequencies. As the value of the connected electrical
load is increased, the backward piezoelectric coupling effect
becomes prominent and not only attenuates the vibration
amplitude but shifts the resonance frequency of the harvester
during the energy harvesting process [21]. A closed-form
distributed parameter (continuous) modeling approach for a
base-excited clamped-free unimorph without any tip mass was
introduced by Erturk and Inman [21]. This study was not
experimentally validated. In a later paper [1], the same authors
presented an experimentally validated model of a base-excited
continuous bimorph with a lumped tip mass.

The present paper presents an experimentally validated
distributed parameter model of a base-excited clamped-free
bimorph without any lumped tip mass. Frequency response
functions (FRFs) are derived for the electrical and mechanical
outputs of a bimorph. As in the previous studies [1, 21], the
Euler–Bernoulli beam theory and the constitutive relations of
piezoelectric materials are used. The novel aspects of this
paper relative to [1, 21] are listed as follows:

• No tip mass is used in the present study. The authors
consider this to be a more stringent validation of the
distributed parameter piezoelectric beam model, since
the presence of a tip mass reduces the influence of the
distributed inertia of the beam and restricts effective
operation to low frequencies (e.g. 45–50 Hz resonance
in [1]). In the present case the resonance frequencies are
in the range 120–130 Hz. This covers the higher end of
the frequency range of application that most harvesters are
designed for.

• The paper presents graphs showing the theoretical
and experimental variation with electrical load of the
resonance frequency, resonant voltage amplitude, resonant
power and resonant deflection amplitude. These
graphs give a deeper insight into the electromechanical
interaction. Previous studies e.g. [1, 21] have only shown
the variation with load of the voltage and power at two
fixed excitation frequencies (equal to the short and open
circuit resonances respectively).

• Nyquist plots of the FRFs are presented. FRFs are
complex-valued functions. However, previous work
focused only on the magnitude–frequency plots of the
FRFs. The Nyquist plots are used for two purposes:

* A more thorough validation of the evolution of the
FRFs as the electrical load is varied.

* The estimation of the mechanical damping.
The curve-fitting method used in [1] involved finding,
by trial and error, the mechanical damping ratio
that gave best agreement between the theoretical
and experimental magnitude–frequency plots of the
FRFs. As shall be seen in this paper, a method for
mechanical damping estimation based on the Nyquist
plot does not involve trial and error and is, in itself, a
means for validating the model.
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Figure 1. Cantilevered series-connected bimorph excited by base
translation.

• The measured FRFs are obtained through the application
of random excitation (band-limited white noise) rather
than a sine sweep (used in [1]).

2. Distributed parameter model of a bimorph

In this section, a distributed parameter model of a piezoelectric
bimorph beam without any lumped or tip mass is discussed.
A bimorph consists of two piezoelectric layers bonded on
the top and bottom surfaces of a central metallic shim, as
shown in figure 1. Therefore, a bimorph can be electrically
connected either in series or in parallel depending on the
poling directions of the top and bottom piezoelectric layers.
When the two piezoelectric layers are poled in the opposite
direction then the harvester is connected in series, as shown
in figure 1, where the opposite arrows on the top and bottom
piezoelectric layers illustrate their opposite poling directions.
When the two layers have the same poling direction then the
harvester is connected in parallel. In series connectivity, a
higher voltage and low current is achieved whereas a higher
current and low voltage is attained in the parallel connection
configuration. However, the net power output remains the same
whether the device is connected in series or in parallel since it
is the product of voltage and current [2]. The bimorph used
in this work is connected in series, as shown in figure 1. In
the following sections the coupled electromechanical FRFs of
the base-excited bimorph are derived for the case of harmonic
excitation and no rotation at the clamp. The derivation follows
that in [1] except that there is no attached lump mass at the
tip. The main steps of the derivation are presented here for
completeness. The applicability of the FRFs to random base
excitation (not considered in [1]) is then discussed.

2.1. Mechanical equation with electrical coupling

In this section, a dynamic equation of motion for a bimorph
beam in the mechanical domain with electrical back-coupling
is obtained.

Let (
∑

Y I ) be the bending stiffness of the composite
beam (the summation sign refers to the fact that the cross
section is made of more than one material), m the distributed
mass per unit length, R the connected electrical load and v(t)
the voltage appearing across the resistor. Assuming that the
rotation of the clamp is negligible, the absolute transverse

displacement of the beam at a distance x from the fixed end
can be represented as [23]:

u(x, t) = ub(t) + urel(x, t) (1)

where ub(t) is the absolute transverse displacement of the
clamp and urel(x, t) is the transverse displacement at distance
x relative to the moving base (i.e. the flexural displacement).

The governing equation of motion of an Euler–Bernoulli
beam can be written as [21]:

∂2M(x, t)

∂x2
+

(∑
cI

) ∂5urel(x, t)

∂x4∂ t
+ ca

∂urel(x, t)

∂ t

+ m
∂2urel(x, t)

∂ t2
= −m

∂2ub(x, t)

∂ t2
− ca

∂ub(x, t)

∂ t
(2)

where M is the internal elastic bending moment (excluding
the distributed internal viscoelastic effect), (

∑
cI ) is the

equivalent viscoelastic damping term of the composite cross
section, ca is the ambient viscous damping coefficient per unit
length and m is the mass per unit length of the beam. It should
be noted that both viscoelastic and ambient damping terms
satisfy proportional damping criteria so it is mathematically
convenient to use them in the modal analysis solution [21].

In equation (2), the relative transverse displacement with
respect to the vibrating base urel(x, t) can be written in modal
coordinates using the modal expansion theorem [24]:

urel(x, t) =
∞∑

r=1

φr (x)ηr (t) (3)

where φr (x) are the mass-normalised eigenfunctions of the
r th mode of the cantilever beam and ηr (t) the corresponding
modal coordinates. The eigenfunctions φr (x) pertain to
undamped, electrically uncoupled conditions and are given
by [25]:

φr (x) =
√

1

mL

[

cosh
λr

L
x − cos

λr

L
x

− σr

(

sinh
λr

L
x − sin

λr

L
x

)]

(4)

where σr is

σr = (sinh λr − sin λr )

(cosh λr + cos λr )
(5)

L is the length of the beam and the λr s are dimensionless
frequency parameters that can be determined by the following
transcendental characteristic equation of a clamp-free beam:

1 + cos λr cosh λr = 0. (6)

The undamped natural frequency of the r th mode of a
uniformly distributed clamped-free beam can be written as:

ωr = λ2
r

√(∑
Y I

)

mL4
. (7)

The internal moment M in equation (2) can be determined
using the constitutive relations of the piezoelectric mate-
rial [26]. Figure 2 shows the cross section of a bimorph beam
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Figure 2. Cross section of a bimorph, distances positive upwards
from the neutral/central axis.

having a metallic shim sandwiched between top and bottom
piezoelectric layers.

Bending of the piezo layers produces a stress in the ‘1’
direction which, in turn, induces a voltage in the ‘3’ direction.
Hence, the constitutive equations of the piezoelectric layers,
can be written as [26]:

D3 = d31σp + εT
33 E3 (8)

δp = σp/Yp + d31 E3 (9)

where D3 is the electrical displacement (charge density) in
the electric poling direction, d31 is the piezoelectric strain
coefficient, σp and δp are the stress and strain in the
piezoelectric layer, Yp is Young’s modulus of the piezoelectric
material, E3 is the electric field and εT

33 is the permittivity at
constant stress. The stress in the central metallic layer (shim)
can simply be expressed by Hooke’s law as σs = Ysδs where
Ys is Young’s modulus of elasticity for the shim and δs, σs are
the axial strain and stress respectively.

During bending of the beam, the stresses in the top and
bottom piezoelectric layers at a given section x will be in
opposite directions (one is in tension and the other is in
compression) [1]. It is for this reason that, in the present case
of series-connected piezo layers, the piezo layers have to be
oppositely poled [27]. The internal moment produced by these
opposite stresses in the top and bottom piezoelectric layers and
the stress in the shim can then be written as:

M(x, t) = −
∫ hs

2 +hp

hs
2

Yp(δ − d31 E3)bz dz −
∫ hs

2

−hs
2

Ysδbz dz

−
∫ −hs

2

−hs
2 −hp

Yp(δ + d31 E3)bz dz (10)

where hp is the thicknesses of each piezoelectric layer and hs

is the thickness of the shim. δ is the generic strain in the beam
at a distance z from the neutral axis. Substituting for the strain
δ = −z∂2urel/∂x2 and the electric field E3 = −v(t)/(2hp)

and performing the integrations in equation (10) will yield:

M(x, t) =
(∑

Y I
) ∂2urel(x, t)

∂2x
+ 
v(t) (11)

where (
∑

Y I ) is calculated as:

(∑
Y I

)
= b

[
Ysh3

s

12
+ Yp

(
hph2

s

2
+ h2

phs + 2

3
h3

p

)]

(12)

and 
 is the electrical coupling term in the internal bending
moment (mechanical domain) expression and is determined as:


 = −d31Ypb(hp + hs)

2
. (13)

It should be noted that the piezoelectric coupling term,

v(t), in equation (11) is a function of time only, so it
should be multiplied by [H (x) − H (x − L)], where H (x)

is a Heaviside function [1], before substituting it into the
equation of motion (equation (2)). The resulting equation of
motion is then transformed from physical to modal coordinates
by substituting for urel from equation (3), and applying the
orthogonality conditions of the eigenfunctions [21] will yield:

d2ηr (t)

dt2
+ 2ξrωr

dηr (t)

dt
+ ω2

r ηr (t) + χrv(t)

= −m
∂2ub(x, t)

∂ t2

∫ L

x=0
φr (x) dx (14)

where χr contains electrical and mechanical terms and can be
written as:

χr = 

dφr (x)

dx

∣
∣
∣
∣
x=L

. (15)

It is noted that the excitation provided by the ambient damping
(second term on the right-hand side of equation (2)) has been
neglected, as in [1, 21].

2.2. Electrical circuit equation with mechanical coupling

In this section, the electrical circuit equation with mechanical
back-coupling term will be obtained using the piezoelectric
constitutive relations given in equations (8) and (9).

The total charge generated at the electrodes can be
determined by integrating equation (8) over the whole area:

q =
∫ L

x=0
(d31Ypδ̄p + εS

33 E3)b dx (16)

where b is the width of the piezoelectric layer and δ̄p is the
bending strain along the middle surface of the upper piezo
layer. The current through a load resistor R is the time
derivative of the charge:

i(t) = v(t)

R
= d

dt

[∫ L

x=0
(d31Ypδ̄p + εS

33 E3)b dx

]

. (17)

Substituting for the electric field E3 = −v(t)/(2hp) and the
strain δ̄p = −zc∂

2urel/∂x2, where zc = (hp + hs)/2 (as in
figure 2) in equation (17) will yield:

(
εS

33bL

2hp

)
dv(t)

dt
+ v(t)

R
= −Ypd31bzc

∫ L

x=0

∂3urel(x, t)

∂x2∂ t
dx .

(18)
Substituting the value of urel(x, t) from equation (3) into (18)
then gives:

Cp dv(t)

2 dt
+ v(t)

R
=

∞∑

r=1

αr
dηr (t)

dt
(19)
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where αr is a constant and can be written as:

αr = −Ypd31bzc

∫ L

x=0

d2φr (x)

dx2
dx = −Ypd31bzc

dφr (x)

dx

∣
∣
∣
∣
x=L

.

(20)
In equation (19), the capacitance Cp of the piezoelectric
element can be defined as:

Cp = εS
33bL

hp
(21)

where εS
33 is the permittivity at constant strain and can be

written as εS
33 = εT

33 − d2
31Yp. It is stated in the literature that a

piezoelectric can be represented as a current source in parallel
with its internal capacitance. The components of the electrical
circuit are the internal capacitance of the piezoelectric layers,
the current source ip(t) and the externally connected load
resistor R [1].

2.3. Derivation of FRFs

Assuming the base excitation ub(t) is harmonic:

ub = Re{Ubejωt } (22a)

then all time-varying quantities are harmonic and can be
expressed as:

v(t) = Re{V ejωt}, (22b)

u(x, t) = Re{U(x)ejωt}, (22c)

urel(x, t) = Re{Urel(x)ejωt }, (22d)

ηr (t) = Re{η̃r ejωt } (22e)

where Ub, V , U(x), Urel(x) and η̃r are the complex
amplitudes of the respective quantities and ω is the excitation
frequency in rad s−1. Substituting for ub(t), v(t) and ηr (t)
from equations (22a), (22b), (22e) into equation (14) and
rearranging gives:

η̃r = (Fr − χr V )

ω2
r − ω2 + j2ξrωrω

(23)

where
Fr = mω2γ u

r Ub, (24a)

γ u
r =

∫ L

x=0
φr (x) dx = 2σr

λr

√
L

m
. (24b)

Substituting for v(t) and ηr (t) from equations (22a) and (22e)
into (19), and then substituting for η̃r from equation (23) and
rearranging, gives the voltage FRF, denoted by V̆ (ω), as:

V̆ (ω) = V

−ω2Ub
=

∞∑

r=1

−jmωγ u
r αr

ω2
r −ω2+j2ξr ωr ω

(
1
R + jω Cp

2

)
+

∞∑

r=1

jωαr χr

ω2
r −ω2+j2ξr ωr ω

. (25)

The voltage FRF V̆ (ω) is seen to be the complex amplitude
of the voltage divided by the complex amplitude of the base
acceleration üb. The ‘current FRF’ is the complex amplitude
of the current divided by the complex amplitude of üb. Hence,

it is simply the voltage FRF divided by the resistance R. The
instantaneous power is v2/R. The peak power is therefore
|V |2/R [1]. Hence, a measure of the power generated is
obtained by taking the square of the modulus of the voltage
FRF and dividing it by R. This quantity is defined as the
‘power FRF’.

Substituting for V from equation (25) into (23) and using
equation (3) will yield the relative tip response FRF as:

β(ω) = Urel(L)

−ω2Ub

= −
∞∑

r=1

⎧
⎪⎪⎨

⎪⎪⎩

γ w
r − χr

∞∑

r=1

jωγ u
r αr

ω2
r −ω2+j2ξr ωr ω

(
1
R + jω Cp

2

)
+

∞∑

r=1

jωαr χr

ω2
r −ω2+j2ξr ωr ω

⎫
⎪⎪⎬

⎪⎪⎭

× mφr (L)

ω2
r − ω2 + j2ξrωrω

(26)

where Urel(L) is the complex amplitude of the relative tip
displacement (equation (22d)). In practice, a laser sensor
is used to measure the tip vibration, and this measures the
absolute displacement or velocity. From equation (1), the
absolute and relative tip displacement FRFs are related by the
following equation:

βabs(ω) = − 1

ω2
+ β(ω). (27)

2.3.1. Reduced single-mode frequency response (FRFs)
functions. In most of the energy harvesting research, only the
fundamental or the first mode of the harvester is considered.
The FRFs obtained in the last sections includes contributions of
any number of modes. However, these FRFs can be reduced to
a single-mode (first mode or for any mode r ). The single-mode
FRFs can be obtained by evaluating equations (25) and (26) for
the r th mode only and can be written as:

V̆ (ω)|r = −j2ωm Rγ u
r αr

(2 + jωCp R)(ω2
r − ω2 + j2ξrωrω) + (j2ωRαrχr )

(28)

β(ω)|r = −(2 + jωCp R)mγ u
r φr (L)

(2 + jωCp R)(ω2
r − ω2 + j2ξrωrω) + (j2ωRαrχr )

(29)
The subscripts ‘r ’ on the left-hand side of equations (28)
and (29) indicate that the FRFs are single-mode approxima-
tions centered around the frequency ωr

2.4. Application to non-harmonic base excitation

The FRF expressions derived above relate, for harmonic
excitation, the complex amplitude of the output (voltage or
tip displacement) with the complex amplitude of the input
(base acceleration). Following standard signal processing
theory [28], since the system is linear, the same FRF
expressions on the right-hand side of equations (25), (26), (28)
and (29) should also be valid for non-harmonic excitation.
In the case of a deterministic signal ub, the FRF expressions
would define the ratio of the Fourier transforms of the output
and input signals [28]. In the case of a non-deterministic
(random i.e. broadband) signal ub, the FRFs would define the
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Figure 3. (a) Experimental setup. (b) Double cantilever arrangement to eliminate rotational effects at the clamp.

ratio of the cross-spectral density to the input power spectral
density [28]. For example, the voltage FRF expression on the
right-hand side of equation (25) or (28) would be equal to:

Gübv(ω)/Güb üb(ω) (30)

where Gübv(ω) is the cross-spectral density function relating
signals üb and v and Güb üb(ω) is the power spectral density
function of üb.

3. Experimentally validated study

The above illustrated distributed parameter model of a bimorph
was experimentally tested and the measured results were
compared with those from the model. The experimental setup
used is shown in figure 3(a). A bimorph with connected
resistor was clamped at one end and the clamp mounted on
an electrodynamic shaker. Rotational effects at the clamp
were minimized by attaching an identical dummy bimorph
at the other side of the clamp, as shown in figure 3(b). If
a single cantilever is used, as in previous energy harvesting
work [1], then the dynamic bending moment at the root of the
cantilever tends to rotate the clamp. This tendency has to be
resisted by an equal and opposite external moment applied by
the shaker on the clamp. The reaction moment on the shaker
potentially results in slight rocking of the shaker armature and
clamp. The use of two symmetric cantilevers eliminates the
moment on the shaker since the dynamic bending moments
at the roots of the two cantilevers cancel each other out. It
is common practice to implement a base-excited, no-base-
rotation cantilever as a symmetric double cantilever, as can be
seen from references [29, 30].

Table 1. Properties of the bimorph harvester.

Property Units Value

Length of the beam and substrate mm 60
Width of the beam and substrate, b mm 25
Thickness of each piezoelectric, hp

(upper and lower layers)
mm 0.267

Thickness of the substrate, hs mm 0.3
Young’s modulus of the piezoelectric, Yp GPa 62
Young’s modulus of the substrate GPa 72
Density of the piezoelectric kg m−3 7800
Density of the substrate kg m−3 2700
Piezoelectric constant, d31 pm V−1 −320
Relative dielectric constant (at constant
stress)

3800

The bimorphs were manufactured by Piezo Systems
Inc. and each one was made up of two PZT-5H4E layers
bonded on the top and bottom surfaces of an aluminum shim.
As mentioned in the previous section, each bimorph was
series-connected (figure 1) and its geometric, material and
electromechanical properties, as provided by the manufacturer,
are given in table 1. An accelerometer (PCB 352C22,
sensitivity 9.08 mV g−1, resolution 0.002 g rms) was used to
measure the base (clamp) acceleration ü0 and a laser sensor
(MEL M5L/4-10B24NK, sensitivity 0.54 V mm−1, resolution
0.0005 mm) was used to measure the absolute tip displacement
u(L, t).

The electrical load was purely resistive and was manually
controlled through a resistor box. A PC-controlled data-
acquisition system (LMS Scadas 5 with LMS Test.Lab Rev

6
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Figure 4. (a) Input acceleration at the base üb; (b) experimental voltage and tip velocity FRFs at 1 k� and (c) their coherence functions.

7A software) was used to generate an excitation signal to the
shaker and to acquire the signals and calculate the FRFs.

The test device was excited by a random signal (band-
limited white noise) with a frequency spectrum of 0–320 Hz
(i.e. containing the first undamped electrically uncoupled
natural frequency ω1). The data-acquisition software computed
the FRFs by calculating the cross-spectral densities and power
spectral densities of the acquired signals, as discussed in
section 2.4. Ten different electrical loads of 100 �, 1 k�, 5 k�,
10 k�, 15 k�, 25 k�, 50 k�, 100 k�, 500 k� and 1000 k�

were used. The resonance frequency of the fundamental mode
of the bender was measured at 121.7 Hz for a low value of
R = 100 �. There was no observable shift in this frequency
when R was raised to the next higher load of 1 k�. Hence, the
measured value of the short circuit (i.e. electrically uncoupled)
fundamental resonance (i.e. ω1) was 121.7 Hz. This value is
quite close to the theoretical value for ω1 (121.1 Hz) calculated
by equation (7). For all resistance values, the peak value of
the random signal üb did not exceed 1 g (see figure 4(a)).
Operation in the linear regime was ascertained by monitoring
the coherence functions relating v with üb and u(L, t) with
üb. For a linear system and in the absence of measurement
noise, these coherence functions should be equal to unity
over the frequency range of interest [28]. The experimental
voltage FRF and tip velocity FRF at a load of 1 k� are
shown in figure 4(b) along with the corresponding coherences
in figure 4(c). It can be seen that the coherence is reasonable
and approximately unity around the first resonance frequency.

3.1. Estimation of the mechanical damping

For R small but not zero, the single-mode FRF expression of
equations (28) and (29) can be approximately expressed as:

V̆ (ω)|r ≈ −jωm Rγ u
r αr

ω2
r − ω2 + j2

{
ξr + Rαr χr

2ωr

}
ωrω

, (31)

jωβ(ω)|r ≈ −jωmγ u
r φr (L)

ω2
r − ω2 + j2

{
ξr + Rαr χr

2ωr

}
ωrω

. (32)

It is noted that the approximate expression for β(ω)|r has been
multiplied by jω to obtain an expression that is of similar
form to V̆ (ω)|r . jωβ(ω)|r is the single-mode expression for
the relative tip velocity FRF (relative tip velocity amplitude
per unit base acceleration amplitude). From modal testing
theory [31], expressions of the form of V̆ (ω)|r , jωβ(ω)|r in
equations (31) and (32) yield a circle passing through the origin
with a diameter along the real axis when plotted as a Nyquist
plot (i.e. real part versus imaginary part). This observation is
approximately validated by experimental Nyquist plots of the
voltage FRF and the relative tip velocity FRF for 1 k� over the
frequency range 80–160 Hz (see figure 5), where the circles
shown were fitted through the experimental data points using
a least-squares fit. It is noted that the measured relative tip
velocity FRF jωβ(ω) was obtained from the measured absolute
tip displacement FRF β(ω) using the relation of equation (27).

From equations (31) and (32), it is evident that the
equivalent electromechanical modal damping ratio ξ̂r , is given

7
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Figure 5. Experimental Nyquist plots at 1 k� of (a) voltage FRF and (b) relative tip velocity FRF (including circle-fits through data points).

by

ξ̂r = ξr + Rαr χr

2ωr
. (33)

From equation (31) or (32) and following a procedure similar
to that in [31], it can be shown that ξ̂r can be determined by the
half-power-point formula:

ξ̂r = ωB − ωA

2ωr
. (34)

According to equations (31) and (32), the condition ω =
ωr corresponds to the intersection with the real axis. Also,
according to modal testing theory [31], for FRFs of the
form of equations (31) and (32), the condition ω = ωr

approximately corresponds to the location of maximal spacing
between consecutive data points of the experimental Nyquist
plot. These features are approximately validated in figure 5.
The locations of the half-power-point frequencies ωA,B are
displaced by 90◦ on either side of the location of ωr . The
frequencies in equation (34) can be located using the circle-
fit through the measured Nyquist plots in figure 5. As
an alternative to the circle-fit (Nyquist plot) method, the
frequencies in equation (34) could also be located using the
magnitude–frequency plots of the voltage FRF or flexural tip
velocity FRF (‘peak amplitude method’ [31]), figure 6.

The estimates for ξ̂1 obtained using both types of method
(circle-fit, peak amplitude) for each type of FRF (voltage,
flexural tip velocity FRF) are shown in table 2(a). For this
particular case, the correlation between all estimates was
found to be good. However, in general, one expects the
circle-fit method to be more reliable since the peak amplitude
method is highly sensitive to the frequency resolution. It
is also noted that the values of R significantly smaller than
1 k� resulted in considerable noise contamination in the
voltage FRF (since the numerator of equation (31) is directly
proportional to R). On the other hand, the tip velocity
FRF could be used under pure short circuit conditions, as
evident from equation (31). However, this FRF was potentially
susceptible to errors introduced by the vibration of the laser
head. Having determined the equivalent electromechanical

Figure 6. Peak amplitude method applied to voltage FRF at 1 k�.

modal damping ratio ξ̂1, the mechanical modal damping ratio
ξ1 was determined from equation (33), since all parameters
in the second term of this equation were quantifiable. The
estimates for ξ1 are shown in table 2(b). The average of
the damping ratio values in table 2(b) was used for ξ1 in the
theoretical predictions of the following sections.

It is noted that in [1], ωr was determined as the resonance
at low resistance. ξr was then determined in [1] by trial and
error by fitting the theoretical magnitude–frequency plots of
equations (28) or (29) to the experimental data. It is clear
that the Nyquist plot method, presented here, not only avoids
trial and error, but also provides a deeper insight and is itself a
means for validating the theory.

3.2. Comparison of theoretical and experimental FRFs

This section analyses the electrical and mechanical FRFs for
different resistances in the range 102 � (‘short’ circuit) to
106 � (‘open’ circuit). The resonance frequency at a given
resistance is the frequency at which the magnitude of an FRF
is greatest. It was observed that, for a given resistance, the peak
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Table 2. Estimates of modal damping ratio.

(a) equivalent electromechanical modal damping ratio ξ̂1

FRF
Load R
(k�)

Circle-fit

method ξ̂1 (%)

Peak amplitude

method ξ̂1 (%)

Relative tip
velocity FRF

1 1.3 1.33

Voltage FRF 1 1.45 1.48

(b) mechanical modal damping ratio ξ1

FRF
Load R
(k�)

Circle-fit
method ξ1 (%)

Peak amplitude
method ξ1 (%)

Relative tip
velocity FRF

1 1.0 1.03

Voltage FRF 1 1.15 1.18

magnitudes of all electrical and mechanical FRFs occurred at
virtually the same frequency. This is in line with the model,
as will be formally shown in the following sections. As
mentioned previously, it was observed that, for resistances of
up to 1 k�, the value of the measured resonance frequency
(121.7 Hz) was virtually unaffected by the resistance value.
The reason for this is that, for small non-zero resistance, the
electrical effect is equivalent to a viscous damper proportional
to R, as evident from equation (32). For higher resistance
values (up to 500 k�) the measured resonance frequency
increased with resistance, as will be shown in the following
sections. It is noted that all simulations were obtained using the
single-mode approximations in equations (28) and (29) with
r = 1. It should be noted that these equations were multiplied
by g (9.81 m s−2) since the measured base acceleration was in
gs of acceleration.

3.2.1. Magnitude plots of voltage FRFs. Figure 7 shows
the magnitude–frequency plots of the measured and predicted
voltage FRFs. The increase in resonance frequency with load is
clearly evident. The measured resonance frequency at 500 k�

was 128.6 Hz. This value was almost unaffected by increasing
the resistance to 1 M�. Hence, this frequency can be regarded
as the ‘open circuit’ frequency. The theoretical open circuit
frequency of 128.4 Hz correlates reasonably well with the
corresponding measured value.

The theoretical variation of the resonance frequency with
resistance can be obtained by taking the modulus of V̆ (ω)|r
in equation (28), differentiating this with respect to ω, and
equating the result to 0. The resulting equation will be the
following cubic in ω2:

Aa(ω
2)3 + Ab(ω

2)2 + Acω
2 + Ad = 0 (35)

where
Aa = 2K 2

a , (36a)

Ab = 4 + K 2
a K 2

b − 2ω2
r K 2

a − 2KaKc, (36b)

Ac = 0, Ad = −4ω4
r (36c)

Ka = RCp, (37a)

Figure 7. Voltage FRFs at six different loads (1, 10, 25, 50, 100,
500 k�).

Figure 8. Variation of resonance frequency with electrical load
(theoretical with experimental data points).

Kb = 2ξrωr , (37b)

Kc = 2Rαrχr . (37c)

The resonance frequency at given R is then given by the
positive real value of ω that satisfies the above equation.
Solving the above equation for r = 1 (fundamental mode)
over a range of R gives the curve in figure 8. It is seen that,
at low resistances, the slope of the curve is horizontal. This
is consistent with the observation that the rate of change of
resonance frequency with R is negligible for small R due to
the fact that, at such low resistances the electrical effect is only
equivalent to viscous damping (equation (31)).

Figure 7 shows that the magnitude of the voltage FRF
at resonance increases monotonically with the electrical load.
These observations are illustrated in figure 9, where the
magnitude of the voltage FRF at resonance (i.e. resonant
voltage amplitude) is plotted as a function of load. The
theoretical curve is obtained by evaluating the modulus of
V̆ (ω)|r at the theoretical resonance frequencies of figure 8.

Figure 7 shows that the magnitude of the voltage FRF at a
fixed frequency also increases monotonically with the electrical
load. This can be seen in figure 10, which illustrates the
variation with electrical load of the value of the magnitude

9
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Figure 9. Variation of resonant voltage amplitude with electrical
load (theoretical with experimental data points).

Figure 10. Voltage amplitude at short circuit and open circuit
frequencies.

of the voltage FRF at the short circuit and open circuit
frequencies. It shows that the voltage output at these two
frequencies increases at a similar rate, but at low loads the
output is higher for the short circuit frequency since the system
is close to short circuit conditions [21].

The two curves intersect at a certain value, and at higher
loads the voltage at the open circuit frequency becomes higher
than that at the short circuit frequency since the system gets
closer to open circuit conditions.

3.2.2. Magnitude plots of current FRFs. The current FRFs
also showed a monotonic behavior with increase in load but
in the reverse manner to the voltage. As the load was
increased the amplitude of the current FRF was decreased.
In figure 11, predicted and measured FRFs are compared for
different electrical loads ranging from 1 to 500 k�.

Figure 12 shows the magnitude of the current FRF
at resonance (i.e. resonant current amplitude) plotted as a
function of load. The behavior with increasing load is seen
to be the reverse of that of figure 9.

Figure 13 illustrates the variation with electrical load
of the value of the magnitude of the current FRF at the
short circuit and open circuit frequencies. The behavior with
increasing load is again seen to be the reverse of that in
figure 10.

Figure 11. Current FRF at six different loads (1, 10, 25, 50, 100,
500 k�).

Figure 12. Variation of resonant current amplitude with electrical
load (theoretical with experimental data points).

Figure 13. Current amplitude at short circuit and open circuit
frequencies.

3.2.3. Power output FRF. The power FRF was defined in
section 2.3 as V̆ (ω)|2/R. This is the same as the product
of the moduli of the voltage and current FRFs. Since these
two FRFs have opposite monotonic variations with load, the
variation of the power FRF with load will not be monotonic.

10
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Figure 14. Power FRFs comparison: (a) theoretical; (b) experimental.

Figure 15. Variation of resonant power FRF with load (theoretical
with experimental data points).

This is evident in figure 14, which shows the comparison
of power FRFs obtained by the model and the experimental
data for six different loads. The maxima of the power FRFs
in figure 14 occur at the resonance frequencies depicted in
figure 8. The power FRF values at these maxima are referred
to here as ‘resonant power’. Figure 15 shows the variation of
the resonant power with load. The theoretical graph shows
that the resonant power has turning points at loads of 3, 16.2,
85 k�, with the middle load giving a local minimum point
and the other two giving practically equal maxima. One
should note that the horizontal axis is logarithmic. Hence,
the first peak (occurring in a low resistance regime where the
horizontal subdivisions represent smaller increments) would
appear much sharper (i.e. thinner) when plotted on a linear
horizontal (resistance) scale. The optimal resonant load of
85 k� is validated by the experimental data, which show an
optimal load in the range 50–100 k�. The measured data
appears to show another peak occurring at a lower resistance
value and the ordinates of the two measured data peaks are
within 50% of each other.

The power curve in figure 15 can be obtained by squaring
the resonant voltage FRF values in figure 9 and dividing by
the corresponding resistance values. Hence, discrepancies
between theory and experiment are amplified as a result of the
squaring. However, the main reason why discrepancies appear
large in figure 15 is simply because the range of the vertical
axis is much narrower than that in figure 9 (the limits are 1–10
in figure 15 and 0.1–100 in figure 9).

Figure 16. Power FRF at short circuit and open circuit frequencies.

Figure 16 shows the variation with load of the power FRF
evaluated at two fixed frequencies: the short and open circuit
resonances. It can be observed that these curves have only
one turning point and that the maximum value of power is
almost the same in short circuit and open circuit conditions.
The optimum load is lower when the system is excited at the
short circuit frequency.

3.2.4. FRFs of tip response. Figure 17 shows the theoretical
and experimental results for the absolute tip displacement FRF
βabs(ω) for six different loads. As previously noted, the laser
measured βabs(ω), so the theoretical results were obtained
by combining equations (29) and (27). It can be seen that
both experiment and simulations exhibit similar behavior for
the rise and fall of the resonant tip response amplitudes with
load. It is important to note that changing the electrical load
not only affects the amplitude of the tip but also shifts the
resonance frequency of the system in the same way as it was
observed in voltage, current and power FRFs. It is noted that
the resonances occur at frequencies in excess of 100 Hz, for
which the 1/ω2 term in equation (27) is negligible. Hence,
the resonances in βabs(ω) and β(ω) are coincident. Hence, to
locate the theoretical resonance frequency at a given resistance
one can differentiate the modulus of the relative displacement
FRF in equation (29) and set the equation to zero. The
resulting polynomial equation is given in the appendix at the
end. The resonances obtained from this equation for different
loads produce a graph that is virtually coincident with that of
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Figure 17. Absolute tip response FRFs comparison: (a) model; (b) experimental.

Figure 18. Variation of resonant value of absolute (or relative) tip
response FRF with load (theoretical with experimental data points).

figure 8. Figure 18 shows the theoretical and experimental
variation of the resonant value of βabs(ω) with electrical load.
It can be observed that at the short circuit condition (when
the electrical power generated is negligible) the resonant tip
response is high. The resonant tip response then starts to
decrease as the electrical load is increased up to a certain value.
Beyond this value of electrical load, the resonant tip response
starts to increase again as open circuit conditions are reached,
for which the electrical power generated is negligible. It is
therefore obvious that when energy is removed from the system
during the energy harvesting process, additional damping is
added that reduces the tip response of the beam. The fine
resolution of the theoretical graph in figure 18 reveals that
the resonant tip response is minimum for a theoretical load
of 17 k�. It is important to note that, although the electrical
power generation results in additional damping, the theoretical
load that gives the lowest resonant tip response in figure 18
(17 k�), does not correspond to the theoretical load that gives
the maximum resonant power output in figure 15 (85 k�).
In fact, the theoretical load that gives the lowest resonant tip
response in figure 18 closely corresponds to the theoretical load
that gives the local minimum point in the middle of figure 15
(i.e. 16 k�). This can be explained by the fact that lowering
of the tip response (i.e. reduction in deformation) tends to limit
the power generated.

This feature is validated by the experimental data in
figures 18 and 15: the load of 25 k� gave the lowest measured

resonant tip response and a local minimum of the measured
resonant power. It is interesting to note that this feature was not
observed in the theoretical analysis of [21] and the theoretical
and experimental analyses of [1] since resistance values were
adjusted in larger steps than in the present case.

3.2.5. Evolution of Nyquist plots with load. Previous
research, e.g. [1], has only considered the magnitude of the
FRFs. However, the FRFs are complex-valued functions that
have both magnitude (amplitude ratio) and phase information.
Hence, a more thorough validation of the derived FRFs in
equations (28) and (29) is achieved by studying the Nyquist
plots. Figures 19 and 20 show the evolution with increasing
resistance of the Nyquist plots of the voltage FRF and flexural
tip velocity FRF first shown in figure 5. It is noted that the
plots of both types of FRF remain approximately circular.
The orientation of the circle of the voltage FRF (figure 19)
relative to the origin is seen to be significantly affected by the
resistance value, unlike the circle of the flexural tip velocity
FRF (figure 20). The reason for this is that the numerator
of the voltage FRF (equation (28)) is directly proportional to
the resistance R. On the other hand, in the numerator of
the tip deflection FRF (equation (29)), the resistance term is
small compared to the other term (i.e. 2). That the theoretical
and experimental Nyquist plots exhibit the same behavior with
increasing resistance is a powerful validation of the model.

It is noted that, despite the reasonably good correlation
between theory and prediction in figures 19 and 20, the
experimental data points show deviations from the main
circular pattern at some of the higher frequencies. These
deviations are in the form of a minor circular outgrowth
from the main circular pattern. They correspond to the
kink (shoulder) at around 133 Hz observed mainly in the
experimental tip response FRF magnitude plots in figure 17(b)
and, to a lesser extent, the experimental voltage FRF plots in
figure 7. It is likely that this effect is due to an unwanted
torsional mode (definitely not bending) that was inadvertently
excited in the experiments.

3.2.6. Limitations of theory. The authors consider that
measurement error alone is not enough to account for
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Figure 19. Nyquist plots of voltage FRF (including circle-fit through data points; ω increases clockwise from the origin).

discrepancies between theory and experiment. The following
assumptions are also likely to contribute to the discrepancies.

• The electrodes that bracket the upper and lower surfaces of
each piezo layer were assumed to be perfectly conductive
so that a single potential could be assumed for each
electrode surface.

• The bonding between the piezo layers and shim was
assumed to be perfect and the impedance of the adhesive
used was taken to be negligible.

It is also noted that the bimorphs were manufactured by
Piezo Systems Inc., who also supplied the parameters in
table 1. It may well be that deviations from these assumptions
would be equivalent to an unaccounted small electrical
impedance. However, its mechanism would most likely be
far more complex than that of a simple additional impedance.
Investigation of this possibility is beyond the scope of the
present research (in which the theory is restricted to a simple
resistive impedance).

4. Conclusions

In this paper, a distributed parameter model of a base-excited
piezoelectric bimorph clamped-free beam with no tip mass
was discussed and its experimental validation was performed.
The experimental work successfully confirmed the accuracy of
the distributed parameter modeling at a considerably higher
frequency than that tested in previous research. Frequency
response functions (FRFs) of the voltage, current, power and
tip response were studied at different electrical loads ranging
from 102 to 106 �. Theoretical and experimental graphs
showing the variation with load of the resonance frequency,
resonant voltage, resonant power and resonant tip response
have been presented. It was shown that the electrical effect
can only be regarded as a pure viscous damper at very low
electrical loads. The model predicted a 6% shift in the
resonance frequency of the harvester as the load was changed
from the short circuit (SC) condition to the open circuit (OC)
condition, and this was confirmed by the experimental results.
In between the SC and OC conditions the energy harvesting
effect resulted in additional damping that reduced the tip
response. However, it has been revealed in this paper that the
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Figure 20. Nyquist plot of tip velocity FRF (including circle-fit through data points; ω increases clockwise from the origin).

conditions for maximum power generation are not the same
as those for maximum mechanical damping. The load that
gave maximal resonant power was much higher than the load
that gave minimal tip response. The latter load was very
much closer to the load that gave a minimum turning point on
the resonant power versus load graph, since power generation
depends on the mechanical deformation. These findings were
backed by experimental evidence. Nyquist plots have been
used to provide a thorough validation of the FRFs and to
provide a self-validating means of estimating the mechanical
damping. The modal-based theoretical analysis used in this
paper will be verified for the first time against a completely
different theoretical method in a forthcoming paper [32].

Appendix

The frequency that gives maximum modulus of β(ω)|r in
equation (29) (i.e. the resonance frequency) satisfies the
following cubic in ω2:

Ba(ω
2)3 + Bb(ω

2)2 + Bcω
2 + Bd = 0 (38)

where

Ba = 2K 2
d K 2

a (39a)

Bb = −2K 2
d Ka Kc + K 2

d K 2
a K 2

b + 4K 2
d + 3K 2

e K 2
a

− 2K 2
d K 2

a ω2
r (39b)

Bc = 8K 2
e + 2K 2

e K 2
a K 2

b − 4K 2
e KaKc − 4K 2

e K 2
a ω2

r (39c)

Bd = 4K 2
e K 2

b − 8K 2
e ω2

r + K 2
e K 2

c + 4K 2
e Kb Kc

+ 2K 2
e Ka Kcω

2
r + K 2

e K 2
a ω4

r − 4K 2
d ω4

r (39d)

Ka = RCp, (40a)

Kb = 2ξrωr , (40b)

Kc = 2Rαr χr , (40c)

Ke = RCpmγ u
r φr (L), Ke = 2mγ u

r φr (L). (40d)
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