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ABSTRACT
Programming FPGAs with OpenCL-based high-level synthe-
sis frameworks is gaining attention with a number of commer-
cial and research frameworks announced. However, there are
no benchmarks for evaluating these frameworks. To this end,
we present CHO benchmark suite an extension of CHStone,
a commonly used C-based high-level synthesis benchmark
suite, for OpenCL. We characterise CHO at various levels
and use it to investigate compiling non-trivial software to
FPGAs. CHO is work in progress and more benchmarks will
be added with time.

Categories and Subject Descriptors
A.1 [General Literature]: Introductory and Survey; B.6.3
[Logic Design]: [automatic synthesis]; C.1.3 [Computer
Systems Organization]: Other Architecture Styles—adapt-
able architectures; D.1.3 [Software Engineering]: Metrics—
performance measures

General Terms
Experimentation, Measurement, Performance

Keywords
OpenCL, FPGA, High Level Synthesis, Accelerator

1. INTRODUCTION
Open Computing Language (OpenCL) [21] is an open stan-
dard for platform-independent, general purpose parallel pro-
gramming across CPUs, GPUs and accelerators. OpenCL
consists of an API for coordinating parallel computation and
a cross platform programming language (a subset of ISO
C99 with extensions for parallelism). It allows software to
be written once and executed on any device that supports
OpenCL. Its execution model consists of a host device which
submits computational intensive kernels to compute devices
for execution.

Programming Field-Programmable Gate Arrays (FPGAs)

with OpenCL-based High-Level Synthesis (HLS) frameworks
is now becoming mainstream with active support by the ma-
jor FPGA vendors [27]. HLS is the automatic conversion
of an algorithmic description into either a low-level Regis-
ter Transfer Level (RTL) description or a digital circuit [10].
RTL refers to the low-level design abstraction that models a
digital circuit in terms of the flow of digital signals between
registers and the logical operations performed on those sig-
nals. HLS allows a designer to work more productively at a
higher level of abstraction and achieve faster time-to-market
than using error prone and difficult to debug RTL. Further,
frameworks that use software programming languages, such
as C and OpenCL, open up the power of FPGAs to software
engineers (who outnumber hardware engineers by an order of
magnitude). OpenCL has been used in implementing diverse
algorithms on FPGAs [8, 11, 6].

Benchmarking is an important technique for analysing the
performance of systems by studying the execution of the
benchmark applications that are chosen to be a representa-
tion of the applications of interest. A good HLS benchmark
suite should allow HLS framework developers to qualitatively
evaluate new ideas as well serve as a standard for bench-
marking the diverse HLS frameworks available. From our
discussion with HLS users (especially non-FPGA experts),
who have to choose from the myriad of HLS frameworks, the
second objective is equally important as the first.

In this paper, we introduce CHO: a suite of benchmark appli-
cations for OpenCL-based HLS platforms that meets the ob-
jectives set out above. CHO is work in progress and presently
is a rewrite of the C-based CHStone benchmark suite [17].
We will be adding more applications with time. CHStone
is the commonly used HLS benchmark suite and consists of
12 applications from diverse application domains. Although
based largely on C, OpenCL differs in some aspects from
the standard C language. For example, OpenCL has disjoint
memory spaces and moving data from one memory space to
another need to be done explicitly. Hence, moving from one
language to the other is often not straightforward.

This paper makes the following contributions:

• We present CHO an OpenCL port of the CHStone HLS
benchmark enabling the benchmarking of OpenCL-based
HLS.

• We characterise CHO at various levels.



• We use CHO and a state-of-the-art OpenCL HLS frame-
work to evaluate compiling non-trivial programs to
FPGA.

2. RELATED WORK
Benchmarking of HLS frameworks does not have a rich his-
tory when compared to benchmarking of software platforms
and compliers. Early HLS framework developers tend to use
their own choice of applications for evaluation. In the 90’s,
the HLS community attempted to standardize benchmark-
ing by proposing the 1992 High-Level Synthesis Workshop
Benchmarks [14] and the 1995 High-Level Synthesis Design
Repository [30]. These benchmarks covered a number differ-
ent applications and application domains but were mostly
written in algorithmic VHDL. VHDL is a type of Hardware
Description Language (HDL) (specialized language for encod-
ing the structure, design and operation of electronic circuits).
However, HLS frameworks has since moved from HDLs to
high-level software languages, mostly variants of C. These
benchmark suites have a few C-based applications but they
are mostly tiny (less than a 100 lines of code) Digital Sig-
nal Processing (DSP) kernel loops [17]. Consequently, these
benchmarks are rarely used nowadays.

CHStone [17] is now the de-facto standard benchmark suite
used in the HLS community but it lacks support for OpenCL.
There are OpenCL benchmark suites used in evaluating het-
erogeneous computing platforms such as Valar [26], Rodina
[7] and SHOC [12] but they are too large and complex for
FPGA synthesis and fitting.

Commercial and research OpenCL frameworks are increas-
ingly being developed [27]. Notable frameworks include OpenCL-
to-Silicon framework [29], SDAccel Development Environ-
ment [32] and Altera SDK for OpenCL (AOCL) [5] (the
first HLS to pass OpenCL conformance tests [5]). To the
best of our knowledge none of the OpenCL frameworks were
benchmarked with any standard benchmark suite.

3. BACKGROUND
3.1 FPGAs
An FPGA is essentially a sea of Look-Up Tables (LUTs). A
LUT is a small high-speed memory and is programmed by
loading a function’s truth table as shown in Figure 1. Combin-
ing a LUT and a D flip-flop (a circuit with two stable states
and can be used to store information) results in what is often
referred to as a logic cell. Several logic cells together with
special-purpose circuitry such as an adder/subtractor carry
chain form a logic block. Logic blocks can be connected to
other logic blocks through a reconfigurable routing network
making it possible to implement complex functions. FPGAs
also contain other components such Block RAMs (BRAMs),
DSP slices, various communication interfaces (e.g. PCI Ex-
press) and even processor cores. Figure 2 shows a typical
high-end FPGA.

Modern FPGAs can have up to 4 million logic cells and 89
Mbits of BRAMs. Typically, FPGAs run at a much lower
clock frequency than CPUs and GPUs but can outperform
them by implementing custom and often more power efficient
execution pipeline [22, 31].

Figure 3 shows how a slower FPGA can outperform a CPU.

The figure compares the implementation of 32-bit integer bit
reversal [13] on an ARM 9 processor that requires about 38
instructions and 48 cycles, to an FPGA where the same oper-
ation can be performed by simply reversing the connections
between two buffers. It is assumed that CPU and the FPGA
implementation operate at the same frequency.

a b c ab + c
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0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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Figure 1: Implementing logic function f(a, b, c) = ab + c

Despite the advantages offered by FPGAs their use is still
largely restricted to a narrow segment of hardware program-
mers as programming often involves writing complex RTL
code. HLS raises the level of abstraction (and productivity)
by allowing algorithmic descriptions to be converted into
RTL or even a digital circuit. Most HLS frameworks are
now C-based and often support only a subset of the parent
language.

3.2 OpenCL Architecture
An OpenCL computing platform consists of a CPU host con-
nected to one or more OpenCL devices as shown in Figure 4.
The part of an application targeting the devices is called the
kernel. A kernel is hardware agnostic and should run on any
device that supports the OpenCL standard. Kernels are writ-
ten in OpenCL C programming language, a variant/subset
of C-99.
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Figure 2: FPGA architecture



x =  (x >>16)               |  (x <<16);
x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00);
x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0);
x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc);
x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa);

mov r3, r0
asr r2, r3, #16
lsl r3, r3, #16
orr r3, r2, r3
asr r2, r3, #8
bic r2, r2, #-16777216
bic r2, r2, #65280
lsl r3, r3, #8
bic r3, r3, #16711680
bic r3, r3, #255
orr r3, r2, r3
asr r2, r3, #4
mov r1, r2
...............
...............
...............
...............

Binary
Compilation

ProcessorProcessor

 Requires 48 
cycles on ARM9

C Code for bit reversal

(a) ARM9 bit reversal

Hardware for bit reversal
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(b) FPGA bit reversal

Figure 3: How FPGAs outperform CPUs and GPUs
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Figure 4: OpenCL Platform Architecture

The other part of an OpenCL application, the host, executes
on the CPU and submits commands to perform the compu-
tations expressed in the kernels on devices. A kernel instance
is called a work-item and multiple instances can be grouped
into independent work-groups.

Two types of programming models are explicitly supported
within OpenCL; the data parallel programming model and
the task parallel programming model. In the task parallel
programming model, a kernel is executed using a single work-
item within a work-group while in the data parallel program-
ming model multiple work-items are employed with input
data partitioned across work-items.

The host defines a context for the execution of the kernels.
The context includes the following resources: devices (devices
to be used by the host), kernels (functions to run on devices),
program objects (program sources and executables that im-
plement the kernels) and memory objects(memory objects
visible to the host and devices which contain values that
can be operated on by the kernel instances). The context is
created and manipulated by the host via OpenCL API.

Work-items have access to 4 disjoint memory regions: global
memory (read/write memory accessible by all work-items),
constant memory (read-only memory accessible to all work-
items), local memory (read/write memory local to a work-
group) and private memory (read/write memory private to
a work-item)
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Figure 5: Altera OpenCL SDK (AOCL)

3.3 OpenCL HLS Compilers
A typical OpenCL HLS framework can be divided into two
parts, the front-end and the back-end. The front-end con-
verts the kernels to RTL code while the back-end compiles
the RTL down to FPGA bitstream (the configuration data
that is loaded into the FPGA).

Figure 5 shows the structure of AOCL [11], the first commer-
cial OpenCL-based HLS framework. The front-end leverages
LLVM compiler infrastructure [23]. LLVM is increasingly
used as the front-end of C-based HLS frameworks. The C-
language front-end parses the kernel into LLVM Intermediate
Representation (IR). LLVM IR uses simple RISC-like instruc-
tions augmented with high-level information such as types
and explicit control flow graphs to represent programs (see
Figure 6 and Figure 7). Notice that the LLVM instructions
in Figure 7 are simple enough to translate directly into hard-
ware operations (e.g., a load from memory, an arithmetic
computation). Hence, the rest of the front-end operates di-
rectly on the IR [11]. Each basic block is analysed and a
control data flow graph is created for operations within a
block. Each basic block is a hardware module that takes in-
puts from either the kernel arguments or another basic block,
processes the data according to the instructions within and
then produces output that is passed to other basic blocks.
The basic-blocks are connected together to produce a com-
plete circuit.

The scheduler attempts to minimize execution time as well
as area. Finally, the RTL generator converts the IR instruc-
tions into Verlog RTL. The compiler automatically generates
interfaces for accessing the off-chip memory (which serves as
OpenCL’s global memory) and the PCI Express link (used
by the host program to access the global memory). The tra-
ditional hardware compilation (synthesis) tools are used to
synthesize the RTL code for FPGA.

The host program can be compiled with any C/C++ com-
piler and linked against AOCL’s host library. This library
implements the OpenCL function calls that launch the ker-
nels on an FPGA. A module embedded inside the FPGA,
termed the Auto-Discovery module, allows the host program
to query the FPGA about the kernels it holds. AOCL per-
forms offline compilation only.

AOCL creates pipelined circuits to increase performance
and maps work-items to pipeline stages. Let us assume that



__kernel void vector_add(__global int *a, __global ←↩
int *b, __global int *c)

{
int i = get_global_id (0);
c[i] = a[i] + b[1];

}

Figure 6: Vector addition in OpenCL

entry:
%call = tail call i32 (i32, ...)* bitcast (i32 (←↩

...)* @get_global_id to i32 (i32, ...)*)(i32 ←↩
0) #2

%idxprom = sext i32 %call to i64
%arrayidx = getelementptr inbounds i32* %a, i64 ←↩

%idxprom
%0 = load i32* %arrayidx, align 4, !tbaa !2
%arrayidx1 = getelementptr inbounds i32* %b, i64 ←↩

1
%1 = load i32* %arrayidx1, align 4, !tbaa !2
%add = add nsw i32 %1, %0
%arrayidx3 = getelementptr inbounds i32* %c, i64 ←↩

%idxprom
store i32 %add, i32* %arrayidx3, align 4, !tbaa ←↩

!2
ret void

Figure 7: Vector addition in LLVM IR

AOCL has created a three stage (load, add and store) pipelined
hardware for the kernel in Figure 6, as shown in Figure 8.
On the first clock cycle, work-item 0 is clocked into the load
stage. The circuit starts the processing of work-item 0 with
fetching the first element of data from arrays a and b. On
the second cycle, work-item 1 is clocked in while work-item
0, which has completed its read from memory and stored
the results in the registers, moves to the second stage of
the pipeline. Processing completes when the last work-item
(work-item 7) exits from the last stage of the pipeline. For
work-groups with a single work-items (i.e. kernels written in
a task parallel fashion), AOCL would attempt to pipeline
loops within kernels, using loop pipelining [4], to improve
performance.

4. CHO BENCHMARK SUITE
4.1 Overview
CHO extends the popular C-based CHStone HLS bench-
mark suite providing a means of benchmarking present and
emerging OpenCL frameworks. The kernels in CHO are im-
plemented using OpenCL task parallel model (i.e. one work-
item per work-group). This requires minimal changes to the
overall structure of the original code. Further, some of the
programs are difficult to express using the data parallel pro-
gramming model.

CHO, as its progenitor, consists of 12 diverse applications
as shown in Table 1. CHO targets OpenCL 1.0, the mini-
mum standard, allowing it to be compiled by any OpenCL
compliant compiler as OpenCL is designed to be backward
compatible. Like CHStone we do not prescribe a particular
way of using CHO.

Porting CHStone to OpenCl required eliminating the use of
non-constant global variables as global variables in OpenCL
must be constants. We made extensive use of structures

4 5 6 7

work-group

work-items

load load

0

1

2

3

store

add

Figure 8: AOCL pipeline implementation

(struct) to pass state from one function to another. To im-
prove performance we allocated variables whenever possible
in the private memory space as it is by definition the fastest
memory in OpenCL. To allow compilers to perform memory
optimization we added restrict keyword to pointer argu-
ments whenever possible. The restrict informs compilers
that pointers that share the same type do not alias.

Each application in CHO is a single kernel and has a test-
bench that is part of the host program. Each kernel read-
s/writes its input/output data from/to the host side (via
PCIe and the global memory). Implementing the test-bench
on the host instead of encoding in the kernel enables the study
of how an OpenCL HLS compiler would handle external I/O
interfacing between the FPGA and the host (assuming that
is done automatically by the framework). I/O bandwidth
and latency and its interfacing are critical components in
FPGA design. Often implementations need to be specialized
based on achievable external input and output bandwidth.
We reused the test-vectors from CHStone.

4.2 CHO Kernels
The kernels in CHO are diverse, substantial, real world ap-
plications. They have all been shown to map well to FPGA
using different languages, tools and technique making them
ideal for benchmarking HLS frameworks targeted at FPGAs.
Consequently, the suite is biased towards“embedded comput-
ing”where FPGAs have been used for decades for implement-
ing algorithms. We describe briefly, next, the applications in
the suite.

dfadd: is an implementation of IEC/IEEE-standard double-
precision floating-point addition using 64-bit integers.

dfdiv: is an implementation of IEC/IEEE-standard double-
precision floating-point division using 64-bit integers.

dfmul: is an implementation of IEC/IEEE-standard double-
precision floating-point multiplication using 64-bit in-
tegers.



Domain Application Description Original Sources

Arithmetic

dfadd IEC/IEEE double-precession floating-point addition SoftFloat [18]

dfdiv IEC/IEEE double-precession floating-point division SoftFloat [18]

dfmul IEC/IEEE double-precession floating-point multiplication SoftFloat [18]

dfsin Double-precession floating-point sine function SoftFloat [18]

Media

adpcm Adaptive differential pulse code encoder & decoder SRTB [25]

gsm GSM residual pulse excitation/long term prediction coding MediaBench [9]

jpeg JPEG image decoder CHStone [17], PVRG [20]

motion Motion vector decoding for MPEG-2 AiLab [1]

Cryptography

aes Implementation of Advanced Encryption Standard AiLab [1]

blowfish Blowfish Encryption Algorithm MiBench [16]

sha Secure Hash Algorithm MiBench [16]

Miscellaneous MIPS Simplified MIPS processors CHO [17], SoftFloat [18]

Table 1: CHO Kernels

dfsin: implements the sine function using 64-bit integers. It
has several functions in common with the previously
listed kernels.

adpcm: is an implementation of ITU G.722 Adaptive Dif-
ferential Pulse-Code Modulation (ADPCM) algorithm
used in the encoding and decoding audio signals. It
is often used in Voice over IP communications. The
kernel includes encoding and decoding functionalities.

gsm: is an implementation of Linear Predictive Coding, a
method of encoding good quality speech at a low bit
rate.The kernel implements only the lossy sound com-
pression used in GSM (a mobile communication proto-
col)

jpeg: is an implementation of the JPEG still picture com-
pression standards.

aes: implements the AES symmetric-key (the same key is
used for encrypting and decrypting data) cyrpto-system.
Encryption and decryption modules are implemented.

blowfish: is an implementation of the encryption function
of Blowfish. Blowfish is a symmetric-key block cipher.

sha: implements the Secure Hash Algorithm, a cryptographic
hash function.

4.3 Functional Verification
We tested CHO to ensure that we correctly implemented each
kernel. First, we verified that the kernels can be parsed by any
standard-complaint OpenCL 1.0 front-end. Since OpenCL-
based HLS frameworks often rely on LLVM for their font-end
processing we used Clang’s [2] OpenCL 1.0 parser for our
tests. Clang is a compiler front-end that converts C-based
programming languages into LLVM IR. Syntax checking of
kernels is important as OpenCL compilers are often varyingly
lax in enforcing syntax correctness.

We validated that the kernels are functionally correct and
produce the right results by compiling and running all kernels

Device Type Driver/Compiler

Intel Core i5 CPU Intel OpenCL SDK 2013R3

Intel Core i5 CPU AMD APP SDK 2.9

Intel Xeon E3 CPU Intel OpenCL SDK 2013R3

Intel Xeon E3 CPU AMD APP SDK 2.9

Table 2: Functional Test Platforms

on different OpenCL devices. The devices used are shown in
Table 2. All the kernels compiled and produced the correct
results on execution.

5. CHARACTERIZING CHO
We characterised CHO at the source-level, after conversion
into Abstract Syntax Tree (AST) and the IR-level, after con-
version to LLVM-IR.

5.1 Source-Level Characterization
We implemented a Clang plugin that walked each kernel’s
AST and classified every token. We run the plugin on the
AST produced by the Clang compiler. Table 3 is a summary
of the source-level characteristics of the each kernel. ‘Domi-
nant Type’ in the table refers the representative data type
in each kernel while ‘LoC’ refers to the lines of code in the
source excluding comments and empty lines. The table shows
that kernels are non-trivial implementations with hundreds
of lines of code, multiple functions plus diverse statements
and operators.

Some kernels perform multiplications and divisions which
are expensive. On FPGAs, division is the most expensive op-
erator to implement followed by multiplication [24]. Modern
FPGAs often have DSP blocks with high-speed embedded
multipliers making it possible to multiply without using logic
resources. However, there are only a few of these on FPGAs
which implies that kernels that perform a lot of multipli-
cations may still have to implement some of the multipliers



Kernel Dominant TypeLoC Functions
Variables Statements Operators

Scalar Aggregate for if goto/break switch while Divide Multiply Add/Sub Compare Shift Assign Logic

adpcm 32-bit int 463 21 103 13 10 17 1 0 0 4 36 112 27 29 171 7

aes 32-bit int 667 10 42 25 16 24 31 6 0 14 95 98 41 184 389 209

blowfish 8-bit char 495 4 38 16 6 9 0 0 4 0 9 178 16 123 267 267

dfadd 64-bit int 352 81 2 18 1 43 6 0 0 0 0 29 46 21 104 34

dfdiv 64-bit int 280 19 96 1 1 31 0 0 2 2 4 33 45 30 100 31

dfmul 64-bit int 350 16 74 1 1 28 0 0 0 0 4 25 38 24 90 31

dfsin 64-bit int 611 31 178 1 1 74 6 0 3 2 7 54 91 45 188 65

gsm 32-bit int 310 12 45 7 17 16 0 0 1 0 47 168 57 23 211 11

jpeg 32-bit int 1061 31 204 30 34 58 11 1 11 3 52 135 92 44 342 21

mips 32-bit int 215 1 17 3 2 3 35 3 4 0 2 12 10 22 57 23

motion 32-bit int 436 13 59 15 7 21 0 0 4 2 6 40 28 16 84 7

sha 64-bit char 178 8 42 15 10 2 0 0 4 2 1 42 16 23 90 32

Table 3: Source-Level Characteristics

Optimization
&
Transformation

Description

inline Bottom-up inlining of functions into
callees

jump-
threading

Attempts to find distinct threads of
control flow running through a basic
block

simplifycfg Removes dead code and merges
basic-blocks

loop-rotate Simple loop rotation

gvn Removes fully and partially redun-
dant instructions plus redundant
load elimination

instcombine Combines instructions into fewer
and simpler instructions

Table 4: LLVM transformations and optimizations

using logic resources. All divisions must be implemented with
logic resources which may use-up logic resources if there are
many of them. Generally, these expensive functions can be
shared reducing the number required as well as performance.

5.2 IR-Level Characterization
Since LLVM IR instructions are simple enough to directly
correspond to hardware operations characterizing at the IR-
level provides a more accurate and detailed picture about how
kernels may be mapped to FPGAs. For instance, a single loop
at the source-level may be simplified and split into multiple
loops at the IR-level.

For IR-level characterization, we implemented a Clang/LLVM
compiler that mimics the front-end of a generic OpenCL HLS
compiler. Our custom compiler first translates OpenCL into
LLVM IR and then applies transformations and optimiza-
tions [19] that has been shown to improve performance on
FPGAs. These optimizations are shown in Table 4.

Table 5 summarizes the IR-level characteristics of CHO ker-
nels. Notice that the number of loops has increased moving
from source-level to IR-level as a result of running simplify-

Kernel Number
Basic
Blocks

Number
Instructions

Number
Loops

adpcm 95 2240 19

aes 186 5685 23

blowfish 58 5441 10

dfadd 199 1421 1

dfdiv 115 1212 3

dfmul 90 846 1

dfsin 469 4216 2

gsm 149 1493 18

jpeg 661 10261 109

mips 46 472 3

motion 1743 15121 326

sha 79 1364 30

Table 5: IR-Level Characteristics

cfg. The compiler splits complex loops into multiple simpler
efficient loops. Figure 9 is a breakdown of the IR-level in-
structions by instruction types. In the diagram, ‘Memory’
refers to load and store type instructions plus address gener-
ating instructions while ‘Control’ refers to instructions, such
as branch, that transfer control from one part of a kernel to
another. For some kernels e.g. gsm the expensive operators,
multiplication and division, are still significant.

6. SYNTHESIZING CHO
In this section, we present the results of our attempts at syn-
thesizing kernels in the CHO benchmark suite using AOCL,
a state-of-the-art OpenCL HLS framework. The main objec-
tive is to determine if we can synthesize unmodified OpenCL
kernel for FPGA. We have not modified the kernels so they
are the same as those that run on the ‘software’ platforms
in Table 2.

6.1 Target Compiler and Platform
We use AOCL 14.1.1.190 and target Nallatech P385-A7 FPGA
accelerator card. The P385-A7 (its features are described in
table Table 6) is based on Altera’s Stratix V GX-A7 FPGA.



0

25

50

75

100

ad
pc

m

ae
s

bl
ow

fis
h

df
ad

d

df
di

v

df
m

ul

df
si

n

gs
m

jp
eg

m
ip

s

m
ot

io
n

sh
a

kernel

%

instructions class

Add/Sub

Compare

Control

Div/Mul

Logic

Memory

Others

Shift

Figure 9: LLVM IR instruction classes

FPGA Altera 5SGXMA7H2F35C2

Form Factor Half-length Half-height PCIe Card

Host Interface 8-lane Gen3 PCIe

Memory 8GB DDR3 SDRAM

Table 6: P385-A7 FPGA accelerator card

AOCL supports augmenting OpenCL kernels by specifying
kernels attributes. The available attributes are listed below.

• packed: Specifies that AOCL should not enforce data
alignment requirements.

• aligned(N): Used to specify the amount of data struc-
ture padding to be added to a data member. N is the
amount of padding

• reqd_work_group_size: Specifies the required work-
group size allowing AOCL to allocate the exact amount
of FPGA resources needed to manage work-items in a
work-group.

• max_work_group_size: Defines the maximum number
of work-items that can be allocated within a work-
group.

• num_compute_units: Sets the number of compute units
to be instantiated to process the kernel. AOCL dis-
tributes the work-groups within a kernel across the
specified number of compute units increasing through-
put. This may increase global memory bandwidth con-
tention among compute units.

• num_simd_work_items: This is similar to the attribute
above but involves only replicating the datapath in a
single instruction multiple data (SIMD) fashion. For
AOCL to implement a SIMD datapath, the value of
num_simd_work_items must evenly divides the value
specified for reqd_work_group_size.

• local_mem_size: Defines the size of local memory al-
located to pointer argument with local specifier. The
default is 16 kB.

Adaptive Logic Modules (K) 235

Registers (K) 939

M20K Memory Blocks 2,560

M20K Memory (MBits) 50

Variable Precision Multipliers (18x18) 512

Variable Precision Multipliers (27x27) 256

DSP Blocks 256

Fabric clock (MHz) 800

Table 7: Starix V GX-A7 features

AOCL also supports the #pragma unroll <N> directive. This
directive informs AOCL to attempt to unroll a loop N times.
Omitting N directs AOCL to try complete unrolling.

Table 7 shows the features of Altera Stratix V GX-A7. In
the table, Adaptive Logic Modules refers to Altera’s logic
blocks. Each block has 8 inputs with a Adaptive Look-Up
Table (ALUT) (Altera’s name for LUTs), 2 adders and 4
registers. Variable Precision Multipliers are the embed-
ded, high-speed, variable precession multipliers. They can
perform 9-bit, 18-bit, 27-bit and 36-bit word lengths opera-
tions. These multipliers are part of a larger structure called
a DSP block. Stratix V devices contain dedicated memory
blocks (Block RAMs), each 20-Kb in size, called M20K blocks.
The number of blocks and the total number of RAM bits
available from all M20K blocks are given in the table.

6.2 Sythesis Results
We were unable to synthesize and run every kernel in CHO
for various reasons. However, we have seen a two-fold increase
in the number of synthesizable kernels compared to the pre-
vious major version of AOCL [28]. For jpeg and motion the
front-end stopped after internal compiler error. A summary
of our attempts at synthesizing the kernels is presented as
Table 8. In the table, 3 means that a kernel was successfully
synthesised. After synthesis, adpcm, mips and sha failed to
produce the correct results while blowfish and gsm failed
to run to completion. We were able to synthesize blowfish
and run it using an older version (13.1) of AOCL.

The kernels were compiled using the attributes shown in
Table 9. In addition to the attributes in the table, we used
#pragma unroll (N) directive to unroll loops with statically
determinable loop bounds. Table 10 presents the synthesis
results.

Note that blowfish in Table 9 was compiled with AOCL 13.1
as explained earlier while the rest of the kernels was com-
piled with AOCL 14.1, hence the different set of attributes
used. In AOCL 13.1, max_share_resources limits the num-
ber of times an operator e.g. multiplier can be reused without
reducing computational throughput, num_share_resources
sets the number of times an operator can be reused and
max_unroll_loops limits the number of times AOCL can
unroll each loop in a kernel. The attributes used for blow-
fish were set automatically by AOCL.

In Table 10, ‘Loops’ refers to the number of loops at the



Kernel Synthesizable Notes

adpcm 3

aes 3

blowfish 3

dfadd 3

dfdiv 3

dfmul 3

dfsin 3

gsm 3

jpeg 7 Front-end error

mips 3

motion 7 Front-end error

sha 3

Table 8: Summary of Synthesis

Kernel Attributes Settings

aes num_compute_units(1)

reqd_work_group_size(1,1,1)

blowfish max_unroll_loops(1)

num_compute_units(2)

num_share_resources(1)

max_share_resources(8)

dfadd num_compute_units(1)

reqd_work_group_size(1,1,1)

dfdiv num_compute_units(1)

reqd_work_group_size(1,1,1)

dfmul num_compute_units(1)

reqd_work_group_size(1,1,1)

dfsin num_compute_units(1)

reqd_work_group_size(1,1,1)

Table 9: OpenCL attributes

LLVM-IR level while ‘Pipelined Loops’ refers to the num-
ber of those loops that AOCL managed to fully pipeline i.e.
loops without Loop-Carried Dependencies (LCD) [4]. AOCL
attempts to pipeline [15] (overlapping computations for dif-
ferent loop iterations in time and space) all loops so as to
have a fully pipelined hardware structure. Some of the loops
may have LCD which requires AOCL to generate extra hard-
ware to account for these dependencies reducing throughput.
Therefore, rewriting loops (following Altera’s recommenda-
tions [3]) to minimize LCD is a good approach to improving
performance. Pipelining in the presence of LCD is an active
research area and techniques developed in this area could be
beneficial to future HLS frameworks.

LCD is particularly a problem for blowfish where 3 of its
loops each causes, on the average, a 567 cycles pipeline stall
(i.e. successive iterations launched every 567 cycles) The cu-
mulative effect of this is a significant degradation of perfor-
mance as shown in the next section. Note that information
about loops are available from the AOCL during compila-
tion.

A
LM D
S

P

LA
B

M
20

K

M
bi

ts

AL
M

DSP

LAB

M20K

Mbits

ALM

DSP

LAB

M20K

Mbits

ALM

DSP

LABM
20K

M
bits

A
LM

D
S

P

LA
B

M
20

KM
bi

ts

ALM

DSP

LAB

M20K

Mbits

10% 

20% 

40% 

80% 

aes

blow
fish

dfadd

dfdiv

dfmul

df
si

n

resources

unused

used

Figure 10: Percentage resource utilization
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Figure 11: Comparing performance

Notice that the number of loops in Table 5 and Table 10 don’t
exactly correspond. This is because our custom compiler and
AOCL may not be using the same set of optimizations and
versions. Further, AOCL completely unrolls some of the loops
as could be inferred from dfmul.

Figure 10 shows the percentage resource usage in terms on
ALMs, LABs, DSP blocks, M20K blocks, total number of
memory bits (Mbits in the figure). It gives a rough indication
of the ”complexity” of each implementation on the FPGA.

6.3 Performance
Figure 11 compares the execution time of the successfully
synthesized kernels on the FPGA platform and on a CPU
platform. The details of the CPU platform is shown as Ta-
ble 11. Note that OpenCL is not performance portable and
that we didn’t manually optimize the kernels for FPGA. Com-
pilation for the CPU was done offline to match AOCL. AOCL
presently doesn’t support out-of-order execution i.e. the ex-
ecution of multiple tasks in parallel therefore performance
measurements was done with a single task executing on the
CPU and the FPGA.



Kernel fmax (MHz) ALMs LABs ALUTs Registers M20K Memory Bits DSP Blocks Synthesis
Time

(Hours:Mins)

Loops Pipelined
Loops

aes 150 185 751 21 922 210 557 297 648 1788 36 618 240 1 05:50 15 11

blowfish 200 147 981 19 724 151 907 270 884 1567 7 946 172 0 03:00 11 7

dfadd 220 190 067 22 142 190 489 267 431 1131 23 162.880 0 01:15 1 1

dfmul 223 104 976 13 479 112 579 163 412 389 2 050 512 160 01:43 1 1

dfdiv 117 117 403 19 929 110 387 275 825 1111 4 096 652 72 03:45 1 0

dfsin 107 195 113 12 914 98 391 368 809 1576 32 276 480 162 02:59 10 6

Table 10: Synthesis results

CPU Intel Xeon CPU E31245 @ 3.30GHz

Memory Size 16 GB DDR3

OpenCL SDK Intel Kernel Builder for OpenCL 1.4.0.117

Table 11: CPU platform features

FPGA outperforms the CPU, without the overhead of PCIe
data transfer, except for aes, blowfish and dfsin. For blow-
fish, the FPGA is slower than the CPU, by an order of mag-
nitude. As mentioned earlier, blowfish suffers from having
loops that are significantly affected by LCD.

7. CONCLUSION
In this paper, we presented CHO, presently an OpenCL port
of the commonly used CHStone HLS benchmark. CHO aims
to enable HLS framework developers to qualitatively eval-
uate new ideas as well as enable the benchmarking of the
increasing number of OpenCL HLS frameworks.

We characterised CHO at the OpenCL source-level and at the
LLVM IR-level. We showed that kernels in the benchmark
suite are substantial. IR-level characterization provides more
detailed information as the LLVM IR instructions are simple
enough to directly correspond to hardware operations.

We synthesized all but 2 of the kernels. However, only 6 of the
12 kernels ran to completion and produced the correct results.
We recognize that AOCL is relatively new and could improve
with time. In fact, we have noticed that the number of kernels
that are synthesizable and runnable seems to increase with
each new version of the compiler.

We showed that it is straightforward to compile unmodified
OpenCL kernels down to FPGA (when compilation works).
However, simply compiling algorithms designed for GPUs
and CPUs to FPGAs may not lead to performance improve-
ments.

There are a number of possible directions for future work.

• The programs in CHStone, which we ported to OpenCL,
are skewed towards ”embedded computing” where FP-
GAs has been used for decades. We are looking at in-
troducing programs from other areas, such databases,
that have been shown to have efficient FPGA imple-
mentations.

• CHO employs, exclusively, OpenCL’s task parallel pro-
gramming model. However, an OpenCL-based HLS
framework may compile the two programming models
differently as is the case with AOCL. We are looking
at introducing kernels into CHO that can be mapped
efficiently onto the data parallel programming model
of OpenCL.

8. SOFTWARE DOWNLOAD
CHO is publicly available at http://it302.github.io/cho.
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