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Abstract. We investigate the nilpotent blocks of positive defect of the quasisimple
groups for odd primes. In particular, it is shown that every nilpotent block of a quasisimple
group has abelian defect groups. A conjecture of Puig concerning the recognition of nilpo-
tent blocks is also shown for these groups.

1. Introduction

Let G be a finite group and k an algebraically closed field of odd characteristic p. A
block B of kG with defect group D is said to be nilpotent if for each QeD and each block
bQ of CGðQÞ with Brauer correspondent B we have that NGðQ; bQÞ=CGðQÞ is a p-group,
where NGðQ; bQÞ is the stabilizer of bQ under conjugation in NGðQÞ. In the case of the prin-
cipal block B0, D is a Sylow p-subgroup of G and NGðQ; bQÞ ¼ NGðQÞ for each QeD, so
that B0 is nilpotent if and only if G is p-nilpotent (i.e., G has a normal p-complement).
Note that every block of defect zero must be nilpotent, and the classification of blocks of
defect zero for finite simple groups has been the subject of a separate program of research,
culminating in [21]. Hence we give attention here only to blocks with non-central defect
groups.

Explicit characterizations of nilpotent blocks are obtained for classical groups, and
these are used to prove:

Theorem 1.1. Let G be a finite quasisimple group and let B be a nilpotent p-block of G

with p odd. Then B has abelian defect groups.

The second main result concerns the conjecture of Puig which states that a block B of
G is nilpotent if and only if lðbQÞ ¼ 1 for each p-subgroup Q and each block bQ of CGðQÞ
with Brauer correspondent B (where lðbQÞ is the number of irreducible Brauer characters in
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bQ). The necessary condition for nilpotency is well-known. The converse is known for
blocks with abelian defect groups (see [30]), and is also known to be a consequence of
Alperin’s weight conjecture (see [33]). We prove:

Theorem 1.2. Let G be a finite quasisimple group and let B be a p-block of G with p

odd. Then B is nilpotent if and only if lðbQÞ ¼ 1 for each p-subgroup Q and each block bQ of

CGðQÞ with ðbQÞG ¼ B.

The main part of the paper concerns the representation theory of finite groups of Lie
type in non-defining characteristic, and makes use of the examination of subpairs of blocks
of classical groups given in [17]. The exceptional groups of Lie type are then treated by ex-
amination of the centralizer of an element of the centre of a defect group, and the results
for the classical groups applied.

In Section 2 we review the basic notation regarding blocks, give some general results
concerning nilpotent blocks, particularly with regard to block domination, and also prove
some technical lemmas which will be useful later on. In Section 3 we consider the alternat-
ing groups and their covering groups. Here we have able to give a rather complete descrip-
tion of the nilpotent blocks. The covering groups of the sporadic simple groups are treated
in Section 4. We give some basic notation used for the classical groups in Section 5. In
Section 6 we give a treatment of the general linear and unitary groups, where again we
are able to give a full characterization of the nilpotent blocks. In Section 7 we state the set
of properties which are central to the study of the nilpotent blocks of the groups of Lie
type. These are rather technical conditions, none of which can be satisfied by a nilpotent
block with non-abelian defect groups, which amongst other things allow us to use induc-
tive arguments when studying the exceptional groups. That these conditions hold for the
classical groups is the content of Section 8, and for the exceptional groups is the content
of Section 9.

2. Notation and general results

Let G be a finite group and p a prime. Although the classification concerns only
blocks with respect to a field of characteristic p, we use methods from ordinary character
theory, for example canonical characters, and so must use a p-modular system. Let O be a
local discrete valuation ring, complete with respect to the p-adic valuation, with field of
fractions K of characteristic zero and algebraically closed residue field k ¼ O=JðOÞ of char-
acteristic p. We assume that O contains a primitive jGjth root of unity. Write BlkðGÞ for
the set of blocks of OG and denote by B0ðGÞ the principal block of G.

Let N be a normal subgroup of G and write IrrðGÞ for the set of irreducible K-characters
of G. For y A IrrðNÞ, we denote by IrrðG j yÞ the subset of IrrðGÞ consisting of charac-
ters covering y. We denote by IrrðBÞ the set of irreducible characters belonging to B,
kðBÞ ¼ jIrrðBÞj, and combine with the above notation freely.

Let B be a p-block of a finite group G. A B-subgroup is a subpair ðQ; bQÞ, where Q is
a p-subgroup of G and bQ is a block of QCGðQÞ with Brauer correspondent ðbQÞG ¼ B.
The B-subgroups with jQj maximized are called the Sylow B-subgroups, and they are the
B-subgroups for which Q is a defect group for B. Recall that the canonical character of bQ
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is the unique irreducible character in bQ with Q in its kernel. This will be a valuable tool
when comparing subpairs of a group with those of a normal subgroup.

A useful, and well-known, result is the following:

Proposition 2.1. Let B be a block of a finite group G. Suppose a defect group D of B

is abelian. Then B is nilpotent if and only if NGðD; bDÞ ¼ CGðDÞ, where ðD; bDÞ is a Sylow

B-subgroup.

In general, we cannot say very much about the relationship between nilpotency of
blocks and nilpotency of covered blocks, and this is a main reason behind the di‰culty of
the classification of nilpotent blocks of groups of Lie type.

However, we do have the following lemma by [24], Proposition 6.5.

Lemma 2.2. Let N be a normal subgroup of a finite group G such that G=N is a

p-group. Suppose that B is a block of G and that b A BlkðNÞ is covered by B. Then B is

nilpotent if and only if b is nilpotent.

We note that the analogous result does not hold if G=N is not a p-group. There are
many examples of non-nilpotent blocks covering nilpotent blocks, but there are also exam-
ples of nilpotent blocks covering non-nilpotent blocks, such as the following (which came
to light during a conversation with Radha Kessar):

Example 2.3. Let G ¼ PGLð3; 7Þ, N ¼ PSLð3; 7Þ and p ¼ 2, so that ½G : N� ¼ 3.
Then N has a unique block b with defect group DGZ2 � Z2 and b is not nilpotent. More-
over, b is covered by a nilpotent block B of G.

Note that CNðDÞ ¼ Z6 � Z2. Let Irr0
�
CNðDÞ

�
be the subset of Irr

�
CNðDÞ

�
con-

sisting of characters of CNðDÞ whose kernel contains D. Then
��Irr0

�
CNðDÞ

��� ¼ 3. In
addition, CNðDÞ has a unique character (the trivial character) x A Irr0

�
CNðDÞ

�
such that

NNN ðDÞðxÞ ¼ NNðDÞ, and two characters x A Irr0
�
CNðDÞ

�
such that NNN ðDÞðxÞ ¼ CNðDÞ:3.

It follows that N has exactly one block b with a defect group D and b is non-nilpotent, as
NNðD; bDÞ ¼ CNðDÞ:3 for a Sylow b-subgroup ðD; bDÞ.

Moreover, CGðDÞ ¼ Z6 � Z6, NGðDÞ=CGðDÞGS3 and
��Irr0

�
CGðDÞ

��� ¼ 9. In addi-
tion, CGðDÞ has a unique character (the trivial character) x A Irr0

�
CGðDÞ

�
such that

NNGðDÞðxÞ ¼ NGðDÞ, and eight characters x A Irr0
�
CGðDÞ

�
such that NNGðDÞðxÞ ¼ CGðDÞ.

It follows that G has exactly one block B with a defect group D and B is nilpotent, as
NGðD; bDÞ ¼ CGðDÞ for a Sylow b-subgroup ðD; bDÞ. Since b is covered by a block of G

with a defect group D, it follows that b is covered by B.

Recall that for N pG, a block B of G is said to dominate the block B of G=N if the
inflation to G of an irreducible character in B lies in B.

The following lemma follows by [33], Lemma 2.

Lemma 2.4. Let Z be a central p-subgroup of a finite group G, B A BlkðGÞ and B the

block of G :¼ G=Z dominated by B. Then B is nilpotent if and only if B is nilpotent.
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Let Z be a central p 0-subgroup of a finite group G, and write H ¼ HZ=Z, where
H eG. Let B A BlkðGÞ. There is a unique block B A BlkðGÞ dominating B. By [25], Theo-
rem 5.8.8, IrrðBÞ ¼ IrrðBÞ and if D is a defect group of B, then DZ=Z GD is a defect group
of B.

If Q is a p-subgroup of G, then C
G
ðQÞ ¼ CGðQÞ=Z (since Z is a central p 0-subgroup).

Let ðQ; b
Q
Þ be a B-subgroup. Then Q ¼ QZ=Z for a unique p-subgroup Q of G. Since

C
G
ðQÞ ¼ CGðQÞ=Z, we may consider the unique subpair ðQ; bQÞ with bQ dominating b

Q
,

which we call the Brauer pair dominating ðQ; b
Q
Þ.

We show that ðQ; bQÞ must be a B-subgroup, and that dominance of subpairs respects
the usual partial order on B-subgroups:

Lemma 2.5. Let Z be a central p 0-subgroup of a finite group G, and let ðQ; b
Q
Þ

and ðP; bPÞ be B-subgroups, where B is the block of G dominated by B. Suppose ðQ; bQÞ
and ðP; bPÞ are subpairs of G dominating ðQ; b

Q
Þ and ðP; bPÞ, respectively. Then

ðQ; b
Q
Þe ðP; bPÞ if and only if ðQ; bQÞe ðP; bPÞ. In particular, ðQ; bQÞ is a B-subgroup.

Proof. Let F be a splitting field of characteristic p of G, and mZ the map from FG to

FG defined by mZ

� P
x AG

axx

�
¼

P
x AG

axx, where x ¼ mZðxÞ. For H eG, let ClðG jHÞ be the

H-orbits of G under conjugation. Then f½C� : C A ClðG jHÞg forms an F -basis of the fixed
point set ðFGÞH , where ½C� :¼

P
x AC

x.

If H is a p-subgroup, then ðFGÞH ¼ FCGðHÞl I HðFGÞ as vector spaces, where
I HðFGÞ ¼

P
W<H

ðFGÞH
W is an ideal of ðFGÞH and f½C� : C A ClðG jHÞ; jCj3 1g forms an

F -basis of I HðFGÞ. Thus BrHð½C�Þ :¼ ½C XCGðHÞ� gives the natural algebra homomor-

phism from ðFGÞH onto FCGðHÞ with kernel I HðFGÞ. Similarly,

ðFGÞH ¼ F
�
CGðHÞ=Z

�
l I HðFGÞ

and mZ : I HðFGÞ ! I HðFGÞ is an isomorphism of algebras. Now

BrH : ðFGÞH ! F
�
CGðHÞ=Z

�

and mZ : FCGðHÞ ! F
�
CGðHÞ=Z

�
, so mZ � BrH ¼ BrH � mZ.

Suppose ðQ; b
Q
Þp ðP; bPÞ, so that QpP. Since Q ¼ QZ=Z and P ¼ PZ=Z for

p-subgroups Q, P of G and since Q is the only Sylow p-subgroup of QZ, it follows that
QpP. Since PZ ¼ P � Z and b

Q
is P-invariant, it follows that for any y A P, b

y
Q is a

block of CGðQÞ dominating b
Q

, so that by the uniqueness, b
y
Q ¼ bQ and bQ is P-invariant.

Now

mZ

�
BrPðbQÞbP

�
¼ mZ

�
BrPðbQÞ

�
bP ¼ BrP

�
mZðbQÞ

�
bP ¼ BrPðbQ

ÞbP ¼ bP 3 0;

so that BrPðbQÞbP 3 0 and BrPðbQÞbP ¼ bP. It follows that ðQ; bQÞp ðP; bPÞ. Using induc-
tion we have that ðQ; bQÞe ðP; bPÞ if ðQ; b

Q
Þe ðP; bPÞ.
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Suppose ðQ; bQÞp ðP; bPÞ, so that QpP and QpP. Since bQ is P-invariant, it fol-
lows that b

Q
is P-invariant. Since BrPðbQÞbP ¼ bP, it follows that

BrPðbQ
ÞbP ¼ mZ

�
BrPðbQÞbP

�
¼ mZðbPÞ ¼ bP;

so that ðQ; b
Q
Þp ðP; bPÞ. Similarly, if ðQ; bQÞe ðP; bPÞ, then ðQ; b

Q
Þe ðP; bPÞ. r

We obtain as a consequence:

Proposition 2.6. Let G be a finite group, Z eZðGÞ and G ¼ G=Z. Suppose

B A BlkðGÞ and B A BlkðGÞ dominating B. Then B is nilpotent if and only if B is nilpotent.

Proof. Write Zp ¼ OpðZÞ, Zp 0 ¼ Op 0 ðZÞ, G1 ¼ G=Zp 0 and let B1 A BlkðG1Þ be the
unique block of G1 dominated by B. Then IrrðB1Þ ¼ IrrðBÞ, and B1 dominates B.

By Lemma 2.4, B is nilpotent if and only if B1 is nilpotent. Hence we suppose B ¼ B1

and Z ¼ Zp 0 .

Let ðD; bDÞ be a Sylow B-subgroup and ðD; bDÞ the unique B-subgroup dominating
ðD; bDÞ. Note that ðD; bDÞ is a Sylow B-subgroup.

Suppose ðQ; b
Q
Þ is a B-subgroup and ðQ; bQÞ is the B-subgroup dominating ðQ; b

Q
Þ.

If x A N
G
ðQ; b

Q
Þ, then x ¼ xZ for some x A G, and xZ LNGðQÞ. Since mZðbQÞ ¼ b

Q
and

mZðbx
QÞ ¼ bx

Q
¼ b

Q
, it follows that bQ and bx

Q both are blocks of CGðQÞ dominating b
Q

and bQ ¼ bx
Q by uniqueness. Thus x A NGðQ; bQÞ and N

G
ðQ; b

Q
Þ ¼ NGðQ; bQÞ=Z. Since

Z eCGðQÞ and C
G
ðQÞ ¼ CGðQÞ=Z, it follows that

N
G
ðQ; b

Q
Þ=C

G
ðQÞQGNGðQ; bQÞ=CGðQÞQ:

Suppose B is not nilpotent, so that there is some B-subgroup ðQ; b
Q
Þ such that

N
G
ðQ; b

Q
Þ=C

G
ðQÞQ is not a p-group. Thus NGðQ; bQÞ=CGðQÞQ is not a p-group and B is

not nilpotent.

Suppose B is not nilpotent, so that NGðQ; bQÞ=CGðQÞQ is not a p-group for some
B-subgroup ðQ; bQÞ. We may suppose ðQ; bQÞe ðD; bDÞ. Thus Q ¼ QZ=Z eD, and
ðQ; b

Q
Þe ðD; bDÞ for a unique B-subgroup ðQ; b

Q
Þ. Let ðQ; b 0

QÞ be a B-subgroup dominat-

ing ðQ; b
Q
Þ. By Lemma 2.5, ðQ; b 0

QÞe ðD; bDÞ, so that by the uniqueness ðQ; b 0
QÞ ¼ ðQ; bQÞ.

Thus N
G
ðQ; b

Q
Þ=C

G
ðQÞQGNGðQ; bQÞ=CGðQÞQ, and N

G
ðQ; b

Q
Þ=C

G
ðQÞQ is not a

p-group. It follows that B is not nilpotent. r

When considering groups of Lie type, we will often examine the centralisers of
p-elements, which may be written as central products of groups. By a central product
G1 �Z G2 of G1 and G2 over Z eZðG1ÞXZðG2Þ, we mean that G1 �Z G2 ¼ G1G2, where
G1 and G2 are subgroups of G1 �Z G2 with G1 XG2 ¼ Z and ½G1;G2� ¼ 1. When it is clear
what Z is, we write G1 � G2 ¼ G1 �Z G2. Note that G1 � G2 G ðG1 � G2Þ=fðz; z�1Þ : z A Zg.
For wi A IrrðGiÞ such that w1 and w2 both cover the same irreducible character of Z, we may
define w1 � w2 A IrrðG1 � G2Þ so that w1w2 A IrrðG1 � G2Þ is the inflation of w1 � w2. We refer
to w1 � w2 as the central product of w1 and w2.
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We will need the following technical lemma in certain cases in relation to Property 7.1
(a).

Lemma 2.7. For i ¼ 1; 2, let Gi be a finite group, G1 � G2 a central product of G1 and

G2 over Z eZðG1ÞXZðG2Þ and Ni a normal subgroup of Gi such that Gi=Ni is abelian, and

let N :¼ N1 � N2 eG eG1 � G2 such that piðGÞ ¼ Gi=Z, where pi : ðG1 � G2Þ ! Gi=Z is

the canonical projection. Let yi A IrrðNiÞ such that y2 has an extension ~yy2 to G2, and let

y ¼ y1 � y2 and j A IrrðG j yÞ.

(i) There exist c1 A IrrðG1Þ and l A IrrðG2=N2Þ covering the same irreducible character

of Z, such that the restriction
�
c1 � ð~yy2lÞ

�
jG of c1 � ð~yy2lÞ is equal to j. Moreover, if

c A IrrðG1 � G2 j jÞ, then cjG ¼ j.

(ii) If further Z XN2 ¼ 1, then l in (i) may be chosen with ZN2=N2 in its kernel, so

that it may be regarded as a character of G2=N2Z.

(iii) Suppose that Z XN2 ¼ 1. If we have y A AutðG1 � G2Þ such that y centralizes G1,
stabilizes G, G2 and ~yy2, and g

y
2 A g2N2Z for any g2 A G2, then y stabilizes j.

Proof. (i) We first claim that we may suppose Z eG. For since Z eZðG1 � G2Þ,
we have that GZ is a central product over G XZ. Now jjGXZ ¼ jð1Þa for some
a A IrrðG XZÞ. Since Z is abelian, there exists ~aa A IrrðZÞ extending a. Then ~jj ¼ j~aa is an
extension of j covering y. If c1 A IrrðG1Þ and l A IrrðG2=N2Þ such that c1 and l cover the
same irreducible character of Z and ðc1 � ~yy2lÞjGZ ¼ ~jj, then ðc1 � ~yy2lÞjG ¼ j, and similarly
for the final statement, proving the claim.

Similarly, ðN1 � N2ÞZ ¼ ðN1ZÞ � ðN2ZÞ and j covers an irreducible character
x A Irr

�
ðN1ZÞ � ðN2ZÞ j y

�
with x ¼ x1 � x2 for some xi A IrrðNiZ j yiÞ covering the same ir-

reducible character of Z. Note that ~yy2jN2Z is also an extension of y2 to N2Z. By Gallagher’s
theorem, ð~yy2jN2ZÞb2 ¼ x2 for some b2 A IrrðN2Z=N2Þ. Since G2=N2 is abelian, it follows
that b2 can be viewed as the restriction of a character b A IrrðG2=N2Þ, so x2 ¼ ð~yy2bÞjN2Z.

Write ~xx2 ¼ ~yy2b, so ~xx2 is an extension of x2 to G2.

Let M1 be a subgroup of G1 such that x1 has an extension ~xx1 to M1 and M1 is maxi-
mal with this property, that is, either M1 ¼ G1 or x1 has no extension to H1 for any
M1 < H1 eG1. Since G1=ðN1ZÞ is abelian, it follows that the inertia subgroup IG1

ð~xx1Þ
equals M1.

Let M ¼ ðM1 � G2ÞXG eG, M2 :¼ G2 and g A IrrðM1 � M2 j xÞ. Then

G=M GG1=M1 and g ¼ g1 � g2 for some gi A IrrðMi j xiÞ:

Since xi has an extension ~xxi to Mi, it follows that gi ¼ ~xxili for some li A IrrðMi=NiZÞ, so
that gjM is an extension of x to M. Note that M e IGðxÞ and j also covers an extension
of x to M. Replacing gi by giai for some ai A IrrðMi=NiZÞ if necessary, we may suppose
j A IrrðG j gjMÞ.

Since g1jN1Z ¼ x1 and G2 stabilizes ~xx2 (and G1=N1Z is abelian), it follows that
IG1

ðg1Þ ¼ M1, IGðgÞ ¼ M and IG1�G2
ðgÞ ¼ M1 � G2. Let c1 ¼ IndG1

M1
ðg1Þ, so that

z :¼ c1 � g2 ¼ IndG1�G2

M1�G2
ðg1 � g2Þ:
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But j ¼ IndG
MðgjMÞ, so

ðzjG; jÞG ¼ ðzjM ; gjMÞM :

Since M and M1 � G2 are both normal in G1 � G2 and M eM1 � G2, it follows that
ðM1 � G2ÞnðG1 � G2Þ=M ¼ ðG1 � G2Þ=ðM1 � G2ÞGG1=M1 GG=M. Note also

ðM1 � G2Þt XM ¼ M for any t A G=M:

Hence the Mackey decomposition gives us

zjM ¼
P

t AG=M

�
ðg1 � g2Þ

tjM
�
¼

P
t AG=M

�
ðgjMÞt�

and so ðzjM ; gjMÞM ¼ 1. Since zð1Þ ¼ jð1Þ ¼ ½G : M�gð1Þ, it follows that zjG ¼ j.

Note that IG1�G2
ðjÞ ¼ G1 � G2 and j has an extension z to G1 � G2. If

c A IrrðG1 � G2 j jÞ, then by Gallagher’s theorem, c ¼ zh for some h A Irr
�
ðG1 � G2Þ=G

�
and so cjG ¼ j.

(ii) First note that ZN2 ¼ Z � N2 and ðN1 � N2ÞZ ¼ ðN1 � ZÞ � N2. If

x A Irr
�
ðN1 � N2ÞZ j y

�
; then x ¼ ðy1 � hÞ � y2 for some h A IrrðZÞ:

Thus we may suppose x1 ¼ ðy1 � hÞ A IrrðN1ZÞ and x2 ¼ ðy2 � 1ZÞ A IrrðN2ZÞ, and take
~xx2 ¼ ~yy2 as an extension of x2 to G2. As shown in the proof of part (i), j ¼

�
c1 � ð~yy2lÞ

�
jG

for some c1 A IrrðG1Þ and l A IrrðG2=N2ZÞ.

(iii) Since y centralizes the factor group G2=ZN2, it follows that y stabilizes l, so

does ~yy2l. But y centralizes G1, so y stabilizes c1 � ð~yy2lÞ and hence y stabilizes j. r

3. The alternating groups

To handle the case p ¼ 3 we will need the following. The first lemma will be used in
determining non-faithful nilpotent blocks of the double covers of alternating groups. Recall
that a partition is self-associate if its Young diagram is symmetric.

Lemma 3.1. Let n be a positive integer. There is a self-associate 3-core partition l ‘ n

if and only if there is a positive integer m such that n ¼ 3m2 þ 2m or n ¼ 3m2 � 2m.

Proof. We claim that the self-associate 3-cores, i.e., those Young diagrams which
are symmetric about the leading diagonal and have no 3-hooks, are those which arise
from partitions of the form

�
3m; 3m � 2; 3m � 4; . . . ; 3m � 2ðm � 1Þ;m2; ðm � 1Þ2; . . . ; 22; 12

�
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and �
3m � 2; 3m � 4; 3m � 6; . . . ; 3m � 2m; ðm � 1Þ2; ðm � 2Þ2; . . . ; 22; 12

�

for integers mf 1.

This may be seen directly from methodical construction of the possible Young dia-
grams. However, we give a formal proof here using [19]. For a fixed t, Garson, Kim and
Stanton give a bijection f between the set of t-cores and

fn0; n1; . . . ; nt�1 A Z t : n0 þ � � � þ nt�1 ¼ 0g;

defined as follows. We of course only need to consider the case t ¼ 3. Let l be a 3-core. We
take the 3-residue diagram, i.e., in the ði; jÞth cell of the Young diagram we put the residue
of j � i modulo 3 (see [23], p. 84). We also include the 0th column (with infinitely many
entries), calling this the extended 3-residue diagram. Divide this into regions labelled by
the integers as follows: the ði; jÞth cell lies in the region r if 3ðr � 1Þe j � i < 3r. Say that
a cell is exposed if it lies at the end of a row. Define ni to be the maximal r such that an
exposed cell with value i lies in the region r (the inclusion of the 0th row ensures the exis-
tence of such an r).

It is verified in [19] that f does indeed give a bijection. It is also shown that l is self-
associate if and only if fðlÞ ¼ ðn0; n1; n2Þ ¼ ð�n2;�n1;�n0Þ, i.e., if fðlÞ ¼ ðm; 0;�mÞ for
some m A Z.

Suppose first that m > 0. Then the end cell on the first row is labelled 0, so the first
row has length l1 ¼ 3ðm � 1Þ þ 1 ¼ 3m � 2. Since regions 0 and �m lie below the leading
diagonal, the end cells lying above the diagonal are all labelled 0. Since l is a 3-core, the
di¤erence between adjacent row lengths is at most 2, hence the row lengths decrease in
steps of two until the mth row (which has end cell on the leading diagonal). Since l is self
adjoint, this determines the whole Young diagram and we are done in this case.

Suppose that me 0. Then the end cell of the first row is labelled 2, so the first row has
length l1 ¼ 3m, and by a similar argument to the above the di¤erence between adjacent
row lengths is 2 until the ðm þ 1Þth row (which has end cell below the leading diagonal).
Again this determines l, and we are done. r

We now consider the analogue of the above lemma which will be used for faithful
blocks. We write l � n for a bar partition of n (i.e., a partition with distinct parts). Recall
that a bar partition l � n is odd or even according as n � r is odd or even, where r is the
number of parts in the partition. We refer to [26] for definitions of bars and p-cores.

Lemma 3.2. Let n be a positive integer. There is an even 3-core bar partition l � n if

and only if there is a positive integer m1 with m1 1 0; 1 mod 4 and n ¼ ð3m2
1 � m1Þ=2 or a

positive integer m2 with m2 1 0; 3 mod 4 and n ¼ ð3m2
2 þ m2Þ=2.

Proof. Determining the 3-core partitions is a little more straightforward than deter-
mining 3-core partitions, and the reader can easily verify that the 3-core bar partitions are
precisely those of the form

l�m :¼ ð3m � 2; 3m � 5; . . . ; 3m � 2 � 3i; . . . ; 4; 1Þ
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or

lþm :¼ ð3m � 1; 3m � 4; . . . ; 3m � 1 � 3i; . . . ; 5; 2Þ:

Note that l�m � ð3r2 � mÞ=2 and lþm � ð3m2 þ mÞ=2. Also note that l�m is even if and only if
m1 0; 1 mod 4; lþm is even if and only if m1 0; 3 mod 4. r

Theorem 3.3. Let n be an integer with nf 5 and G ¼ ÂAn, the double cover of An. Let

p be an odd prime. If p3 3, then G does not possess a nilpotent p-block of positive defect.

If p ¼ 3, then G possesses a non-faithful nilpotent block of positive defect if and only if

n ¼ 3m2 þ 2m þ 3 or n ¼ 3m2 � 2m þ 3 for some positive integer m. Also if p ¼ 3, then G

possesses a faithful nilpotent block of positive defect if and only if n ¼ ð3m2
1 � m1 þ 6Þ=2 for

a positive integer m1 with m1 1 0; 1 mod 4 or n ¼ ð3m2
2 þ m2 þ 6Þ=2 for a positive integer m2

with m2 1 0; 3 mod 4. In each case the nilpotent blocks have defect groups of order 3 gener-

ated by (the preimage of ) a 3-cycle.

Proof. The properties of ÂAn used here are described in [20], 5.2. We consider

ÂAn e ŜSn, the double cover of the symmetric group. Write Z ¼ ZðŜSnÞ and X ¼ XZ=Z

whenever X e ŜSn. For convenience of notation we write ŜSn ¼ Sn and ÂAn ¼ An. Since
we are taking p odd, for every p-subgroup Qe ŜSn we have CSn

ðQÞ ¼ CŜSn
ðQÞ and

NSn
ðQÞ ¼ NŜSn

ðQÞ. Suppose that B is a nilpotent p-block of ÂAn with non-trivial defect group
D. Choose y A D of order p. Then yZ is a product of say t disjoint p-cycles, fixing the other
n � pt points. Then CSn

ðyZÞG ðZp o StÞ � Sn�pt, and so CÂAn
ðyÞ contains a normal elemen-

tary abelian p-group R such that R is generated by t disjoint p-cycles. Now R is contained
in a conjugate of D, and so in particular D contains an element x for which xZ is a p-cycle.
Write Q ¼ hxi. We have CAn

ðQÞGQ � An�p. By [20], 5.2.6, we have CÂAn
ðQÞGQ � ÂAn�p

(the point here being that the central extension of An�p does not split). We have
NSn

ðQÞGNSp
ðQÞ � Sn�p and NAn

ðQÞG
�
NAp

ðQÞ � An�p

�
hai where a2 ¼ 1. Note that

½NÂAn
ðQÞ : CÂAn

ðQÞ� ¼ p � 1.

The p-blocks of CÂAn
ðQÞ are in 1-1 correspondence with the p-blocks of ÂAn�p and the

action of NÂAn
ðQÞ on these blocks is determined by the action of ŜSn�p on the blocks of ÂAn�p.

Hence for each block bQ of CÂAn
ðQÞ we have ½NÂAn

ðQ; bQÞ : CÂAn
ðQÞ� ¼ ðp � 1Þ=2 or p � 1.

If p > 3, then this shows that NÂAn
ðQ; bQÞ=CÂAn

ðQÞ is not a p-group, contradicting our
choice of B nilpotent.

Now suppose that p ¼ 3. We first show that D is generated by a 3-cycle. Suppose that
D is not cyclic. Then D contains an elementary abelian subgroup of order 9, and in partic-
ular contains distinct elements x and y for which xZ and yZ is the product of s and t

disjoint 3-cycles respectively (briefly, consider the centralizer of gh, for which ghZ is the
product of all the disjoint 3-cycles in gZ and hZ. This has an elementary abelian subgroup
contained in a conjugate of D and containing elements whose images in Sn are all the
3-cycles making up ghZ). Then

CSn
ðxZÞG ðZp o SsÞ � Sn�ps and CSn

ðyZÞG ðZp o StÞ � Sn�pt:

Hence D contains elements g and h for which gZ and hZ are each a 3-cycle and these 3-
cycles are disjoint. Write R ¼ hg; hieD. We have

CSn
ðRÞGR � Sn�6 and CAn

ðRÞGR � An�6:
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Now ½NŜSn
ðRÞ : CŜSn

ðRÞ� ¼ 8, and arguing as above we see that ½NÂAn
ðR; bRÞ : CÂAn

ðRÞ� is even
for every block bR of CÂAn

ðRÞ, a contradiction.

Hence D is cyclic. Suppose that jDj > 3. Then D possesses an element y of order 9.
By an argument similar to above we may assume yZ is a 9-cycle. But then y3Z is a product
of three distinct 3-cycles, which as we have seen cannot happen.

Hence D has order three and is generated by an element x where xZ is a single
3-cycle. We have CÂAn

ðDÞGD � ÂAn�3. The blocks of CÂAn
ðDÞ with defect group D are in

1-1 correspondence with the blocks of defect zero of ÂAn�3, and the action of NÂAn
ðDÞ on

these blocks is given by the action of ŜSn�3 on the blocks of defect zero of ÂAn�3. Hence the
nilpotent blocks of ÂAn with defect group D are in 1-1 correspondence with orbits of length
two of blocks of defect zero of ÂAn�3 under the action of ŜSn�3.

Now blocks of defect zero of ÂAn�3 are covered by blocks of defect zero of ŜSn�3. We
consider faithful and non-faithful blocks separately. Note that B is faithful if and only if the
B-subpairs have kernel intersecting trivially with Z (i.e., if and only if they correspond to
faithful blocks of ÂAn�3).

Suppose that B is non-faithful. Blocks of defect zero correspond to 3-core parti-
tions of n � 3. By [23], 2.5.7, irreducible characters of Sn�3 remain irreducible when
restricted to An�3 if and only if the corresponding partition is not self-associate. Hence
½NÂAn

ðD; bDÞ : CÂAn
ðDÞ� ¼ 1 if and only if the block of defect zero of An�3 corresponding to

bD is labelled by a self-associate partition, and so the result follows in this case from
Lemma 3.1.

Suppose that B is faithful. Blocks of defect zero correspond to 3-core bar partitions
of n � 3. By [27], p. 212, faithful irreducible characters of ŜSn�3 remain irreducible
when restricted to ÂAn�3 if and only if the corresponding bar partition is odd. Hence
½NÂAn

ðD; bDÞ : CÂAn
ðDÞ� ¼ 1 if and only if the block of defect zero of ÂAn�3 corresponding to

bD is labelled by an even 3-core bar partition, and so the result follows in this case from
Lemma 3.2. r

We have not yet considered all the perfect central extensions of A6 and A7. However,
by the above theorem, neither yields a nilpotent 3-block with non-central defect group, and
further it is easy to check that there are no nilpotent blocks of positive defect for the other
odd primes.

It is appropriate here to extend our study to the double covers of the symmetric
groups.

Proposition 3.4. Let G ¼ ŜSn be the double cover of the symmetric group Sn for nf 5
and let p be an odd prime. If pf 5, then G does not possess a nilpotent p-block of

positive defect. If p ¼ 3, then every nilpotent block of positive defect is faithful. These have

defect one, and occur if and only if there is a positive integer m1 with m1 1 2; 3 mod 4
and n ¼ ð3m2

1 � m1 þ 6Þ=2 or a positive integer m2 such that m2 1 1; 2 mod 4 and

n ¼ ð3m2
2 þ m2 þ 6Þ=2.
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Proof. Suppose first that B is a non-faithful block of positive defect. By, for exam-
ple, [23], 6.2.2, lðBÞ ¼

P
pðw1Þ � � � pðwp�1Þ, where the sum runs over improper partitions

ðw1; . . . ;wp�1Þ of the weight w of B and pðxÞ is the number of partitions of x. But
p � 1f 2 and ðw; 0; . . . ; 0Þ and ð0;w; 0; . . . ; 0Þ are improper partitions of w, so lðBÞ > 1
and B cannot be nilpotent.

Now suppose that B is faithful of positive defect. Then by [28], 13.17, lðBÞ is at least
k
�
ðp � 1Þ=2;w

�
, the number of ðp � 1Þ=2-tuples of (possibly empty) partitions with sum

w (see [28], 3.11), where again w is the weight of B. If we 2, then
�
ðwÞ; j; . . . ; j

�
and�

ð1wÞ; j; . . . ; j
�

are such ðp � 1Þ=2-tuples of partitions, so lðBÞ > 1 and B cannot be nilpo-
tent. Now suppose that w ¼ 1. If pf 5, then ð1; j; . . . ; jÞ and ðj; 1; j; . . . ; jÞ are such
ðp � 1Þ=2-tuples, and again B cannot be nilpotent. We are left with the case w ¼ 1 and
p ¼ 3. By [28], 13.17, lðBÞ ¼ 2 if the 3-core m of B is even (in the sense that n � 3 � r is
even, where r is the number of parts in m), and lðBÞ ¼ 1 if m is odd. Note that since B has
cyclic defect groups, B is nilpotent if and only if lðBÞ ¼ 1, and so the result follows from
Lemma 3.2. r

We now turn our attention to Puig’s conjecture.

Lemma 3.5. Let G ¼ ŜSn be the double cover of Sn, and let B be a block of G with

defect group D. If jDj > p2, then lðBÞf 3.

Proof. Suppose first that B is a non-faithful block. As above,

lðBÞ ¼
P

pðw1Þ � � � pðwp�1Þ;

where the sum runs over improper partitions ðw1; . . . ;wp�1Þ of the weight w of D. If
jDj > p2, then wf 2. But ðw; 0; . . . ; 0Þ, ð0;w; 0; . . . ; 0Þ and ðw � 1; 1; 0; . . . ; 0Þ are three
such improper partitions, so lðBÞf 3.

If B is faithful, then by [28], 13.17, lðBÞ is at least k
�
ðp � 1Þ=2;w

�
, the number of

ðp � 1Þ=2-tuples of (possibly empty) partitions with sum w, where again w is the weight of
B. We have wf 2. Here

�
ðwÞ; j; . . . ; j

�
,
�
ð1wÞ; j; . . . ; j

�
and

�
ðw � 1; 1Þ; 1; j; . . . ; j

�
are

three such tuples, so lðBÞf 3. r

Corollary 3.6. Let B a p-block of G for p odd, where G is quasisimple with

G=ZðGÞGAn for some n. Then B is nilpotent if and only if lðbQÞ ¼ 1 for every B-subgroup

ðQ; bQÞ.

Proof. If B has abelian defect group D, then this is [30]. So we may assume
jDj > p2. Suppose G pH, where H G ŜSn, and let BH A BlkðHÞ covering B. Then BH has
defect group D, and by Lemma 3.5, lðBHÞf 3. But lðBÞf lðBHÞ=2 > 1, so B is not nil-
potent, and of course we can take the B-subgroup ð1;BÞ to show the proposed equivalent
condition is also not satisfied.

It remains to consider the exceptional covers, but in these cases it is easy to check that
every block with non-central defect groups has more than one irreducible Brauer character.

r
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4. Sporadic groups

In this section we determine the nilpotent blocks with non-central defect groups of
quasisimple groups G where G=ZðGÞ is one of the 26 sporadic simple groups. Note that
due to Lemma 2.4 it su‰ces to consider the case ZðGÞ is a p 0-group.

In order to provide a reasonably unified treatment of the classification of nilpotent
blocks of the sporadic groups, we work from [20], Table 5.3. However, in all cases the num-
ber of irreducible Brauer characters in the blocks are known, which would lead to a shorter
but less illuminating proof. To avoid an overly long proof we do use these results in show-
ing that Puig’s conjecture holds.

We use [20], Table 5.3, and apply the following simple results to demonstrate the non-
existence of such blocks in many cases:

Lemma 4.1. Suppose that D is a defect group for a nilpotent block of a finite group G.

Let x A D have order p and write Q ¼ hxi and R ¼ Op

�
CGðQÞ

�
. Then:

(i) There is no p-regular g A NGðQÞ � CGðQÞ which fixes every block of CGðQÞ.

(ii) There is no p-regular g A NGðRÞ � CGðRÞ which fixes every block of CGðRÞ.

Proof. Note that R is contained in every defect group of every block of CGðQÞ.
Hence ReD. The result then follows from the definition of a nilpotent block. r

Lemma 4.2. Let Q be a p-subgroup of G. If jNGðQÞ=CGðQÞj is prime to p and, for

every n, is strictly greater than the number of p-blocks of CGðQÞ of dimension n (or is greater

than or equal to n in the case n is the dimension of the principal block of CGðQÞ), then Q

cannot be a subgroup of a defect group of a nilpotent block of G.

Proof. In this case every p-block of CGðQÞ must be fixed by a p-regular element of
NGðQÞ � CGðQÞ, and we apply Lemma 4.1. r

Lemma 4.3. Let B be a nilpotent block with defect group D, and let 13QeZðDÞ.
Then CGðQÞ=Q possesses a nilpotent block with defect group D=Q.

Proof. Let bD A Blk
�
DCGðDÞ

�
with bG

D ¼ B. Now DCGðDÞeCGðQÞ, and
b ¼ b

CGðQÞ
D is nilpotent. D is the unique defect group of bD and bG ¼ B, so D is a defect

group of b. There is a one-to-one correspondence between the blocks of CGðQÞ with defect
group D and the blocks of CGðQÞ=Q with defect group D=Q. Let b be the correspondent of
b. By Lemma 2.4, b is nilpotent. r

Write Z ¼ ZðGÞ and G ¼ G=Z. Note that when Z is a p 0-group, for every p-subgroup

Q of G we have CGðQÞ ¼ C
G
ðQÞ and NGðQÞ ¼ N

G
ðQÞ.

Throughout our notation for the conjugacy classes of G follows that of [20].

Proposition 4.4. Let G be a quasisimple group such that G is a sporadic simple group,
with jGjp ¼ p. Let B be a p-block of maximal defect of G. Then B is not nilpotent.
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Proof. Let D A SylpðGÞ. Note that D is abelian. If C
G
ðDÞeD, then CGðDÞeDZ

and every p-block of CGðDÞ is NGðDÞ-stable. But p does not divide ½NGðDÞ : DCGðDÞ�,
whilst by Burnside’s transfer theorem we cannot have NGðDÞ ¼ CGðDÞ, so a block with de-
fect group D cannot be nilpotent. Hence, using [20], Table 5.3, we may rule out all but the
following cases: p ¼ 3 and G ¼ J1; p ¼ 5 and G ¼ M24, J1, J3, J4; p ¼ 7 and G ¼ M24, J4,
Co3, Co2, Suz, Ly, Ru, Fi22, Fi23, HN; p ¼ 11 and G ¼ Co3, Co1, Ly, Fi22, Fi23, Fi 024, HN,
F2; p ¼ 13 and G ¼ Co1, Ru, Fi23, Fi 024, Th, F2; p ¼ 17 and G ¼ F2, F1; p ¼ 19 and G ¼ F2,
F1; p ¼ 23 and G ¼ F2, F1; p ¼ 29 and G ¼ F1; p ¼ 31 and G ¼ F1.

Applying Lemma 4.2 with Q ¼ D to these cases eliminates all but the case p ¼ 3 and
G ¼ J1. Here C

G
ðDÞGD � D10 and N

G
ðDÞGS3 � D10, and it is clear that NGðDÞ fixes

every block of CGðDÞ. r

Theorem 4.5. Let B be a nilpotent p-block with non-central defect group D of a qua-

sisimple group G such that G is a sporadic simple group. Then jDj ¼ 3 and G is one of M23,
J4, Ly. In each of these cases G does indeed possess a nilpotent block with defect group D.

Proof. We only need to consider the case p2 divides jGj.

Suppose that D is a non-central defect group of a nilpotent p-block B. We assume
that Z is a p 0-group. Choose x A D of order p, and write Q ¼ hxi. In each case N

G
ðQÞ is

given by [20], Table 5.3, and C
G
ðQÞ may be deduced using [14].

Let P ¼ Op

�
NGðQÞ

�
. Then PeD.

We eliminate each possibility for the conjugacy class containing x in turn using a suc-
cession of methods until we are left with the three cases listed. For each of these we then
verify the existence of a nilpotent block with defect group Q.

Suppose that N
G
ðQÞGH1 � H2 and C

G
ðQÞGQ � H2 for some H1, H2 such that

QpH1, and H1=Q not a p-group. Then every p-block of CGðQÞ is fixed by NGðQÞ and
NGðQÞ=CGðQÞ is not a p-group, so B cannot be nilpotent. In this way we eliminate the
following pairs ðG;CÞ, where C is the conjugacy class in G containing xZ: ðM11; 3AÞ,
ðM12; 3BÞ, ðM24; 3BÞ, ðJ2; 3BÞ, ðJ2; 5Þ, ðCo3; 3CÞ, ðCo3; 5BÞ, ðCo2; 3BÞ, ðCo2; 5BÞ,
ðCo1; 3DÞ, ðHS; 3AÞ, ðHS; 5BÞ, ðHe; 3BÞ, ðHe; 7AÞ, ðHe; 7BÞ, ðRu; 5BÞ, ðFi22; 3AÞ,
ðFi22; 5AÞ, ðFi23; 3AÞ, ðFi23; 5AÞ, ðFi 024; 7AÞ, ðF2; 3AÞ, ðF2; 5AÞ, ðF1; 3CÞ.

Suppose that C
G
ðPÞ is a p-group and NGðPÞ=CGðPÞ is not a p-group. Then every

p-block of CGðPÞ is NGðPÞ-stable, and B cannot be nilpotent. In this way we may eliminate
the pairs ðM12; 3AÞ, ðJ3; 3BÞ, ðJ4; 11Þ, ðCo3; 3AÞ, ðCo3; 3BÞ, ðCo3; 5AÞ, ðCo2; 3AÞ, ðCo2; 5AÞ,
ðCo1; 3CÞ, ðCo1; 5CÞ, ðHS; 5AÞ, ðHS; 5CÞ, ðMcL; 3Þ, ðMcL; 5Þ, ðSuz; 3BÞ, ðHe; 7CÞ,
ðHe; 7DÞ, ðHe; 7EÞ, ðLy; 3BÞ, ðLy; 5Þ, ðRu; 5AÞ, ðO0N; 7Þ, ðFi22; 3BÞ, ðFi22; 3CÞ, ðFi22; 3DÞ,
ðFi23; 3BÞ, ðFi23; 3CÞ, ðFi 024; 3BÞ [since in this case no involution in G centralizes a subgroup
of the form 31þ10], ðFi 024; 3CÞ [since in this case no involution in G centralizes a subgroup of
the form C7

3 ], ðFi 024; 7BÞ, ðHN; 3BÞ, ðHN; 5BÞ, ðHN; 5CÞ, ðHN; 5DÞ, ðHN; 5EÞ, ðTh; 3BÞ,
ðTh; 3CÞ, ðTh; 5AÞ, ðF2; 3BÞ [since no involution in G centralizes a subgroup of the form
31þ8], ðF2; 5BÞ, ðF1; 3BÞ, ðF1; 5BÞ, ðF1; 7BÞ, ðF1; 13BÞ.

Suppose that N
G
ðQÞG ðH1 � H2Þn, where n is an integer, and C

G
ðQÞeH1 � H2 for

some H1 and H2 such that Q is a proper normal self-centralizing Sylow p-subgroup of H1.
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Then H1 eNGðQÞ fixes every p-block of CGðQÞ and NGðQÞ=CGðQÞ is not a p-group. It
follows that B cannot be nilpotent. In this way we may eliminate the pairs ðCo1; 5AÞ,
ðCo1; 5BÞ, ðCo1; 7Þ, ðSuz; 3CÞ, ðSuz; 5Þ, ðHe; 5AÞ, ðO 0N; 3AÞ, ðFi 024; 3EÞ, ðFi 024; 5AÞ,
ðHN; 5AÞ, ðTh; 7AÞ, ðF2; 7AÞ, ðF1; 5AÞ, ðF1; 7AÞ, ðF1; 11AÞ, ðF1; 13AÞ.

Suppose that NGðQÞG ðH1 � H2Þn for some H1 and H2, where n is an integer which
is not a power of p, QeH1, and Hin (with the appropriate action) fixes every p-block of
Hi for i ¼ 1; 2. Then NGðQÞ fixes every p-block of CGðQÞ and NGðQÞ=CGðQÞ is not a
p-group. It follows that B cannot be nilpotent. In this way we may eliminate the
pairs ðM22; 3AÞ, ðM24; 3AÞ, ðJ2; 3AÞ, ðJ3; 3AÞ, ðCo1; 3AÞ, ðCo1; 3BÞ, ðSuz; 3AÞ, ðHe; 3AÞ,
ðRu; 3AÞ, ðFi 024; 3AÞ, ðHN; 3AÞ, ðTh; 3AÞ, ðF1; 3AÞ.

The only cases left unaccounted for are Fi23 and Fi 024, where in each case xZ belongs
to the class labelled 3D. Suppose G ¼ Fi23 or Fi 024 and xZ A 3D. In this case Z ¼ 1 (since
p ¼ 3). We have already seen that a nilpotent 3-block of G cannot contain elements of
order three outside of 3D. Note that x is conjugate to x�1 (to see this consider the orders
of the centralizers). Irreducible characters in such a block must vanish on 3A, 3B and 3C.
This happens for only one irreducible character, and this lies in a block of defect zero.

If G ¼ M23 and p ¼ 3, then Z ¼ 1 and NGðQÞG ðZ3 � A5Þ � 2, CGðQÞGZ3 � A5.
Note that M23 possesses just one 3-block of maximal defect, which cannot then be nilpo-
tent. Hence we may assume D ¼ Q, and so if bQ is a block of CGðQÞ with bG

Q ¼ B, then
bQ has defect group Q. Now CGðQÞ has two blocks with defect group Q. The action of
NGðQÞ on the blocks of CGðQÞ is given by the action of S5 on the blocks of A5, so the
two blocks with defect group Q are fused by NGðQÞ. Hence ½NGðQ; bQÞ : CGðQÞ� ¼ 1, and
bG

Q is nilpotent.

If G ¼ J4 and p ¼ 3, then Z ¼ 1 and NGðQÞG ð6M22Þ � 2 and CGðQÞG ð6M22Þ. By
[14], 2M22 possesses precisely two 3-blocks of defect zero fused by 2M222 (the rest are
fixed). These correspond to two 3-blocks of CGðQÞ with defect group Q fused by NGðQÞ.
Hence G possesses a nilpotent block with defect group Q (the Brauer correspondent of the
above blocks of CGðQÞ).

If G ¼ Ly and x A 3A, then Z ¼ 1 and G possesses a nilpotent block with defect
group Q, since NGðQÞG ð3McLÞ � 2, CGðQÞG 3McL, and McL possesses precisely two
3-blocks of defect zero which are fused in McL � 2 (all other 3-blocks of McL are fixed by
McL � 2). These correspond to two 3-blocks of CGðQÞ with defect group Q fused by NGðQÞ.
Hence G possesses a nilpotent block with defect group Q (the Brauer correspondent of the
above blocks of CGðQÞ).

Note that we have shown in particular that whenever p divides the Schur multiplier of
a sporadic simple group, there is no nilpotent block of positive defect of the quotient group
(by the Sylow p-subgroup of the centre). r

We conclude:

Proposition 4.6. Let G be a quasisimple group such that G=ZðGÞ is a sporadic simple

group and let p be an odd prime. If B is a nilpotent block of G, then B has defect groups of

order at most three.
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We now address Puig’s conjecture.

Proposition 4.7. Let G be a quasisimple group such that G=ZðGÞ is a sporadic simple

group and let p be an odd prime. Let B be a p-block of G. If B has positive defect, then

lðBÞ > 1. In particular, B is nilpotent if and only if lðbQÞ ¼ 1 for every B-subgroup ðQ; bQÞ.

Proof. We may assume that ZðGÞ is a p 0-group. Let D be a defect group of B. If D

is cyclic, then the result follows from the theory of blocks with cyclic defect groups. In the
following table we list all the numbers of irreducible Brauer characters in blocks with non-
cyclic defect groups, along with a reference. A ‘*’ will be used to denote a faithful block in a
group with non-trivial centre. The result then follows from examination of the table.

If G ¼ Ly and p ¼ 3, then by [14] G has thirty 3-regular conjugacy classes. By [31],
aside from the principal block, G has five 3-blocks of defect zero and two 3-blocks of defect
one. Since we have shown that neither of these blocks of defect one is nilpotent, it follows

G=ZðGÞ jDj lðBÞ reference

M11 32 7 [18]
M12 33=33 8=8� [18]
M22 32=32=32 5=5�=5� [18]
M23 32 7 [18]
M24 33 7 [18]
J2 33=33=52=52 8=8�=6=6� [18]
J3 35 8 [18]
J4 33=33=32=113 9=9=5=40 [8]/[10]
HS 32=32=32=53=53 7=7=5�=10=10� [18]
McL 36=53=53 10=12=12� [18]
Suz 37=32=37 13=5=10� [18]
Ly 37=56 21=35
He 33=32=52=73 7=7=14=10 [18]
Ru 33=33=53=53 9=9�=18=18� [18]
O 0N 34=32=73=73 14=5=19=19� [18]
Co3 37=53 20=18 [18]
Co2 36=53 23=16 [18]
Co1 39=33=32=54=52=72 29=7=5=29=12=21 [7]
Fi22 39=39=52=52=52=52 22=18�=16=16�=16�=16� [18]
Fi23 313=52=52 32=16=16 [5]
Fi 024 316=32=52=52=52=52=52 25=4=16=16=14=16�=16� [4]

52=52=73=73=73 14�=14�=22=22�=22� [4]
Th 310=53=72 10=30=24
HN 36=32=56 20=7=16 [6]
F2 ¼ B 313=32=32=32=313 71=7=7=5=31� [9]

56=52=52=56=72=72=72=72 51=16=16=33�=24=24=21=24� [9]
F1 ¼ M 320=33=59=52=76=72=112=133 83=7=91=16=70=24=45=52 [18]

Table 1. Numbers of irreducible Brauer characters in blocks with non-cyclic, non-central defect groups of

sporadic groups.
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that they each have two irreducible Brauer characters. Hence the principal block has 21
irreducible Brauer characters for p ¼ 3. A similar computation for p ¼ 5 shows that the
principal 5-block of Ly has 35 irreducible Brauer characters (and this is the unique 5-block
with non-cyclic defect groups).

If G ¼ Th and p ¼ 3, then by [14], G has sixteen 3-regular conjugacy classes. By [32], G

has four 3-blocks of defect zero and one 3-block of defect one (which we have seen cannot
be nilpotent, so has two irreducible Brauer characters. Hence the principal 3-block pos-
sesses ten irreducible Brauer characters. A similar computation for p ¼ 5 shows that the
principal 5-block of Th has 30 irreducible Brauer characters (and this is the unique 5-block
with non-cyclic defect groups). For p ¼ 7, by [32], G has fourteen blocks of defect zero, a
block of defect one (with six irreducible Brauer characters, by consideration of the inertial
quotient) and the principal block, which must then have 24 irreducible Brauer characters.

If G=ZðGÞ ¼ Fi 024, then the result may be found in [4], 4.2, when p ¼ 3, and when
p ¼ 5 or 7 for non-faithful blocks in the case jZðGÞj ¼ 3. Suppose jZðGÞj ¼ 3, and consider
faithful blocks B with a defect group D covering a block, say c of ZðGÞ. Suppose first
p ¼ 5. We have D ¼ 52 and from [4], p. 141, kðBÞ ¼ 20. Note that G has only one conju-
gacy class of elements of order 5. If x A Dnf1g and b A Blk

�
CGðxÞ

�
with bG ¼ B, then

CGðxÞ ¼ 3 � 5 � A9 and b ¼ c � B0ð5Þ � b 0 for some b 0 A BlkðA9Þ with Dðb 0Þ ¼ 5. As
shown in [4], p. 114, A9 has three such blocks b 0

0 ¼ B0ðA9Þ; b 0
1; b

0
2 and lðb 0

0Þ ¼ lðb 0
1Þ ¼ 4,

lðb 0
2Þ ¼ 2. The canonical characters of the root blocks of b 0

2 and b 0
1 are linear and degree 3

characters of CA9
ð5Þ ¼ 5 � A4, respectively. Since NGðDÞ ¼ 3:ð52 : 4A4 � A4Þ:2 and a

Sylow 3-subgroup of NGðDÞ is isomorphic to 31þ2
þ , it follows that c � B0ð5Þ � b 0

0 and
c � B0ð5Þ � b 0

2 induce the same block B of G and so lðBÞ ¼ 20 � 4 � 2 ¼ 14. Also
c � B0ð5Þ � b 0

1 induces another block B of G and lðBÞ ¼ 20 � 4 ¼ 16. If p ¼ 7, then by
[4], p. 141, kðBÞ ¼ k

�
B0ðFi 024Þ

�
and CGðxÞ ¼ 3 � CFi 0

24
ðxÞ for any x A Dnf1g. Thus

lðBÞ ¼ l
�
B0ðFi24Þ

�
¼ 22. r

5. Notation for classical groups and their blocks

Let V be a linear, unitary, non-degenerate orthogonal or symplectic space over the
field Fq, where q ¼ ra for some prime r3 p. We will follow the notation of [3], [11], [16]
and [17].

If V is orthogonal (and q is odd), then there is a choice of equivalence classes of qua-
dratic forms. Write hðVÞ for the type of V as defined in [17], p. 124, so hðVÞ ¼ h ¼ þ or �.
Write hðVÞ ¼ þ if V is linear and hðVÞ ¼ � if V is unitary. If V is non-degenerate
orthogonal or symplectic, then denote by IðVÞ the group of isometries on V and let
I0ðVÞ ¼ IðVÞX SLðVÞ.

If V is symplectic, then IðVÞ ¼ I0ðVÞ ¼ Sp2nðqÞ.

If V is a ð2n þ 1Þ-dimensional orthogonal space, then IðVÞ ¼ h�1Vi� I0ðVÞ with
I0ðVÞ ¼ SO2nþ1ðqÞ.

If V is a 2n-dimensional orthogonal space, then IðVÞ ¼ OhðVÞ ¼ O
h
2nðqÞ and

I0ðVÞ ¼ SOh
2nðqÞ.
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If V is a 2n-dimensional non-degenerate orthogonal or symplectic space, then denote
by J0ðVÞ the conformal isometries of V with square determinant. If V is orthogonal of
dimensional at least two, then write D0ðVÞ for the special Cli¤ord group of V (cf. [17]).

Denote by GLþðVÞ the general linear group GLðVÞ and GL�ðVÞ the unitary group
UðVÞ.

Let G ¼ GLhðVÞ or IðVÞ. Write Fq ¼ FqðGÞ for the set of polynomials (with coe‰-
cients in Fq) serving as elementary divisors for semisimple elements of G (cf. [3], p. 6). For
G A FqðGÞ, let dG be the degree of G, and dG be the reduced degree defined as in [3], [16] and

[17]. So dG ¼ dG or dG ¼ 1

2
dG according as dG is even or odd (note that if V is symplectic or

orthogonal, G must have even degree unless G ¼ X G 1).

If G ¼ GLðVÞ, then let eG ¼ 1. Otherwise eG is given by [3], p. 6. Let eG be the multi-
plicative order of eGqdG modulo p. Thus we may write eGdG ¼ epaGd 0G for some aG and d 0G
with pF d 0G, where e ¼ eX�1.

Given a semisimple element s A G, there is a unique orthogonal decomposition
V ¼

P
G AFq

VGðsÞ, with s ¼
Q

G AFq

sðGÞ, where the VGðsÞ are nondegenerate subspaces of V

and sðGÞ A GL
�
VGðsÞ

�
, U

�
VGðsÞ

�
or I

�
VGðsÞ

�
(depending on G) has minimal polynomial

G. This is called the primary decomposition of s. Write mGðsÞ for the multiplicity of G in
sðGÞ. We have CGðsÞ ¼

Q
G AFq

CGðsÞ, where CGðsÞ ¼ I
�
VGðsÞ

�
or GLeG

�
mGðsÞ; qdG

�
as appro-

priate.

6. Blocks of linear and unitary groups

Suppose G ¼ GLh
nðqÞ ¼ GLhðVÞ and p is odd and distinct to r, and let B be a

p-block of G with a defect group D and label ðs; kÞ. Then we may write

V ¼ V0 ? Vþ; D ¼ D0 � Dþ; s ¼ s0 � sþ;ð6:1Þ

where V0 ¼ CV ðDÞ, Vþ ¼ ½D;V �, s0 A G0 ¼ GLhðV0Þ and sþ A Gþ :¼ GLhðVþÞ. For con-
venience we denote GLhðVÞ by GðVÞ and SLhðVÞ by SðVÞ.

Theorem 6.1. Let G ¼ GLhðVÞ ¼ GLhðn; qÞ and suppose p is odd with pF q. Then

the following are equivalent:

(a) B is a nilpotent block of G.

(b) mGðsþÞ ¼ eG ¼ 1 for all G A Fq which are elementary divisors of sþ.

(c) kG is an eG-core of mGðsÞ whenever eF dG, and mGðsÞe 1 whenever e j dG, where

kG ¼ j is viewed as an eG-core of 0 ¼ mGðsÞ.

(d) Let ðD; bDÞ be a Sylow B-subgroup and y the canonical character of bD. Then

CGðDÞ ¼ G0 � Cþ and y ¼ y0 � yþ, where Cþ :¼ CGþðDþÞ is regular in Gþ, y0 is an
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irreducible character of defect 0 of G0 labelled by ðs0; kÞ and yþ ¼GR
Cþ
Tþ

ðsþÞ with

Tþ ¼ CGþðsþÞ a torus of both Gþ and Cþ, and Dþ ¼ OpðTþÞ. Here R
Cþ
Tþ

ðsþÞ is the Deligne–

Lusztig generalized character.

In particular, if B is nilpotent, then D is abelian.

Proof. Let sþ ¼
Q
G

sðGÞ be a primary decomposition, so that Vþ ¼
L
G

VG with VG

the underlying space of sðGÞ. Write mG for mGðsþÞ. Then

CGþðsþÞ ¼
Q
G

CG;ð6:2Þ

where CG GGLeGðmG; q
dGÞ. We may suppose Dþ A Sylp

�
CGþðsþÞ

�
, so that

Dþ ¼
Q
G

DG; DG A SylpðCGÞ:ð6:3Þ

So D is a direct product of wreath product p-groups.

Let G be an elementary divisor of sþ. Since CVG
ðDGÞ ¼ 0, it follows that p divides

qdGmG � eG and so eG jmG. Hence we may write mG ¼ eGwG for some wG. Let AðDÞ be the
subgroup of D generated by all the abelian normal subgroups of D. By [1], Theorem 2,
AðDÞ is the base subgroup of D. Write R ¼ AðDÞ. Then

R ¼ D0 �
Q
G

ðRGÞwG ; CGðRÞ ¼ G0 �
Q
G

ðKGÞwG ; KG GGLeðd 0G; qepaG Þð6:4Þ

where e ¼ eX�1 and RG ¼ Op

�
ZðKGÞ

�
is cyclic and ðRGÞwG is a diagonal subgroup of

GLeGðwG; qdGeGÞeCG. Thus CGG

�
ðRGÞwG

�
¼ ðKGÞwG , CGðRÞ is regular in G,

NGG

�
ðRGÞwG

�
¼ KG o SðwGÞ;

and we may suppose s A CGðRÞ, where GG :¼ GðVGÞ and SðmÞ is the symmetric group on m

letters.

Suppose wD f 2 for some D. Then there is PðDDÞe ðRDÞwD such that

CGD

�
PðDDÞ

�
¼ ðKDÞwD�2 � GLeð2d0D; qepaD Þ and PðDDÞ ¼ Op

�
CGD

�
PðDDÞ

��
:

Thus CCD

�
PðDDÞ

�
¼ GLeDð1; qdDeDÞwD�2 � GLeDð2; qdDeDÞ and

NCGD
ðPðDDÞÞ

�
ðRDÞwD

�
¼ ðKDÞwD�2 � KD o Sð2Þ:

There is an element yD of
�
NCD

�
ðRDÞwD

�
XCGD

�
PðDDÞ

��
nCCD

�
ðRDÞwD

�
which swaps exactly

two factors KD in CGD

�
ðRDÞwD

�
, jyDj ¼ 4, y2

D A CCD

�
ðRDÞwD

�
and detðyDÞ ¼ 1.

Writing yG :¼ 1 when G3D, define

y :¼ 1V0
�
Q
G

yG and PðDÞ :¼ D0 �
Q
G3D

ðRGÞwG � PðDDÞ:ð6:5Þ
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Then y A
�
NCGðPðDÞÞðRÞXCGðsÞ

�
nCGðRÞ and y2 A CGðRÞ. Let ðR; bRÞ be a B-subgroup, so

that DðbRÞ ¼ R and we may suppose bR LEp

�
CGðRÞ; ðsÞ

�
. Since y A CGðsÞ, it follows that

y A NGðR; bRÞnCGðRÞ, so B is not nilpotent, a contradiction. Thus mG ¼ eG for all G and D

is abelian with each DG cyclic.

For each G,

NGL eG ðeG;q dG ÞðDGÞ ¼ htG;CGL eG ðeG;q dG ÞðDGÞi; CGL eG ðeG;q dG ÞðDGÞ ¼ GLeGð1; qeGdGÞ;

where tG A GLeGðeG; qdGÞ has order eG modulo GLeGð1; qeGdGÞ. If t ¼ 1V0
�
Q
G

tG, then

t A NGðDÞXCGðsÞ and so t A NGðD; bDÞ, where bD is the block of CGðDÞ labelled by ðs; kÞ.

Since eG and p are coprime, it follows that t is a p 0-element, eG ¼ 1 and
CG ¼ GLeGð1; qdGÞ. In particular, CGþðsþÞ is a torus and e j dG.

Conversely, if mGðsþÞ ¼ eG ¼ 1, then CG ¼ GLeGð1; qdGÞ and so

NCG
ðDGÞ ¼ CCG

ðDGÞ ¼ CG:

Thus D and CGðDÞ are abelian, and

NCGðsÞðDÞ ¼ CCGðsÞðDÞ ¼ CGðsÞ:

Now the canonical character of bD is labelled by ðs; 1Þ and is stable in NGðD; bDÞ. Let
x A NGðD; bDÞ. Then sx and s are CGðDÞ-conjugate elements of the abelian group CGðDÞ,
and so sx ¼ s. Hence x A CGðsÞeCGðDÞ, and we have shown NGðD; bDÞ ¼ CGðDÞ. By
Proposition 2.1, B is nilpotent.

Note that eG ¼ 1 if and only if e j dG. Since D is a Sylow p-subgroup of CGðsÞ, it
follows that D0 is a Sylow p-subgroup of CG0

ðs0Þ. But mGðsÞ ¼ mGðs0Þ þ mGðsþÞ, so
mGðsþÞ ¼ eG ¼ 1 if and only if mGðs0Þ ¼ 0, mGðsÞ ¼ 1 and e j dG. In addition, mGðsÞ3 0
and mGðsþÞ ¼ 0 if and only if mGðs0Þ ¼ mGðsÞ3 0 and eF dG. This happens by [16],
Theorem (5D), if and only if kG is an eG-core of mGðsÞ and eF dG. Thus (b) and (c) are
equivalent.

Let ðD; bDÞ be a Sylow B-subgroup and y the canonical character of bD. If (b) holds,
then CGðDÞ is regular and by [11], Theorem 3.2, ðD; bDÞ is labelled by ðD; s; kÞ. Follow the
notation of (d). By [16], p. 135, y0 is an irreducible character of G0 labelled by ðs0; kÞ and
the block bþ of Cþ containing yþ is labelled by ðsþ;�Þ, where � is the product of the empty
eG-cores of mGðsþÞ. Thus bþ ¼ Ep

�
Cþ; ðsþÞ

�
and yþ is labelled by ðsþ; wÞ for some irreduc-

ible unipotent character of CCþðsþÞ ¼ CGþðsþÞ ¼ Tþ. But yþ is canonical in bþ, so w is the
trivial character and hence yþ ¼GR

Cþ
Tþ

ðsþÞ. Conversely, if (d) holds, then mGðsþÞ ¼ eG ¼ 1
as CGþðsþÞ is a torus of Gþ. r

For integers c and m, we write pc km when pc jm and pcþ1 Fm.

Remark 6.2. In the notation of the proof above, we may suppose the element
t A CGþðsþÞ has determinant 1 whenever eG f 2 for some G.
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Proof. We may suppose q ¼ qdG , so that eG ¼ e. Let T be the diagonal maximal
torus of G ¼ GLðFnVÞ, s the Frobenius map of G such that CGðsÞ ¼ GLeðe; qÞ, where
F is the algebraic closure of Fq.

Choose matrices Pij (with i3 j) of G such that Pij acts on T as the permutation swap-
ping the ði; iÞ and ð j; jÞ entries of T, the entries of Pij are 1 or �1, detðPijÞ ¼ 1 and Pij is
fixed by s. If W is generated by the matrices Pij, then NGðTÞ ¼ TW and WT=TGSðeÞ.

Note os ¼ o for each o A W . Let o0 A W such that

CTðso0ÞGGLeð1; qeÞ;

so that o0 acts on T as the cycle ð1; 2; . . . ; eÞ. Now CTðso0Þ is conjugate in G to the
Coxeter torus GLeð1; qeÞ of CGðsÞ and o0 normalizes CTðso0Þ. Thus there is an element
b A SLhðe; qÞ such that b normalizes the torus GLeð1; qeÞ and b has order e modulo
GLeð1; qeÞ. Since NGL eðe;qÞ

�
GLeð1; qeÞ

�
=GLeð1; qeÞGZe, it follows that

NGL eðe;qÞ
�
GLeð1; qeÞ

�
¼ hb;GLeð1; qeÞi

and we may suppose t ¼ b.

7. A set of technical conditions

In order to investigate nilpotent blocks of exceptional groups of Lie type it is not
su‰cient just to find the nilpotent blocks of classical groups. We need in addition some
somewhat technical properties which we will identify in classical groups and their extensions
by diagonal automorphisms which relate to nilpotency (in particular, they will be used to
examine centralizers of elements of defect groups of nilpotent blocks).

These properties also ensure that Puig’s conjecture holds for the groups under con-
sideration.

We state these properties in this section, along with some general results which will be
needed in proving that they hold for classical groups.

Let G be a finite group, Q a p-subgroup of G, and B A BlkðGÞ. If p is odd, we denote
by AðQÞ the subgroup of Q generated by all the abelian normal subgroups of Q. Recall that
a B-subgroup ðR; bRÞ is called self-centralizing if ZðRÞ is a defect group of bR A Blk

�
CGðRÞ

�
.

We will prove for some finite groups of Lie type that one of (a)–(d) of the following
holds. A feature of these properties is that none can be satisfied by a nilpotent block with
non-abelian defect groups.

Property 7.1. Let K be a normal subgroup of a finite group H, and let B A BlkðKÞ and

BH A BlkðHÞ such that BH covers B.

(a) There exist B-subgroups ðP; gÞe ðR; bÞ, where R is abelian, with abelian defect

groups DðgÞ and DðbÞ respectively such that DðgÞ ¼ DðbÞ, and an element y A NCK ðPÞðRÞ
such that y4 ¼ 1, ½y; x� B ZðKÞ for some x A R and y2 A CKðRÞ, and such that yy ¼ y, where

y is the canonical character of b. There exist BH-subgroups ðP; gHÞe ðR; bHÞ where gH
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covers g, bH covers b, such that b
y
H ¼ bH and DðbHÞ ¼ DðgHÞ is abelian for defect groups

DðbHÞ and DðgHÞ of bH and gH respectively.

(a*) Property (a) above holds, and there exist subgroups Ni pMi of H, and characters

yi A IrrðNiÞ for i ¼ 1; 2 such that Mi=Ni is abelian,

ZðKÞeN1 � N2 eCKðRÞeCHðRÞeM1 � M2;

y covers y1 � y2, Z0 XN2 ¼ 1, y2 has a y-stable extension to M2 and ½y; x� ¼ 1 or

½y; x� A Z0N2 according as x A M1 or M2, where Z0 eZðM1ÞXZðM2Þ such that M1 � M2

is a central product over Z0.

(b) DðBÞG 31þ2
þ , lðBÞf 2, and either DðBHÞ ¼ DðBÞ or DðBHÞGZ3 o Z3.

(c) DðBÞ ¼ 32, lðBÞf 2, and either DðBHÞ ¼ DðBÞ or DðBHÞG 31þ2
þ .

(d) Both DðBÞ and DðBHÞ are abelian.

Remark 7.2. (i) Suppose that ðP; gÞe ðR; bÞ are B-subgroups with abelian defect
groups DðgÞ and DðbÞ, and R is abelian. By [15], Lemma 4.1, there exists a BH-subgroup
ðP; gHÞ such that gH covers g. Since ReDðbÞ is abelian and ðP; gÞe ðR; bÞ, it follows that
ðR; bÞ is a g-subgroup and by [15], Lemma 4.1, again, there exists a gH-subgroup ðR; bHÞ
such that bH covers b. Thus ðR; bHÞ is a BH-subgroup and ðP; gHÞe ðR; bHÞ.

(ii) Note that in the notation of the proof of Theorem 6.1, ðR; bRÞ is self-centralizing.

We also observe that there is some redundancy in (a) when (a*) holds:

Remark 7.3. In the notation of Property 7.1 (a) and (a*) suppose

N1 � N2 eE eM1 � M2

such that y normalizes E and suppose j A IrrðE j y1 � y2Þ. Then jy ¼ j.

Proof. Since j has an extension ~jj to EZ0, it follows that we may suppose Z0 eE.
Let pi : ðM1 � M2Þ ! Mi=Z0 be the canonical projection and let Ei=Z0 ¼ piðEÞ for some
Ei eMi. Then

N1 � N2 eE eE1 � E2 eM1 � M2:

Let z be the y-stable extension of y2 to M2, and set ~yy2 ¼ zjE2
. Then ~yy2 is an extension of y2

to E2 which is stabilized by y. Since ½y; x� ¼ 1 or N2Z0 according as x A M1 or x A M2, it
follows that y centralizes E1 and ½y; x� A N2Z0 for any x A E2. By Lemma 2.7, jy ¼ j. r

Applying Remark 7.3 to the canonical characters of b and bH , we see that in the no-
tation of (a), yy ¼ y and b

y
H ¼ bH are automatically satisfied if the other parts of (a*) hold.

Before stating the key consequence of Property 7.1, we need the following:

Lemma 7.4. Let B be a block of a finite group G and suppose there are B-subgroups

ðP; bPÞe ðR; bRÞ such that R is abelian, bP has abelian defect groups and there is a p-regular

element y A NCGðPÞðRÞnCGðRÞ such that b
y
R ¼ bR. Then there is a B-subgroup ðQ; bQÞ such

that lðbQÞ > 1.
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Proof. For convenience write L ¼ CGðPÞ. Note first that bP is not nilpotent, since
yCGðRÞ A NLðR; bRÞ=CGðRÞ is not a p-element and ðR; bRÞ is a bP-subgroup. Hence by
Lemma 2.4 the unique block bP of L :¼ L=P dominated by bP is not nilpotent either. But
bP has abelian defect groups, so by [30], Theorem 3, there is a bP-subgroup ðQ; b

Q
Þ, where

Q ¼ Q=P for some QfP, such that lðb
Q
Þ > 1.

Note that CLðQÞpCLðQÞ and CLðQÞ=CLðQÞ is a p-group. By [33], Lemma 1, there
is a bP-subgroup ðQ; bQÞ such that b

Q
is the unique block of CLðQÞ covering the block b 0

Q
of

CLðQÞ dominated by bQ. Note that lðbQÞ ¼ lðb 0
Q
Þ ¼ lðb

Q
Þ > 1. But PeQ, so ðQ; bQÞ is

also a B-subgroup, and we are done. r

We make the key observation, and see also that the conjecture of Puig is a conse-
quence of any of Properties 7.1 (a)–(d).

Corollary 7.5. Suppose one of Property 7.1 (a)–(d) holds for a block B. If B has non-

abelian defect groups, then there is a B-subgroup ðQ; bQÞ such that lðbQÞ > 1, and hence B is

not nilpotent. In particular, B is nilpotent if and only if lðbQÞ ¼ 1 for every B-subgroup

ðQ; bQÞ.

Proof. If (a) holds, then the result follows immediately from Lemma 7.4, since B is
not nilpotent and there is a B-subgroup ðQ; bQÞ such that lðbQÞ > 1. If (b) or (c) holds, then
lðBÞ > 1, so B is not nilpotent, and we may take ðQ; bQÞ ¼ ð1;BÞ. If (d) holds, then this is
[30], Theorem 3. r

We prove a lemma which will be useful in establishing the given properties. Let H be
a finite group, K pH, Z eZðHÞXK and K :¼ K=Z eH :¼ H=Z. Let B A BlkðKÞ and
B A BlkðKÞ dominating B, and ðQ; bQÞ a B-subgroup. Let g : H ! H be the natural homo-
morphism, and write X ¼ gðX Þ for any X LH.

If Z is a p 0-group, then ðQ; bQÞ is defined in Section 2 and it is a B-subgroup. Suppose
Z is a p-group. Then g�1

�
CKðQÞ

�
eNKðQZÞ and g�1

�
CKðQÞ

�
=CKðQÞ is a p-group. Thus

g�1
�
CKðQÞ

�
has a unique block b̂bQ covering bQ and we denote by bQ the block of CKðQÞ

corresponding to b̂bQ, so that by [33], Lemma 1, ðQ; bQÞ is also a B-subgroup.

In general, since K G
�
K=OpðZÞ

�
=
�
Z=OpðZÞ

�
and Z=OpðZÞeZ

�
K=OpðZÞ

�
, it fol-

lows that ðQ; bQÞ is defined and is a B-subgroup.

Lemma 7.6. Let H be a finite group, K pH, Z eZðHÞXK. Define K :¼ K=Z

and H :¼ H=Z. Let B A BlkðKÞ and B A BlkðKÞ dominating B. Suppose the B-subgroups

ðP; gÞe ðR; bÞ satisfy Property 7.1 (a*), and suppose ZðKÞ ¼ ZðKÞ=Z. In addition, if

Z ¼ OpðZÞ, then suppose, moreover that CHðPÞ=Z ¼ CHðPÞ and CHðRÞ=Z ¼ CHðRÞ.
Then the B-subgroups ðP; gÞe ðR; bÞ satisfy Property 7.1 (a*).

Proof. Let BH A BlkðHÞ covering B, and BH A BlkðHÞ dominating BH and
w A IrrðBHÞ, so that w covers some c A IrrðBÞ. But IrrðBHÞL IrrðBHÞ and IrrðBÞL IrrðBÞ,
so BH covers B.

Let f be the unique block of Z covered by B. Then each character w in IrrðBÞ covers a
character in Irrð f Þ. Since IrrðBÞL IrrðBÞ, it follows that f is the principal block. Since

22 An and Eaton, Nilpotent blocks of quasisimple groups for odd primes



ðP; gÞ is a B-subgroup and Z eZðKÞ and since B covers f , it follows that g covers f , and
similarly, b covers f . The same applies to BH and to BH -subgroups.

Since CKðPZÞ ¼ CKðPÞ, it follows that we may suppose OpðZÞeP. Let
y A NCK ðPÞðRÞ such that y4 ¼ 1, ½y; x� B ZðKÞ for some x A R, y2 A CKðRÞ, and suppose
Ni and Mi are subgroups of H, and yi A IrrðNiÞ for i ¼ 1; 2, such that Mi=Ni is abelian,

Z eZðKÞeN1 � N2 eCKðRÞeCHðRÞeM1 � M2;

y covers y1 � y2, Z0 XN2 ¼ 1, y2 has a y-stable extension ~yy2 to M2 and ½y; x� ¼ 1 or in
Z0N2 according as x A M1 or M2, where Z0 eZðM1ÞXZðM2Þ such that M1 � M2 is the
central product over Z0 and y is the canonical character of b.

It su‰ces to consider the cases p-group and p 0-group separately. Then by [33],
Lemma 1 (iii), and Lemma 2.5, ðP; gÞe ðR; bÞ are B-subgroups. If Z is a p 0-group, then
CKðRÞ=Z ¼ CKðRÞ. If Z is a p-group, then CHðRÞ=Z ¼ CHðRÞ, g�1

�
CHðRÞ

�
¼ CHðRÞ

and so g�1
�
CKðRÞ

�
¼ CKðRÞ. Thus in either case

CKðRÞ=Z ¼ CKðRÞ and DðbÞZ=Z ¼ DðbÞ:

Similarly, DðgÞ ¼ DðgÞZ=Z, and DðgÞ ¼ DðbÞ is abelian as DðgÞ ¼ DðbÞ is abelian.

Let y ¼ gðyÞ, so that y4 ¼ 1, y A CKðPÞXNKðRÞ, y2 A CKðRÞ. Since ½y; x� B ZðKÞ
for some x A R and since ZðKÞ ¼ ZðKÞ=Z, it follows that ½y; x� B ZðKÞ and in particular,
y B CKðRÞ.

Let Ni ¼ gðNiÞ and Mi ¼ gðMiÞ. Then Ni pMi and Mi=Ni is abelian such that

ZðKÞeN1 � N2 eCKðRÞeCHðRÞeM1 � M2;

where M1 � M2 is the central product over Z0 ¼ gðZ0Þ.

Since Z eZðKÞeN1 � N2 and y is the canonical character of b, it follows that y is
the lift of the canonical character y of b. Similarly, since y covers y1 � y2, it follows that
Z e kerðy1 � y2Þ and y1 � y2 is the lift of y1 � y2 for some yi A IrrðNiÞ. In particular,
y A Irr

�
CKðRÞ j y1 � y2

�
. If j A IrrðM1 � M2 j y1 � y2Þ, then by Lemma 2.7, j ¼ c � ð~yy2lÞ

for some c A IrrðM1 j y1Þ and l A IrrðM2=Z0N2Þ. Since ½y; x� A N2Z0 for all x A M2, it fol-
lows that ly ¼ l and so ~yy2l is y-invariant. But Z e kerðjÞ, so Z XM2 e kerð~yy2lÞ, and ~yy2l

can be viewed as a character of IrrðM2Þ, which is a y-invariant extension of y2 to M2. Thus
Property 7.1 (a*) holds for B.

Similarly, if ðP; gHÞe ðR; bHÞ are BH -blocks such that DðgHÞ ¼ DðbHÞ is abelian, and
gH and bH cover g and b, respectively, then there exist BH -subgroups ðP; gHÞe ðR; bHÞ
such that gH is dominated by gH and bH is dominated by bH and DðgHÞ ¼ DðgHÞZ=Z

and DðbHÞ ¼ DðbHÞZ=Z. Thus DðgHÞ ¼ DðbHÞ ¼ DðbHÞZ=Z is abelian.

Since gH covers g, it follows that the canonical character yH of gH covers the canoni-
cal character y of g. But yH is the lift of the canonical character of gH and y is the lift of the
canonical character of g, so gH covers g. Similarly, bH covers b. This proves that Property

7.1 (a) holds for ðP; gÞe ðR; bÞ. r
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8. Classical groups

Suppose p is odd. In this section we demonstrate that every nilpotent block of a clas-
sical group has abelian defect groups.

Proposition 8.1. Let K :¼ SLh
nðqÞeH eG :¼ GLh

n ðqÞ ¼ GLhðVÞ, Z eZðKÞ,
B A BlkðKÞ, BH A BlkðHÞ covering B. Let BG A BlkðGÞ be a weakly regular cover of

BH. Write R :¼ A
�
DðBGÞ

�
XK. Then Property 7.1 (a*) holds for some B-subgroups

ðP; gÞe ðR; bÞ with CHðPÞ=Z ¼ CHðPÞ and CHðRÞ=Z ¼ CHðRÞ, or Property 7.1 (b) or (d)
holds, where X ¼ XZ=Z for any X eG. Moreover, if Property 7.1 (b) holds, then n ¼ 3d

with gcdð6; dÞ ¼ 1 and 3 k ðq � hÞ.

Proof. Suppose BG is labelled by ðs; kÞ. Since BH covers B, it follows that
DðBÞ ¼ DðBHÞXK for some defect group DðBHÞ. There exists a defect group DðBGÞ such
that DðBHÞ ¼ DðBGÞXH, so

DðBÞ ¼ DðBHÞXK ¼ DðBGÞXK and DðBHÞ ¼ DðBGÞXH:

We may suppose DðBGÞ A Sylp
�
CGðsÞ

�
.

Suppose the decompositions V ¼ V0 ? Vþ, DðBGÞ ¼ D0 � Dþ and s ¼ s0 � sþ are
given as in (6.1). Set RG ¼ A

�
DðBGÞ

�
. Then RG and CGðRGÞ are given by (6.4) with R

replaced by RG.

In the notation of the proof of Theorem 6.1, suppose each wG e ðp � 1Þ. Then DðBGÞ
is abelian, and both DðBÞ and DðBHÞ are abelian. Thus Property 7.1 (d) holds. So we sup-
pose that wDf p for some D. There exists y A CGðsÞXK such that y A NGðRGÞnCGðRGÞ,
jyj ¼ 4, yjV0

¼ 1V0
, yjVG

¼ 1VG
for all G3D, and y swaps exactly two factors KD of

CGðRGÞ. Let RH :¼ RG XH and R ¼ RG XK.

Let PG :¼ P
�
DðBGÞ

�
be defined by (6.5), so that PG eRG and we may suppose

y A CGðPGÞXK . Let P :¼ PG XK and PH ¼ PG XH. Since wD f p, it follows that
jW1ðPGÞjf pp�1, and P is cyclic if and only if p ¼ 3, wD ¼ 3, wG ¼ 0 for all G3D and
PG KK.

We claim that CGðPÞ3CGðPGÞ if and only if V0 ¼ 0, p ¼ 3 ¼ wD, wG ¼ 0 when
G3D, h ¼ e, aD ¼ 0, eD ¼ 1 and 3 k ðq � eÞ. In particular, DðBÞ ¼ 31þ2

þ in this case.

Indeed, if wD > 3, then P is noncyclic and so CGðPÞ ¼ CGðPGÞ. Thus wD ¼ 3, and so
p ¼ 3. If wG3 0, then P is also noncyclic and hence CGðPÞ ¼ CGðPGÞ. Suppose p ¼ 3 ¼ wD

and wG ¼ 0, so that jW1ðPGÞj ¼ 32. Define cf 1 by 3c k ðqe3aD � eÞ, and choose
b A F�

q2e3aD with jbj ¼ 3c. Note that xb :¼ 1V0
� diagfb�2; b; bg A P and so if cf 2, then

CGðPÞ ¼ CGðPGÞ. Thus 3 k ðqe3aD � eÞ and so aD ¼ 0. Note that e ¼ 1 or 2 as p ¼ 3. If
e ¼ 2, then we may suppose b A SL2ðqÞ, since SL2ðqÞ contains a maximal torus Zq�e.
Thus detðbÞ ¼ 1, P ¼ PG and CGðPÞ ¼ CGðPGÞ, a contradiction. So e ¼ 1 and 3 k ðq � eÞ.
But

Z
�
GðV0Þ

�
� Z

�
GðVþÞ

�
eZ

�
CGðPÞ

�
;
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so h ¼ e. Since 3 j ðq � hÞ and 1 ¼ D0 ¼ O3

�
GðV0Þ

�
, it follows that V0 ¼ 0. Similarly, since

ZðGÞ ¼ Zq�h eZ
�
CGðsÞ

�
¼ ZqdD�eD

, it follows that eD ¼ 1 and the claim holds.

Suppose V0 ¼ 0, p ¼ 3 ¼ wD, wG ¼ 0 when G3D, h ¼ e, aD ¼ 0, eD ¼ 1 and
3 k ðq � eÞ. Then

CGðPÞ ¼ GLeð3dD; qÞ ¼ G; CGðPGÞ ¼ GLeðdD; qÞ � GLeð2dD; qÞ;

so P ¼ O3

�
ZðGÞ

�
¼ O3

�
ZðKÞ

�
¼ Z3 and PG ¼ O3

�
Z
�
CGðPGÞ

��
¼ Z2

3 . In addition,
CGðsÞGGLeDð3; qdDÞ and DðBGÞ A Syl3

�
GLeDð3; qdDÞ

�
. Since aD ¼ 0, it follows that

3 k ðqdD � eDÞ, DðBGÞ ¼ Z3 o Z3 and jDðBÞj ¼ 33. But 31þ2
þ A Syl3

�
SLeDð3; qdDÞ

�
, so

DðBÞG 31þ2
þ .

Write DG ¼ DðBGÞ, DH ¼ DðBHÞ and D ¼ DðBÞ. Since ½DG : D� ¼ 3, it follows
that DH ¼ D or DH ¼ DG. Note that DG ¼ hRG; si for some permutation s of
order 3. So D ¼ hR; si, CGðDGÞ ¼ CGðDÞGGLeðdD; qÞ, CG

�
CGðDÞ

�
¼ GLeð3; qÞ and

hDG; yieCG

�
CGðDÞ

�
. Thus y centralizes CGðDÞ and so y A NKðD; bDÞ, where ðD; bDÞ

is a Sylow B-subgroup. Since ZðDÞeZðKÞ, it follows that B dominates a block
B A Blk

�
K=ZðDÞ

�
, DðBÞ ¼ D=ZðDÞG 32 and y stabilizes the B-subgroup

�
D=ZðDÞ; bD

�
with jyj ¼ 4, where y ¼ yZðDÞ. In particular, B is non-nilpotent. But DðBÞ is abelian, so
lðb

Q
Þf 2 for some B-subgroup ðQ; b

Q
Þ. If QGZ3, then

CK=ZðDÞðQÞ ¼ CKðQÞD=ZðDÞ ¼
�
CKðQÞ=ZðDÞ

�
:3;

where Q ¼ hZðKÞ;wi for some w A DnZðDÞ of order 3. Let BQ be a block of CKðQÞD
dominating b

Q
and bQ A Blk

�
CKðQÞ

�
covered by BQ. Then DðbQÞ ¼ Q and the canonical

character yQ of bQ is the only irreducible Brauer character of bQ. If f is any irreducible
Brauer character of BQ, then f covers yQ. But CKðQÞ contains a representative set of
the conjugacy 3 0-classes of CKðQÞD, so lðBQÞ ¼ 1. In particular, lðb

Q
Þ ¼ 1. Similarly, if

Q ¼ D=ZðDÞ, then lðb
Q
Þ ¼ 1. Thus if lðb

Q
Þf 2, then Q ¼ 1 and b

Q
¼ B. It follows that

lðBÞf lðBÞf 2, and hence Property 7.1 (b) holds.

Since p is odd, it follows that CGðRÞ ¼ CGðRHÞ ¼ CGðRGÞ. Let x A G such that
for any u A R, there exists z A ZðGÞ such that x�1ux ¼ uz. Then x�1ux ¼ cu for some
c A OpðF�q2Þ and so x A NGðRÞ ¼ NGðRGÞ. If l is an eigenvalue of u in some algebraic clo-
sure of Fq2 and mX�lðuÞ is the multiplicity, then cl is also an eigenvalue of u with the same
multiplicity. In particular, mX�1ðuÞ ¼ mX�cðuÞ. It follows that if we choose u A R such that
mX�1ðuÞ3mX�cðuÞ for any c A F�q2 , then x�1ux ¼ u. Since jW1ðRÞjf pp�1, it follows that
x A CGðRÞ and so CGðRÞ=Z ¼ CG=ZðR=ZÞ for any Z eZðGÞ, except when p ¼ 3 ¼ wD,
aD ¼ 0 and 3 k ðqe � eÞ, in which case DðBÞ ¼ 31þ2

þ . If 3Fðq � hÞ, then e ¼ 2 and as shown
above R ¼ RG, in which case we still have x A CGðRÞ. If 3 j ðq � hÞ, then 3 k ðq � hÞ, PGZ3

and CGðPÞ3CGðPGÞ, which is discussed above.

Similarly, CGðPÞ=Z ¼ CG=ZðP=ZÞ for any Z eZðGÞ when CGðPÞ ¼ CGðPGÞ (note in
this case that for any u A P, we have mX�lðuÞf 2 for some eigenvalue l).

Suppose CGðPÞ ¼ CGðPHÞ ¼ CGðPGÞ and CGðRÞ ¼ CGðRGÞ ¼ CGðRHÞ. Thus CGðRÞ
is regular in G and s A CGðRÞ. Let ðP; gÞ and ðR; bÞ be B-subgroups such that
ðP; gÞe ðR; bÞ.
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Let ðP; gHÞe ðR; bHÞ be BH-subgroups such that gH covers g and bH covers b (see
the remark after the definition of Property 7.1), and ðP; gGÞe ðR; bGÞ be BG-subgroups
such that gG covers gH and bG covers bH . By [12], Theorem 3.2, we may suppose
bG LEp

�
CGðRÞ; ðsÞ

�
and so b

y
G ¼ bG as y A CGðsÞXK. Now

bG ¼ bð0Þ �
Q
G

bðGÞwG ;

where bð0Þ is a block of G0 labelled by ðs0; kÞ with defect 0, and bðGÞ ¼ Ep

�
KG; ðtGÞ

�
with tG

the restriction of s to KG. Note that if UG is the underlying space of KG and view tG as an
element of GðUGÞ, then we have mGðtGÞ ¼ eG. Thus for any generator xG A RG,

TG :¼ CKG
ðtGÞ ¼ CGðUGÞðxGtGÞGGLeGð1; qeGdGÞ

is a Coxeter torus of both KG and GðUGÞ, and RG ¼ OpðTGÞ is a defect group of bðGÞ.
In particular, RG is a defect group of bG. We may suppose DðbÞ ¼ DðbGÞXCKðRÞ and
DðbHÞ ¼ DðbGÞXH, so that DðbÞ ¼ R and DðbHÞ ¼ RH .

Since ðP; gGÞe ðR; bGÞ and DðbGÞeCGðPÞ, it follows that DðgGÞ ¼ DðbGÞ ¼ RG and
so DðgÞ ¼ DðbGÞXCKðPÞ ¼ DðbGÞXK ¼ R is abelian. Similarly, DðgHÞ ¼ RH ¼ DðbHÞ.

Let y, yH and yG be canonical characters of b, bH and bG, respectively. Then yG

covers yH and yH covers y. Now

yG ¼ yð0Þ � yðþÞ; yðþÞ :¼
Q
G

yðGÞwG ; yðGÞ :¼GRKG

TG
ðtGÞ

where Irr
�
bð0Þ

�
¼ fyð0Þg. If HG :¼ KG XSðUGÞ, then there exists an element xG A KG

which permutes all the irreducible constituents of the restriction yðGÞjHG
. Since wD f p, it

follows that yðþÞjCSðVþÞðRþÞ is irreducible, where Rþ ¼ SðVþÞX
�Q

G

ðRGÞwG

�
.

Let K0 ¼ SðV0Þ and Kþ ¼ SðVþÞ, so that

CKðRÞ ¼ hK0 � CKþðRþÞ; uKi; uK ¼ u0 � uþ;

with u0 A G0nK0 and uþ A CGþðRþÞnCKþðRþÞ. Note that

G0 ¼ hK0; u0i and CGþðRþÞ ¼ hCKþðRþÞ; uþi:

Let y0 and yþ be irreducible constituents of yjK0
and yjCKþðRþÞ, respectively. Then

y A Irr
�
CKðRÞ j y0 � yþ

�
and yG covers y0 � yþ. But yðþÞjCKþðRþÞ is irreducible, so

yþ ¼ yðþÞjCKþðRþÞ and yþ has an extension yðþÞ to CGþðRþÞ. Applying Lemma 2.7 to

K0 � CKþðRþÞeCKðRÞeCGðRÞ ¼ G0 � CGþðRþÞ

(with Z0 ¼ 1), we have that yGjCK ðRÞ ¼ y. In particular, yGjCK ðRÞ is irreducible and so is
yGjCH ðRÞ. But yG covers yH , so yGjCH ðRÞ ¼ yH . Thus yy ¼ y, yy

H ¼ yH , by ¼ b and b
y
H ¼ bH .

Note that yH jCK ðRÞ ¼ y. Thus Property 7.1 (a*) holds. r
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Let V be a non-degenerate orthogonal or symplectic space, G ¼ I0ðVÞ and let G� be
the dual group of G. Then

Sp2nðqÞ
� ¼ SO2nþ1ðqÞ; SO2nþ1ðqÞ� ¼ Sp2nðqÞ; SO

h
2nðqÞ

� ¼ SO
h
2nðqÞ:

If B is a block of I0ðVÞ, then there exists a semisimple p 0-element s A I0ðVÞ� such that

BLEp

�
I0ðVÞ; ðsÞ

�
:

Let ðD; bDÞ be a Sylow B-subgroup of I0ðVÞ. Then V and D have corresponding decompo-
sitions

V ¼ V0 ? Vþ; D ¼ D0 � Dþ:ð8:1Þ

We have V0 ¼ CV ðDÞ, Vþ ¼ ½V ;D�, D0 ¼ f1V0
g and Dþ e I0ðVþÞ. Let G0 :¼ I0ðV0Þ,

Gþ :¼ I0ðVþÞ, Cþ :¼ CI0ðVþÞðDþÞ and let V � be the underlying space of I0ðVÞ�.

Let z A D be a primitive element. Then z A ZðDÞ with jzj ¼ p (cf. [17], p. 176). Thus

z ¼ z0 � zþ; L :¼ CGðzÞ ¼ L0 � Lþ; L0 ¼ G0; Lþ :¼ GLeðm; qeÞ;ð8:2Þ

where z0 ¼ 1V0
, zþ eDþ and dim Vþ ¼ 2em. Then L is a regular subgroup of G and we

may suppose s A L� eG�. In particular,

V � ¼ U0 ? Uþ and s ¼ s0 � sþ;ð8:3Þ

where U0 ¼ V �
0 , s0 A L�

0 ¼ I0ðU0Þ, Uþ is the underlying space of L�
þ and sþ A L�

þ e I0ðUþÞ.

Let CIðUþÞðsþÞ ¼
Q
G

CG and let UG be the underlying vector space of CG, so that

CG ¼ GLeG
�
mGðsþÞ; qdG

�
or IðUGÞð8:4Þ

according as G3X G 1 or G ¼ X G 1.

Proposition 8.2. Let K :¼ W
h
2nðqÞ :¼ WhðVÞeH e J0ðVÞ, BK A BlkðKÞ and

BH A BlkðHÞ covering BK. Write R :¼ A
�
DðBKÞ

�
. Then either Property 7.1 (a*) holds for

some BK-subgroups ðP; gÞe ðR; bÞ or Property 7.1 (d) holds, where P is some subgroup of R.

Proof. Let G :¼ SO
h
2nðqÞ :¼ SOðVÞ and B A BlkðGÞ covering BK . Then

DðBKÞ ¼ DXK

for some defect group D :¼ DðBÞ. Since G is self dual, we have V ¼ V �, U0 ¼ V0,
Uþ ¼ Vþ in (8.3).

(1) Since jG : K j ¼ 2, it follows that D ¼ DðBKÞ and D ¼ DðBHÞXG for some
DðBHÞ. In the notation above we have

CKðzÞeL ¼ L0 � Lþ:
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Let K0 ¼ WðV0Þ, Kþ ¼ WðVþÞ and Mþ :¼ SLeðm; qeÞeLþXKþ, so that

Mþ eCKþðzþÞeLþ; CKðzÞ ¼ hK0 � CKþðzþÞ; t0 � tþið8:5Þ

and ½Lþ : CKþðzþÞ�e 2, where t0 A L0nK0 and tþ A Lþ. Let ðz;BzÞ be a major subsection
of BK . Then Bz covers a block B0 � Bþ of K0 � CKþðzþÞ with B0 A BlkðK0Þ and
Bþ A Blk

�
CKþðzþÞ

�
such that DðBzÞ ¼ DðB0 � BþÞ ¼ D. Note since ½Lþ : CKþðzþÞ�e 2, it

follows that DðBþÞ ¼ Dþ Y 31þ2
þ .

By [15], Lemma 4.1, there exists a B-subgroup ðz;BLÞ such that BL covers Bz. Thus
ðz;BLÞ is a major subsection of B.

Let R :¼ AðDÞ, so that z A R and

R ¼ D0 �
Q
G

ðRGÞwG ; CGðRÞ ¼ SOðV0Þ �
Q
G

ðKGÞwG ;

where RG ¼ OpðKGÞ, mGðsþÞ ¼ wGeG or 2wGeG according as G3X G 1 or G ¼ X G 1,
KG GGLeðd 0G; qepaG Þ. Thus R ¼ Op

�
CGðRÞ

�
, CGðRÞ is a regular subgroup of G and we

may suppose s A CGðRÞ. Set Rþ ¼
Q
G

ðRGÞwG , so that RþeCKþðzþÞ and

K0 � CKþðRþÞeCKðRÞeCGðRÞ ¼ L0 � CLþðRþÞ:

Let ðRþ; bþÞ be a Bþ-subgroup, so that

ðB0 � bþÞK0�CKþðzþÞ ¼ B0 � Bþ

and bþ A Blk
�
CKþðRþÞ

�
as CKþðRþÞeCKþðzþÞ. Now K0 � CKþðzþÞ is normal in CKðzÞ,

ReK0 � CKþðzþÞ and Bz covers B0 � Bþ. It follows by [15], Lemma 4.1, that there exists
a Bz-subgroup ðR; bÞ such that b covers B0 � bþ, so that ðR; bÞ is a BK -subgroup.

Similarly, there exists a BL-subgroup ðR; bGÞ such that bG covers b. Thus
bG LEp

�
CGðRÞ; ðsÞ

�
, R ¼ DðbGÞ, and so R ¼ DðbÞ ¼ DðB0 � bþÞ.

Since L ¼ L0 � Lþ with L0 ¼ G0 ¼ SOðV0Þ, it follows that BL ¼ BL0
� BLþ with

BL0
A BlkðG0Þ and BLþ A BlkðLþÞ. But BL covers Bz and Bz covers B0 � Bþ, so BL0

covers
B0 and BLþ covers Bþ. In particular, Dþ ¼ DðBþÞ ¼ DðBLþÞ. Similarly, bG ¼ bG0

� bGþ

with bG0
¼ BL0

A BlkðG0Þ and bGþ A Blk
�
CLþðRþÞ

�
, and bGþ covers bþ.

Suppose D is non-abelian, so that wD f p for some D. Let P :¼ D0 � Pþ eR

and ðP; gÞe ðR; bÞ, where Pþ :¼ PðDþÞ is given by (6.5). By Proposition 8.1, there exists
a Bþ-subgroup ðPþ; gþÞ such that ðPþ; gþÞe ðRþ; bþÞ and DðgþÞ ¼ DðbþÞ ¼ Rþ. By the
remark after Property 7.1, we may choose ðP; gÞ such that g is covering B0 � gþ, so
DðgÞ ¼ D0 � DðgþÞ ¼ D0 � DðbþÞ ¼ DðbÞ ¼ R.

In addition, there exists y A CLþðsþÞXMþ such that y A NCLþðPþÞðRþÞnCLþðRþÞ,
jyj ¼ 4, y2 A CLþðRþÞ, yjV0

¼ 1V0
, yjVG

¼ 1VG
for all G3D and y swaps exactly two fac-

tors KD of CGðRÞ. Since y A CLþðsþÞ, it follows that ðbGþÞ
y ¼ bGþ .
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Let yG and y be canonical characters of bG and b, respectively. Then yG covers y,

yG ¼ yG0
� yGþ

with IrrðbG0
Þ ¼ fyG0

g and yGþ the canonical character of bGþ . If IrrðB0Þ ¼ fy0g and yþ is
the canonical character of bþ, then yGþ covers yþ. Since CKþðRþÞ ¼ CCKþðzþÞðRþÞ, it fol-
lows by the proof of Proposition 8.1 that yþ ¼ yGþjCKþðRþÞ and yy

þ ¼ yþ.

Now

CKðRÞ ¼ hK0 � CKþðRþÞ; uKi; uK ¼ u0 � uþ;ð8:6Þ

with ½CKðRÞ : K0 � CKþðRþÞ�e 2, where u0 A G0 and uþ A CLþðRþÞ. If

CKðRÞ ¼ K0 � CKþðRþÞ;

then y ¼ y0 � yþ and yy ¼ y. If ½CKðRÞ : K0 � CKþðRþÞ� ¼ 2, then L0 ¼ hK0; u0i and
CLþðRþÞ ¼ hCKþðRþÞ; uþi. Now y A Irr

�
CKðRÞ j y0 � yþ

�
and yG A Irr

�
CGðRÞ j y

�
and yþ

has an extension yGþ to CLþðRþÞ, so by Lemma 2.7, yGjCK ðRÞ ¼ y and hence yy ¼ y and
y A NKðR; bÞ.

(2) Suppose K eH e J0ðVÞ. Let ðP; gHÞe ðR; bHÞ be BH -subgroups such that gH

covers g and bH is covering b. Since J0ðVÞ=Z
�
J0ðVÞ

�
K is a 2-group and p is odd, it follows

that DðgHÞ ¼ Op

�
ZðHÞ

�
DðgÞ ¼ Op

�
ZðHÞ

�
DðbÞ ¼ DðbHÞ and both are abelian, and the

canonical character yH of bH covers y. Now

K0 � CKþðRþÞeCKðRÞeCHðRÞeCJ0ðVÞðRÞe J0ðV0Þ � CJ0ðVþÞðRþÞ:

By [17], (1A), CJ0ðVþÞðzþÞ ¼ hLþ; tþi with ½tþ;Lþ� ¼ 1 and so CJ0ðVþÞðRþÞ is a central
product CLþðRþÞ � htþi. In particular, yGþ has an extension ~yyGþ to CJ0ðVþÞðRþÞ, and ~yyGþ

is also an extension of yþ. Moreover, y stabilizes ~yyGþ , since ~yyGþ is a central product
yGþ � b for some b A IrrðhtþiÞ and y

y
Gþ

¼ yGþ . Since y A MþeKþ and y normalizes
Kþ, it follows that ½y; x� A CKþðRþÞ ¼ CLþðRþÞXKþ for any x A CLþðRþÞ. But
CJ0ðVþÞðRþÞ ¼ CLþðRþÞ � htþi, so ½y; x� A CKþðRþÞ for all x A CJ0ðVþÞðRþÞ. It follows by
Remark 7.3 that y stabilizes yH and so b

y
H ¼ bH . Thus Property 7.1 (a*) holds.

(3) Suppose wG < p for any G with mGðsþÞ3 0. Then D ¼ DðBKÞ is abelian, and so
DðBHÞ ¼ DOp

�
ZðHÞ

�
is abelian. Thus Property 7.1 (d) holds. r

Proposition 8.3. Let K :¼ W2nþ1ðqÞ ¼ WðVÞ or K :¼ Sp2nðqÞ ¼ SpðVÞ, and

K eH e J0ðVÞ;

BK A BlkðKÞ and BH A BlkðHÞ covering BK , where H ¼ SOðVÞ when K ¼ WðVÞ. Write

R :¼ A
�
DðBKÞ

�
. Then either Property 7.1 (a*) holds for some BK-subgroups ðP; gÞe ðR; bÞ

or Property 7.1 (d) holds, where P is some subgroup of R.

Proof. Suppose V is orthogonal. Replacing G by H in the proof (1) of Proposi-
tion 8.2 with some obvious modifications, we have that Property 7.1 (a*) holds for
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ðP; gÞe ðR; bÞ. Suppose V is symplectic, so that H=K is cyclic. Applying the proofs (1) and
(2) of Proposition 8.2 with some obvious modifications, we have that Property 7.1 (a*)
holds for ðP; gÞe ðR; bÞ.

If DðBKÞ is abelian, then DðBKÞ ¼ DðBHÞXK for some DðBHÞ. Since the outer-
diagonal group of K is of order 2, it follows that

DðBHÞeKZðHÞ

and so DðBHÞ ¼ DðBKÞOp

�
ZðHÞ

�
is abelian. r

Theorem 8.4. Let G ¼ I0ðVÞ, B A BlkðGÞ, and ðD; bDÞ a Sylow B-subgroup. Follow

the notation in (8.1), (8.2) and ð8:3Þ. Then the following are equivalent:

(a) B is nilpotent.

(b) CI0ðVÞðDÞ ¼ G0 � CI0ðVþÞðDþÞ is a regular subgroup of I0ðVÞ and

s A CI0ðVÞðDÞ� eL�

satisfies the following conditions:

(i) Suppose I0ðVÞ ¼ Sp2nðqÞ or SO2nþ1ðqÞ. Then

mGðsþÞ ¼
0 or 1 if G3X G 1 and e j dG;
0 otherwise:

�

(ii) Suppose I0ðVÞ ¼ SO
h
2nðqÞ. Then

mGðsþÞ ¼ 0 or 1 if G3X G 1 and e j dG;
mX�1ðsþÞ þ mXþ1ðsþÞ ¼ 0 or 2 if p j ðq � eÞ;
mGðsþÞ ¼ 0 otherwise;

8<
:

where e is the type of the underlying space of ðsþÞXG1 when mX�1ðsþÞ þ mXþ1ðsþÞ ¼ 2.

(c) CI0ðVÞðDÞ ¼ G0 � CI0ðVþÞðDþÞ is a regular subgroup of I0ðVÞ and

s A CI0ðVÞðDÞ� eL�

such that T �
þ :¼ CI0ðUþÞðsþÞ is a maximal torus of I0ðUþÞ. In particular, if y ¼ y0 � yþ is the

canonical character of bD with y0 A IrrðG0Þ and yþ A IrrðCþÞ, then y0 has defect zero and

yþ ¼GR
Cþ
Tþ

ðsþÞ, where Cþ ¼ CI0ðVþÞðDþÞ and TþeCþ is a dual of T �
þ.

Proof. Suppose B is nilpotent. By Propositions 8.2 and 8.3, D is abelian, so
mGðsþÞ ¼ eG or 0 when G3X G 1 and mGðsþÞ ¼ 2e or 0 when G ¼ X G 1.

Suppose mGðsþÞ ¼ eGf 2 with G3X G 1. As shown in the proof of Theorem 6.1
there exists a p 0-element tG A C �

G of order eG normalizing DG :¼ DXC �
G, so that there exists
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a p 0-element of order eG normalizing the Sylow B-subgroup ðD; bDÞ, a contradiction, so
eG e 1 and e j dG.

Suppose G ¼ X G 1, so that mGðsþÞ ¼ 2e or 0 and CG ¼ IðUGÞ.

Suppose, moreover that G ¼ SOh
2nðqÞ, so that G ¼ G�. Let D ¼ X G 1 and suppose

mDðsþÞ ¼ 2e. By [17], (1.14),

jNIðUDÞðhzDiÞ=CIðUDÞðzDÞj ¼ 2e:

If ef 2, then there exists yD A NI0ðUDÞðhzDiÞnCI0ðUDÞðzDÞ of order e, so that yD normalizes
the Sylow subgroup DD of CI0ðUDÞðzDÞ. Let yG ¼ 1 A I0ðUGÞ and y ¼ 1V0

�
Q
G

yG. Then

y A
�
NGðDÞXCGðsÞ

�
nCGðDÞ

and y normalizes ðD; bDÞ. Since jyj ¼ e3 1, it follows that B is not nilpotent, which is im-
possible. Thus e ¼ 1, I0ðUDÞ ¼ SOeð2; qÞ with e ¼ hðUDÞ, so p j ðq � eÞ.

Similarly, suppose

mX�1ðsþÞ ¼ mXþ1ðsþÞ ¼ 2:

Since W�
4 ðqÞ ¼ SL2ðq2Þ, Wþ

4 ðqÞ ¼ SL2ðqÞ � SL2ðqÞ and SOG
4 ðqÞ ¼ WG

4 ðqÞ:2, it follows that
there exists an element w A

�
NGðDÞXCGðsÞ

�
nCGðDÞ of order 2 such that w A NGðD; bDÞ,

a contradiction.

If G ¼ Sp2nðqÞ or SO2nþ1ðqÞ, then by [17], (1.14), again, there exists an element
w A NGðDÞnCGðDÞ of order 2e such that w normalizes ðD; bDÞ, which is impossible. Thus
mXG1ðsþÞ ¼ 0 and (b) holds.

Suppose (b) holds. Then T �
þ :¼ CC �

þðsþÞ is a maximal torus of I0ðUþÞ and so D is
abelian. Since CGðDÞ is regular in G, we may suppose s A CGðDÞ� and so

bD LEp

�
CGðDÞ; ðsÞ

�
:

Thus yþ ¼GR
Cþ
Tþ

ðsþÞ and y ¼ y0 � yþ is the canonical character of bD, where y0 A IrrðG0Þ
has defect 0. In particular, NGðD; yÞ ¼ CGðDÞ and B is nilpotent. r

Proposition 8.5. Let K :¼ SpinhðVÞpH such that H=K is abelian, CHðKÞeZðHÞ
and H=ZðHÞe SOðVÞ or J0ðVÞ=Z

�
J0ðVÞ

�
according to dim V is odd or even. Let

B A BlkðKÞ, BH A BlkðHÞ covering B, and Z eZðKÞ such that Kc :¼ K=Z ¼ WhðVÞ, so

that jZj ¼ gcdð2; q � hÞ. Write R :¼ A
�
DðBÞ

�
. Then either Property 7.1 (a*) holds for

some BK-subgroups ðP; gÞe ðR; bÞ or Property 7.1 (d) holds, where P is some subgroup of R.

Proof. Let D :¼ DðBÞ, G :¼ SOhðVÞ and ZþeZ
�
D0ðVÞ

�
such that

G ¼ D0ðVÞ=Zþ;

so that Z ¼ ZþXK and ZþGZq�1.
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We may suppose D ¼ DZ=Z eKc. Thus D is of defect type in Kc, where a
p-subgroup Q of Kc is of defect type if Q is a Sylow p-subgroup of a centralizer CKc

ðtÞ
of a semisimple p 0-element t. So D is of defect type of G, and D has a primary ele-
ment z A ZðDÞ (see [17], Section 5). Thus we have the corresponding decompositions
V ¼ V0 ? Vþ, D ¼ D0 � Dþ, z ¼ z0 � zþ, CGðzÞ ¼ L0 � Lþ given by (8.1) and (8.2). Since
K is universal, it follows by [20], Theorem 4.2.2, and [17], (2E), that

C :¼ CKðzÞ ¼ LCTC ; LC ¼ L1 � SLeðm; qeÞ; L1 ¼ SpinðV0Þ;

where TC is an abelian r 0-group inducing inner-diagonal automorphisms on SLeðm; qeÞ
and L1. Here for simplicity, we identify z with its preimage (with the same order) in K .
Since p is odd and DeC, it follows that Dþ XL1 ¼ 1 and so L1L2 ¼ L1 � L2, where
L2 ¼ SLeðm; qeÞDþ eLþ. Let L ¼ L1 � L2 eC, so that C ¼ LTC . Let ðz;BzÞ be a major
subsection of B, and BL ¼ B1 � B2 a block of L covered by Bz, where B1 A BlkðL1Þ and
B2 A BlkðL2Þ. We may suppose DðB2Þ ¼ DþXL2, so that DðB2Þ ¼ Dþ.

Suppose B2 satisfies Property 7.1 (a*). Let R2 :¼ AðDþÞeDðB2Þ, R :¼ R1 � R2,
P2 :¼ PðDþÞeR2, P ¼ P1 � P2 eR and let ðP; gLÞe ðR; bLÞ be BL-subgroups, where
P1 ¼ R1 ¼ D0. So gL ¼ g1 � g2, bL ¼ b1 � b2 with g1 ¼ b1 ¼ B1, gL2

2 ¼ bL2

2 ¼ B2 and
Dðb2Þ ¼ R2 ¼ Dðg2Þ. In addition, there exists y A

�
NL2

ðR2ÞXCL2
ðP2Þ

�
nCL2

ðR2Þ such that
y4 ¼ 1, y2 A CL2

ðR2Þ, and b
y
2 ¼ b2. Thus b

y
L ¼ bL and DðbLÞ ¼ R ¼ DðgLÞ.

(1) For t A TC write t ¼ t1t2 such that ½t1; t2� ¼ 1 and t2 induces inner-diagonal
automorphism on L2. Let Ji ¼ hLi; ti : t ¼ t1t2 A TCi, so that C p J :¼ J1 � J2 and
L2 e J2 eLþ. Let BJ A BlkðJÞ be a weakly regular cover of Bz, ðP; gÞe ðR; bÞ be Bz-
subgroups such that g covers gL and b covers bL, and ðP; gJÞe ðR; bJÞ be BJ -subgroups
such that gJ covers g and bJ covers b, so that gJ covers gL and bJ covers bL.

If gJ ¼ gJ1
� gJ2

and bJ ¼ bJ1
� bJ2

for some

gJi
A Blk

�
CJi

ðPiÞ
�

and bJi
A Blk

�
CJi

ðRiÞ
�
;

then gJ2
covers g2 and bJ2

covers b2 and by Proposition 8.1 and its proof (1),
DðgJ2

Þ ¼ DðbJ2
Þ is abelian yJ2

jCL2
ðR2Þ ¼ y2 and y

y
J2
¼ yJ2

, where yJi
and yi are canonical

characters of bJi
and bi, respectively. Thus DðgJÞ ¼ DðbJÞ is abelian. But PeReDðgJÞ

and DðgJÞ is abelian, so

DðgÞ ¼ DðgJÞXCKðPÞ ¼ DðgJÞXK ¼ DðbJÞXK ¼ DðbJÞXCKðRÞ ¼ DðbÞ;

which is also abelian. In addition, as shown in the proof (1) of Proposition 8.1, yJ2
has an

extension to CLþðR2Þ.

Let yJ and y be canonical characters of bJ and b, respectively, so that yJ ¼ yJ1
� yJ2

covers y, y
y
J ¼ yJ and y A Irr

�
CKðRÞ j y1 � y2

�
. Applying Lemma 2.7 to

L1 � CL2
ðR2ÞeCKðRÞe J1 � CJ2

ðR2Þ

we have that yJ jCK ðRÞ ¼ y, so yy ¼ y and by ¼ b.
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(2) If q is even, then the outer-diagonal group of K is trivial, so we may suppose
q is odd. Let ðP; gHÞe ðR; bHÞ be BH -subgroups such that gH covers g and bH covers
b. Then bH is a block of CHðRÞ and R ¼ DðbHÞXCKðRÞ for some DðbHÞ. Since H in-
duces inner-diagonal automorphisms and since the outer-diagonal group of K is a
2-group, it follows that DðbHÞeRZðHÞ and DðbHÞ ¼ ROp

�
ZðHÞ

�
is abelian. Similarly,

R ¼ DðbÞ ¼ DðgÞ ¼ DðgHÞXCKðPÞ and DðgHÞ ¼ ROp

�
ZðHÞ

�
¼ DðbHÞ.

Now z A K eD0ðVÞ, so by [17], (2E),

CD0ðVÞðzÞ ¼ D0ðV0Þ � ~LLþ; CD0ðVÞðzÞ=Zþ ¼ CGðzÞ and C ¼ CD0ðVÞðzÞXK ;

where ~LLþ is a central extension of Lþ by Zþ.

To show that b
y
H ¼ bH we may suppose

H=KZðHÞ ¼ J0ðVÞ=KcZ
�
J0ðVÞ

�
¼ OutdiagðKÞ;

so that H=KZðHÞ is a 2-group. Let t A CHðzÞnCKðzÞ, so that t4 A CKðzÞZðHÞ. In the nota-
tion of [20], Table 4.5.2, t induces an element of C � :¼ CInndiagðKÞ

�
zZðKÞ

�
(note here C � is

not the dual group of C). But C �=C�� is a p-group, so t induces an element of C�� and
hence t A CKðzÞZðHÞ. Thus

CHðzÞ ¼ hCKðzÞ; xH ; tHi; xH ¼ x1x2; tH ¼ t1t2;

where x1 A D0ðV0Þ and x2 A ~LLþ, and tH centralizes ~LLþ. So

hCKðzÞ; xHie hJ1; x1i � hJ2; x2ieD0ðV0Þ � ~LLþ:

Let H1 ¼ hJ1; x1; tHi and H2 ¼ hJ2; x2i, so that

L1 � L2 eCKðzÞeCHðzÞeH1 � H2:

It follows that

L1 � CL2
ðR2ÞeCKðRÞeCHðRÞeH1 � CH2

ðR2Þ:ð8:26Þ

By [20], Table 4.5.2,

~LLþ ¼ ðZ � L2 � Zq�eÞhxþi

where xþ induces an outer-diagonal automorphism of order dividing gcdðm; q � eÞ on L2.
Thus CH2

ðR2Þ ¼
�
Z � CL2

ðR2Þ � Zq�e

�
hy2i for some y2 A ~LLþ inducing an outer-diagonal

automorphism on L2. View y2 as character of Z � CL2
ðR2Þ with Z e kerðy2Þ. Now

CL2
ðR2ÞeCH2

ðR2Þ=Z eCLþðR2Þ. As shown in the proof (1) of Proposition 8.1, y2 has an
extension ~yy2 to CH2

ðR2Þ=Z such that ~yyy
2 ¼ ~yy2. By Remark 7.3, y

y
H ¼ yH and b

y
H ¼ bH . Thus

the Property 7.1 (a*) holds for ðR; bÞ.

Suppose B2 satisfies Property 7.1 (d), so that DðB2Þ is abelian. Thus Dþ and so DðBÞ
are abelian. Since DðBÞ ¼ DðBHÞXK for some DðBHÞ, it follows that DðBHÞeKZðHÞ
and DðBHÞ ¼ DðBÞOp

�
ZðHÞ

�
which is abelian. r
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Theorem 8.6. Let K be a finite quasi-simple group of classical type over a field Fq

and B A BlkðKÞ, and let K pH such that H=K is abelian, CHðKÞeZðHÞ, H induces

inner-diagonal automorphisms on K and BH A BlkðHÞ covering B. If p j q, then either

DðBÞ ¼ DðBHÞ is cyclic or lðBÞf 2. Suppose pF q and p is odd. Then one of Properties

7.1 (a*), (b), (c) and (d) holds. In addition, if Property 7.1 (b) or (c) holds, then p ¼ 3,
K ¼ SLhð3d; qÞ=Z for some Z eZ

�
SLhð3d; qÞ

�
with gcdð6; dÞ ¼ 1 and 3 k ðq � hÞ.

Proof. We will follow the notation of [20]. In particular, Ku denotes the universal
group with the same type as K . If p j q and DðBÞ is noncyclic, then DðBÞ is a Sylow sub-
group of K and lðBÞ ¼ lðB0Þ with principal B0 :¼ B0ðKÞ A BlkðKÞ. But B0 dominates the
principal block B of K=ZðKÞ ¼ Ka and lðBÞ þ 1 is the number of p 0-conjugacy classes of
Ka, so lðB0Þf lðBÞf 2. Suppose pF q.

If K ¼ Ah
n ðqÞ, then set K̂K ¼ Ku ¼ SLh

nþ1ðqÞeGLh
nþ1ðqÞ, so that K ¼ K̂K=Z for some

Z eZ
�
GLh

nþ1ðqÞ
�
X K̂K . We may take ĤH eGLh

nþ1ðqÞ such that H ¼ ĤH=Z.

If K ¼ BnðqÞ ¼ Ka ¼ W2nþ1ðqÞ, then set K̂K ¼ W2nþ1ðqÞe ĤH e SO2nþ1ðqÞ such that
H ¼ ĤH=Z. If K ¼ BnðqÞ ¼ Ku ¼ Spin2nþ1ðqÞ ¼ SpinðVÞ, then take K ¼ K̂K p ĤH ¼ H such
that H=ZðKÞe SOðVÞ.

If K ¼ CnðqÞ, then we may take K̂K ¼ Sp2nðqÞ ¼ SpðVÞe ĤH e J0ðVÞ such that
H ¼ ĤH=Z.

Suppose K ¼ Dh
n ðqÞ with ðn; hÞ ¼ ð2k þ 1;GÞ or ð2k;�Þ. If K ¼ W

h
2nðqÞ ¼ WðVÞ, then

K ¼ K̂K p ĤH ¼ H e J0ðVÞ. If K ¼ PW
h
2nðqÞ ¼ PWðVÞ, then take K̂K ¼ We

2nðqÞe ĤH e J0ðVÞ
such that H ¼ ĤH=Z. If K ¼ Spinh

2nðqÞ ¼ SpinðVÞ, then take K ¼ K̂K p ĤH ¼ H such that
H=ZðKÞe J0ðVÞ.

Suppose K ¼ Dþ
2kðqÞ with q even. Then K ¼ H and we may take K̂K ¼ ĤH ¼ H. Sup-

pose K ¼ Dþ
2kðqÞ with q odd, so that ZðKuÞ ¼ f1; z; zs; zcg and Ku=Z ¼ Wþ

4kðqÞ, where
Z ¼ hzi. If K ¼ Wþ

4kðqÞ ¼ WðVÞ, then take K̂K ¼ K e ĤH e J0ðVÞ. If

K ¼ PWþ
4kðqÞ ¼ PWðVÞ;

then take K̂K ¼ WðVÞe ĤH e J0ðVÞ such that ĤH=Z ¼ H. If K ¼ Spinþ
4kðqÞ=Z 0 for Z 0 ¼ hzsi

or hzci, then we may take K̂K ¼ Spinþ
4kðqÞ ¼ SpinðVÞe ĤH eD0ðVÞ such that H ¼ ĤH=Z 0.

If K ¼ Spinþ
4kðqÞ ¼ SpinðVÞ, then take K̂K ¼ K and ĤH ¼ H.

Let B̂B A BlkðK̂KÞ dominating B and B̂BH A BlkðĤHÞ dominating BH , so that B̂BH covers B̂B.
By Propositions 8.1, 8.2, 8.3 and 8.5, one of Properties 7.1 (a*), (b) or (d) holds for B̂B.

If Property 7.1 (a*) holds for B̂B, then there exist B̂B-subgroups ðP̂P; ĝgÞe ðR̂R; b̂bÞ satisfy-
ing Property 7.1 (a*). By Lemma 7.6, Property 7.1 (a*) holds for some B-subgroups
ðP; gÞe ðR; bÞ.

Suppose Property 7.1 (b) holds for B̂B. By Proposition 8.1, K̂K ¼ SLh
nþ1ðqÞ, DðB̂BÞ ¼ 31þ2

þ
and n þ 1 ¼ 3d with gcdð6; dÞ ¼ 1 and 3 k ðq � hÞ. In particular, Z

�
DðB̂BÞ

�
¼ O3

�
ZðK̂KÞ

�
and we may suppose DðBÞeDðB̂BÞZ=Z. If O3

�
ZðK̂KÞ

�
eZ, then DðBÞ ¼ Z2

3, DðBHÞ ¼ 32
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or Z3 o Z3=O3

�
ZðK̂KÞ

�
G 31þ2

þ and (c) holds. If Z is a 3 0-group, then DðBÞ ¼ DðB̂BÞ and (b)
holds.

If Property 7.1 (d) holds for B̂B, then DðB̂BÞ and DðB̂BHÞ are both abelian. Since
Z eZðĤHÞX K̂K , it follows that DðBÞ ¼ DðB̂BÞZ=Z and DðBHÞ ¼ DðB̂BHÞZ=Z, and so DðBÞ
and DðBHÞ are both abelian. r

9. Exceptional groups

Suppose p is odd. We will follow the notation of [20]. In this section we demonstrate
that every nilpotent block of an exceptional group of Lie type has abelian defect groups.
We first prove a simple lemma.

Lemma 9.1. Let Ji be a finite group and Pi a p-subgroup of Ji such that

CJi=Zi
ðPi=ZiÞ ¼ CJi

ðPiÞ=Zi for i ¼ 1; 2, where Zi ¼ Op

�
ZðJiÞ

�
. Let J ¼ J1 � J2,

P ¼ P1 � P2 and Z eOp

�
ZðJÞ

�
. Then

CJðPÞ=Z ¼ CJ=ZðP=ZÞ:

Proof. Let Zþ ¼ Z1 � Z2 ¼ Op

�
ZðJÞ

�
. Then

CJ=ZþðP=ZþÞ ¼ CJ1=Z1
ðP1=Z1Þ � CJ1=Z1

ðP1=Z1Þ ¼ CJ1
ðP1Þ=Z1 � CJ2

ðP2Þ=Z2 ¼ CJðPÞ=Zþ:

It is clear that CJðPÞ=Z eCJ=ZðP=ZÞ. If xZ A CJ=ZðP=ZÞ for some x A J, then
xZþ A CJ=ZþðP=ZþÞ and so xZþ ¼ ðx1; x2ÞZþ for some xi A CJi

ðPiÞ. In particular,
x ¼ ðx1; x2Þxþ for some xþ A Zþ. Since ZþeCJðPÞ, it follows that x A CJðPÞ and hence
CJ=ZðP=ZÞ ¼ CJðPÞ=Z. r

The lemma will be applied to a central product J1 � J2 as J1 � J2 ¼ ðJ1 � J2Þ=Z0 for
some Z0 eZðJ1ÞXZðJ2Þ.

Theorem 9.2. Let K be a finite quasi-simple group of exceptional type over a field Fq,
let B A BlkðKÞ, and let K pH such that CHðKÞeZðHÞ, H=K is cyclic, and H induces

inner-diagonal automorphisms on K. Let BH A BlkðHÞ be a block covering B. Choose (as we

may) defect groups DðBÞ and DðBHÞ of B and BH respectively such that DðBÞ ¼ DðBHÞXK.

If p j q, then either DðBÞ ¼ DðBHÞ is cyclic or lðBÞf 2. If pF q and p is odd, then one of the

Properties 7.1 (a), (b) and (d) holds.

Proof. If p j q, then a proof similar to that of Theorem 8.6 shows that either
DðBÞ ¼ DðBHÞ is cyclic or lðBÞf 2.

Suppose pF q. Let Ku be the universal group, so that K ¼ Ku=Z for some Z eZðKuÞ.
Since ZðKuÞ is cyclic of order 1, 2 or 3, it follows that H induces the trivial action on
ZðKuÞ.

Before beginning the proof proper we introduce some notation.

Write D :¼ DðBÞ. If ZðKÞ3W1

�
ZðDÞ

�
, then take z A ZðDÞnZðKÞ with jzj ¼ p. If

ZðKÞ ¼ W1

�
ZðDÞ

�
(so in particular p ¼ 3), then take z A D such that jzj ¼ p2 and
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zZðKÞ A Z
�
D=ZðKÞ

�
. Let ðz;BzÞ be a B-subsection, which we choose to be major in the

case z A ZðDÞ (that such a major subsection exists is [2], 4.15). In the case that z A ZðDÞ,
we may further choose ðz;BzÞ so that Bz (a block of C :¼ CKðzÞ) has defect group D. By
[20], Theorem 4.2.2, C ¼ Or 0 ðCÞT , where Or 0 ðCÞ is a central product

Or 0 ðCÞ ¼ L1 � L2 � � � � � Ll

with each Li A LieðrÞ, and T is an abelian r 0-group inducing inner-diagonal automor-
phisms on each Li. In general, it may be the case that z B Or 0 ðCÞ. We introduce some
more notation as follows to allow for this inconvenience: If ZðCÞeOr 0 ðCÞ, then define
s :¼ l and L :¼ Or 0 ðCÞ. If ZðCÞKOr 0 ðCÞ, then define s ¼ lþ 1, Ls ¼ ZðCÞ and

L :¼ L1 � L2 � � � � � Ls:ð9:1Þ

In all cases C ¼ LT , z A L and LpC. Let BL be a block of L covered by Bz. There are
uniquely defined blocks Bi A BlkðLiÞ such that if w A IrrðBLÞ with w ¼ w1 � � � � � ws for
some wi A IrrðLiÞ, then wi A IrrðBiÞ. We write

BL ¼ B1 � B2 � � � � � Bs:

Each element t A T has the form t1t2 � � � tst
0, where t 0 centralizes L and ti induces an

inner-diagonal automorphism on Li and ½Li; tj� ¼ 1 for i 3 j. Let

T 0 ¼ ht 0 : t ¼ t1t2 � � � ts � t 0 A Ti;

and

Ji :¼ hLi; ti : t ¼ t1t2 � � � tst
0 A Ti; and J :¼ J1 � J2 � � � � � Js � T 0:ð9:2Þ

Then LT p J and T 0 is abelian. Let BJ be a block of J covering Bz, so that BJ covers BL.
Thus

BJ ¼ BJ1
� BJ2

� � � � � BJs
� BT 0 ;

where BJi
A BlkðJiÞ covering Bi and BT 0 A BlkðT 0Þ. Note that if CJi

ðLiÞeZðLiÞ for all i,
then the central product J is over a subgroup of ZðLÞ.

Case 1. Suppose each Bi satisfies Property 7.1 (d). Then each DðBJi
Þ is abelian and

so is DðBJÞ. Thus DðBzÞ ¼ DðBJÞXC is abelian.

Case 2. Suppose L is a direct product of Li’s, CJi
ðLiÞeZðLiÞ for all i and some Bj

satisfies Property 7.1 (a*). Without loss of generality, take j ¼ 1. In addition, suppose each
Li is classical and universal (or Ls ¼ ZðCÞ). Thus

L ¼ L1 � � � � � Ls eC p J ¼ J1 � � � � � Js � T 0:ð9:3Þ

We now define Ri. If Li ¼ SLhðViÞ, then denote Gi ¼ GLhðViÞ and let BGi
A BlkðGiÞ

be a weakly regular cover of BJi
and Ri :¼ A

�
DðBGi

Þ
�
XLi. If Li is not linear and unitary,
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then set Ri ¼ A
�
DðBiÞ

�
. In addition, let ðRi; biÞ be a Bi-subgroup, and note that ðRi; biÞ is a

Sylow Bi-subgroup when DðBiÞ is abelian. Let

R :¼ R1 � � � � � Rs eL; bL :¼ b1 � � � � � bs;

so that ðR; bLÞ is a BL-subgroup. Since z A Op

�
ZðLÞ

�
and R is abelian, it follows that z A R

and ReC. By Propositions 8.1, 8.2, 8.3 and 8.5, each defect group DðbiÞ of bi is abelian.
Let ðR; bzÞ be a Bz-subgroup such that bz covers bL, and ðR; bJÞ be a BJ -subgroup such that
bJ covers bz, so that bJ covers bL and

bJ ¼ bJ1
� � � � � bJs

� BT 0ð9:4Þ

where each bJi
covers bi. By Propositions 8.1, 8.2, 8.3 and 8.5 again, each defect group

DðbJi
Þ is abelian, so defect groups DðbJÞ and DðbzÞ of bJ and bz respectively are both abe-

lian, since we may suppose DðbzÞ ¼ DðbJÞXC. Note in the proof above that ðR; bzÞ can be
any Bz-subgroup such that bz covers bL. Later we will choose a special such Bz-subgroup.

Suppose further that B1 satisfies Property 7.1 (a*) in Propositions 8.1, 8.2, 8.3 or 8.5
for B1-subgroups ðP1; g1Þe ðR1; b1Þ. Let

Lþ ¼
Qs

i¼2

Li; Rþ :¼
Qs

i¼2

Ri; P ¼ P1 � Rþ; gL ¼ g1 �
�Qs

i¼2

bi

�
; Jþ ¼

�Qs

i¼2

Ji

�
� T 0;

so that

CLðRÞ ¼ CL1
ðR1Þ � CLþðRþÞeCCðRÞeCJ1

ðR1Þ � CJþðRþÞ; and ðP; gLÞe ðR; bLÞ:

Since Bz covers BL, it follows that there exist Bz-subgroups ðP; gzÞe ðR; bzÞ such that gz

covers gL and bz covers bL. Let ðP; gJÞe ðR; bJÞ be BJ -subgroups such that gJ covers gz

and bJ covers bz. Thus gJ covers gL, bJ covers bL and gJ ¼ gJ1
� � � � � gJs

� BT 0 . In partic-
ular, gJi

¼ bJi
for if 2, where bJi

are given in (9.4). By Propositions 8.1, 8.2, 8.3 and 8.5
again, each DðbJi

Þ is abelian and DðgJ1
Þ ¼ DðbJ1

Þ, and hence DðgJÞ ¼ DðbJÞ is abelian and
DðgzÞ ¼ DðgJÞXC ¼ DðbJÞXC ¼ DðbzÞ.

Let yi be the canonical character of bi and yþ ¼
Q
if2

yi, so that y :¼ y1 � yþ is the

canonical character of bL and the canonical character yz of bz covers y.

Since ðP1; g1Þe ðR1; b1Þ satisfy Property 7.1 (a*), it follows that there exists
y A NCL1

ðP1ÞðR1; b1ÞnCL1
ðR1Þ such that y4 ¼ 1, y2 A CL1

ðR1Þ and ½y; x� B ZðL1Þ for some
x A R1. Moreover, there exist subgroups Ni pMi of J1, and characters fi A IrrðNiÞ for
i ¼ 1; 2 such that Mi=Ni is abelian,

ZðL1ÞeN1 � N2 eCL1
ðR1ÞeCJ1

ðR1ÞeM1 � M2;

y1 covers f1 � f2, Z XN2 ¼ 1, f2 has a y-stable extension ~ff2 to M2 and ½y; x� ¼ 1 or in
ZN2 according as x A M1 or M2, where Z eZðM1ÞXZðM2Þ such that M1 � M2 is the
central product over Z.
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Let N 0
2 ¼ N1 � CLþðRþÞ, M 0

2 :¼ M1 � CJþðRþÞ, and f 0
2 ¼ f1 � yþ. Then M2=N2 and

M 0
2=N 0

2 are abelian,

ZðCÞeN 0
2 � N2 eCCðRÞeCJðRÞeM 0

2 � M2;

f2 has an extension ~ff2 to M2 which is y-invariant, ½y; x� ¼ 1 for any x A M 0
2, ½y; x� A ZN2

for any x A M2, M2 � M 0
2 is a central product over Z and yz A Irr

�
CCðRÞ j f 0

2 � f2

�
. By

Remark 7.3, yy
z ¼ yz, and so by

z ¼ bz. If ½y; x� A ZðCÞ for all x A R, then

½y; x� A ZðCÞXL1 ¼ ZðL1Þ for all x A R1;

which is impossible. Thus ½y; x� B ZðCÞ for some x A R and Property 7.1 (a*) holds for
ðP; gzÞe ðR; bzÞ (with H :¼ K).

Case 3. Suppose that K :¼ 2Bð22aþ1Þ; 2G2ð32aþ1Þ; 2F4ð22aþ1Þ;G2ðqÞ; 3D4ðqÞ;F4ðqÞ
or E�e

6 ðqÞ with q1 e mod 3, and B A BlkðKÞ. Then B satisfies one of Property 7.1 (a*), (b)
or (d).

In each case K ¼ Ku and z induces an inner automorphism on K , so it follows that
each Li is a classical group (or possibly Ls is abelian). Hence by the results of Section 8
each Bi satisfies one of Property 7.1 (a*), (b), (c) or (d).

Case 3.1. Suppose Bi satisfies either Property 7.1 (b) or (c) for some i. With-
out loss of generality, take i ¼ 1. By Theorem 8.6, p ¼ 3, L1 ¼ SLe1ð3d1; q1Þ=Z for
some Z eZ

�
SLe1ð3d1; q1Þ

�
, gcdð6; d1Þ ¼ 1 and 3 k ðq1 � e1Þ. By [20], Table 4.7.3A,

ðq1; e1Þ ¼ ðq; eÞ or ðq2; 1Þ and ðK;CÞ are given in Table 2, where Le :¼ SLe
3ðqÞ.

Case 3.1.1. If K ¼ G2ðqÞ or 2F4ð22mþ1Þ, then s ¼ 1 and L ¼ C and

Bz ¼ BL ¼ B0ðLÞ;

so B ¼ B0ðKÞ with DðBÞ ¼ 31þ2
þ : In particular, lðBÞf 2.

Case 3.1.2. Let K ¼ 3D4ðqÞ, so that C ¼ Z1
3
ðq2þeqþ1Þ � He, where He ¼ hLe; xi with

x inducing outer-diagonal automorphism of order 3 on Le. So DðBzÞ ¼ Z3 o Z3 A Syl3ðCÞ
and we may suppose DðBzÞ A Syl3ðGeÞ, where Ge ¼ GLe

3ðqÞ contains He. Let

Re ¼ A
�
DðBzÞ

�
¼ ðZ3Þ3 and Pe ¼ hZðLeÞ; diagf1;w;wgieRe

K C K C

3D4ðqÞ ðZq2þeqþ1 � LeÞ:3 G2ðqÞ Le
2F4ð22mþ1Þ SU3ð22mþ1Þ F4ðqÞ ðLe � LeÞ:ð3 : 3Þ
E�e

6 ðqÞ
�
Le � SL3ðq2Þ

�
:ð3 : 3Þ E e

6ðqÞu ðLe � Le � LeÞ:ð3 : 3 : 3Þ
E7ðqÞu

�
Le � SLe

6ðqÞ
�
:ð3 : 3Þ E8ðqÞ

�
E e

6ðqÞu � Le

�
:ð3 : 3Þ

Table 2. Possible ðK ;CÞ with some Bi satisfying Property 7.1 (b) or (c).

38 An and Eaton, Nilpotent blocks of quasisimple groups for odd primes



such that jwj ¼ 3 in F�q2 . Then CGe
ðPeÞ ¼ Zq�e � GLe

2ðqÞ and CGe
ðReÞ ¼ ðZq�eÞ3. Thus

Z1
3
ðq2þeqþ1Þ � CHe

ðReÞ ¼ CCðReÞeCCðPeÞ ¼ Z1
3
ðq2þeqþ1Þ � CHe

ðPeÞ:

As shown in the proof of Proposition 8.1 the Bz-subgroups ðPe; gÞe ðRe; bÞ satisfy Prop-
erty 7.1 (a*).

Note that in the notation above

CGe
ðPeÞ=Z ¼ CGe=ZðPe=ZÞ and CGe

ðReÞ=Z ¼ CGe=ZðRe=ZÞ for any Z eZðLeÞ:

Let be A BlkðHeÞ and Be A BlkðGeÞ covering be, so that

DðbeÞ ¼ DðBeÞXHe ¼ DðBeÞ:

Thus DðbeÞ A Syl3
�
CGe

ðtÞ
�

for some semisimple 3 0-element t. In particular, DðbeÞ is
either abelian with jDðbeÞjf 9 and DðbeÞKLe or DðbeÞ ¼ Z3 o Z3. In the former case,
CGe

�
DðbeÞ

�
=Z ¼ CGe=Z

�
DðbeÞ=Z

�
for any Z eZðLeÞ.

Case 3.1.3. Suppose K ¼ E�e
6 ðqÞ or F4ðqÞ and L1 ¼ Le, so that C ¼ hL1 � L2; xi,

where L2 ¼ Le or SL3ðq2Þ, and x ¼ x1x2 such that each xi induces outer-diagonal automor-
phisms of order 3 on Li. Let Ji ¼ hLi; xii and BJ2

A BlkðJ2Þ covering B2. Let R1 ¼ Re e J1,
P1 ¼ Pe eR1 and P2 ¼ R2 ¼ AðBJ2

Þ, so that by the remark of Case 3.1.2 above,
CJi

ðPiÞ=Z ¼ CJi=ZðPi=ZÞ and CJi
ðRiÞ=Z ¼ CJi=ZðRi=ZÞ for any Z eZðLiÞ. By Lemmas

9.1 and 7.6, we may suppose

L ¼ L1 � L2 eC p J :¼ J1 � J2:

Let R ¼ ðR1 � R2ÞXC, P ¼ ðP1 � P2ÞXC and let ðP; gÞe ðR; bÞ be Bz-subgroups,
so that p1ðPÞ ¼ Pe and p1ðRÞ ¼ Re, where pi is the natural projection form J to Ji. A proof
similar to that of Case 2 shows that ðP; gÞe ðR; bÞ satisfy Property 7.1 (a*). If K ¼ E�e

6 ðqÞ
and L1 ¼ SL3ðq2Þ, then L2 ¼ Le and a similar proof shows that Property 7.1 (a*) holds for
some B-subgroups ðP; gÞe ðR; bÞ.

Note that

CJðPÞ=Z ¼ CJ=ZðP=ZÞ and CJðRÞ=Z ¼ CJ=ZðR=ZÞ for any Z eO3

�
ZðLÞ

�
:

Case 3.2. Suppose that each Bi satisfies either Property 7.1 (a*) or (d). By Case 1,
we may suppose, moreover that B1 satisfies Property 7.1 (a*). In particular, a Sylow
p-subgroup of L1 is nonabelian.

Case 3.2.1. Suppose pf 5, so that z is of parabolic type. By [20], Theorem 4.2.2 (f),
Or 0 ðCÞ is a direct product and each Li is universal. In addition, if a Sylow p-subgroup of L1

is nonabelian, then l ¼ 1 or 2 and each Li is universal.

Suppose l ¼ 1, so that s ¼ 1 or 2. Since B1 satisfies Property 7.1 (a*) and Ls ¼ ZðCÞ
when s ¼ 2, it follows by Lemma 9.1 that we may suppose L ¼ L1 � Ls and
CJi

ðLiÞeZðLiÞ.

39An and Eaton, Nilpotent blocks of quasisimple groups for odd primes



Suppose l ¼ 2, so that s ¼ 2 or 3. Since L1 has a nonabelian Sylow p-subgroup, it
follows that L2 has an abelian Sylow p-subgroup and, moreover L2 XOp

�
ZðCÞ

�
¼ 1.

Since the central product L1 � L2 � Ls is over a subgroup of ZðCÞ, it follows that each
p-subgroup of L2 satisfies the assumption of Lemma 9.1. Since B1 satisfies Property
7.1 (a*) and Ls ¼ ZðCÞ when s ¼ 3, it follows by Lemma 9.1 that we may suppose
L ¼ L1 � Ls � Ls and CJi

ðLiÞeZðLiÞ.

By Case 2, B satisfies Property 7.1 (a*).

Case 3.2.2. Suppose p ¼ 3, so that C is given by [20], Table 4.7.3A. Thus either
l ¼ 1 or l ¼ 2 with C given by Table 2. In addition, each Li is also universal for
1e ie l and CJi

ðLiÞeZðLiÞ.

A proof similar to that of Case 3.2.1 shows that we may suppose (9.3) holds and by
Case 2, B satisfies Property 7.1 (a*).

Case 4. Let 3 j ðq � eÞ, K ¼ Ku ¼ 3:E e
6ðqÞeE :¼ 3:E e

6ðqÞ:3, B A BlkðKÞ and
BE A BlkðEÞ covering B. Either Property 7.1 (a*) holds for some B-subgroups
ðP; gÞe ðR; bÞ with CEðPÞ=Z ¼ CE=ZðP=ZÞ and CEðRÞ=Z ¼ CE=ZðR=ZÞ for Z eOpðKÞ,
or Property 7.1 (d) holds for B.

Let D :¼ DðBÞ and m� :¼ gcdðm; q � eÞ.

If some Bi satisfies either Property 7.1 (b) or (c), then p ¼ 3 and C is given by
Table 2. A proof similar to that of Case 3.2.2 shows that Property 7.1 (a*) holds for some
B-subgroups ðP; gÞe ðR; bÞ.

Suppose some Bi satisfies Property 7.1 (a*). Since z is parabolic or of equal-rank type
and z induces an inner automorphism on K, it follows that each Li is classical. We first
show that there exist B-subgroups ðP; gÞe ðR; bÞ and y satisfying the Property 7.1 (a*)
with H :¼ K .

If pf 5, then z is parabiloc. A proof similar to that of Case 3.2.1 shows that the
Property 7.1 (a*) holds for B-subgroups ðP; gÞe ðR; gÞ.

Suppose p ¼ 3. By [20], Table 4.7.3A,

CKðzÞ ¼ hSLe
3ðqÞ � SLe

3ðqÞ � SLe
3ðqÞ; 3 : 3 : 3i;

�
SLe

6ðqÞ �2� ðq � eÞ
�
:2�;

Spinþ
8 ðqÞ �2�

�
ðq � eÞ�ðq � eÞ

�
:ð2� �2�Þ, Spine

10ðqÞ � ðq � eÞ:ð2� �2�
e Þ (when q1 e ðmod 9Þ)

with 2�
e ¼ 1 or 2� according as e ¼ � or þ, or

�
SL2ðqÞ � SLe

5ðqÞ
�
� ðq � eÞ:2� (when

q1 e ðmod 9Þ).

Thus l ¼ 1; 2 or 3. If l ¼ 1 or 2, then a proof similar to that of Cases 3.2.1 and 3.2.2
shows that the Property 7.1 (a*) holds for B-subgroups ðP; gÞe ðR; gÞ. If l ¼ 3, then each
Li ¼ SLe

3ðqÞ and CJi
ðLiÞeZðLiÞ. A proof similar to that of Cases 3.1.3 shows that we

may suppose (9.3) holds and by Case 2, the Property 7.1 (a*) holds for B-subgroups
ðP; gÞe ðR; gÞ.
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If all Bi satisfy Property 7.1 (d), then by Case 1, DðBzÞ is abelian.

Now we prove the rest of Property 7.1 (a*) with H ¼ E. Suppose ðP; gEÞe ðR; bEÞ
are BE-subgroups such that gE covers g and bE is covering b.

Case 4.1. If pf 5, then DðbÞ ¼ DðbEÞ, DðgÞ ¼ DðgEÞ, and so DðgEÞ ¼ DðbEÞ
is abelian. Now CEðzÞ ¼ C or hC; xi for some x A EnK . If CEðzÞ ¼ C, then
CEðRÞ ¼ CCðRÞ. Applying the proof of Case 2 we have that

ZðCÞeN 0
2 � N2 eCCðRÞeCCEðzÞðRÞeM 0

2 � M2:ð9:5Þ

Suppose CEðzÞ ¼ hLT ; xi for some x A EnK , so that x induces inner-diagonal auto-
morphisms on each Li. Thus x ¼ x1x2 � � � xsx

0. Replacing Ji by hJi; xii and T 0 by hT 0; x 0i
in the proof Case 2 with some obvious modifications, we have that (9.5) still holds. Thus
Property 7.1 (a*) holds for B-subgroups ðP; gÞe ðR; bÞ (with H :¼ E).

Case 4.2. Suppose p ¼ 3. By [20], Table 4.7.3A,

CEðzÞ ¼ hSLe
3ðqÞ � SLe

3ðqÞ � SLe
3ðqÞ; 3 : 3 : 1; 1 : 3 : 3i;

�
SLe

6ðqÞ �2� ðq � eÞ
�
:ð3 � 2�Þ;

Spinþ
8 ðqÞ �2�

�
ðq � eÞ � ðq � eÞ

�
:ð2� � 2� � 3Þ, Spine

10ðqÞ � ðq � eÞ:ð3 � 2� � 2�
e Þ (when

q1 e ðmod 9Þ) with 2�
e ¼ 1 or 2� according as e ¼ � or þ, or

�
SL2ðqÞ � SLe

5ðqÞ
�
� ðq � eÞ:ð2� � 3Þ

(when q1 e ðmod 9Þ).

Suppose

CEðzÞ ¼ hSLe
3ðqÞ � SLe

3ðqÞ � SLe
3ðqÞ; t; xi; so that L ¼ SLe

3ðqÞ � SLe
3ðqÞ � SLe

3ðqÞ;

T ¼ htieK with t induces 3 : 3 : 3 on L, and x A EnK induces 1 : 3 : 3 on L. Let
Li ¼ SLe

3ðqÞeGi :¼ GLe
3ðqÞ, t ¼ t1 � t2 � t3, x ¼ x1 � x2 � x3 with ti, xi acting on Li and

centralizes Lj when i3 j. In addition, let Hi ¼ hLi; ti; xii, so that Hi eGi. Let
S ¼ Zq�e � Zq�e e SLe

3ðqÞ be a maximal torus, and S � S �3 S eL. Since

CGL e
3ðqÞðSÞ ¼ Zq�e � Zq�e � Zq�e

is a maximal torus, it follows that A :¼ CEðS � S �3 SÞ is abelian such that AXK GZ6
q�e

is a maximal torus of K and A=ðAXKÞ ¼ Z3. In particular, we may suppose t; x A A and
CEðzÞ ¼ LA with abelian A and LpCEðzÞ.

Similarly, if CEðzÞ ¼
�
SLe

6ðqÞ � ðq � eÞ
�
:6�, Spinþ

8 ðqÞ �2

�
ðq � eÞ � ðq � eÞ

�
:ð2� � 6�Þ,

Spine
10ðqÞ � ðq � eÞ:ð6� � 2�

e Þ or
�
SL2ðqÞ � SLe

5ðqÞ
�
� ðq � eÞ:6�, then AeCEðzÞ and so

CEðzÞ ¼ LA with abelian A and LpCEðzÞ, and A induces inner-diagonal automorphisms
on each Li.

A proof similar to that of Case 2 with LT replaced by LA and some modifications
shows that DðgEÞ ¼ DðbEÞ is abelian, and hence Property 7.1 (a*) holds.
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Case 4.3. Suppose p ¼ 3 and Z ¼ ZðKÞ. If CEðzÞ=Z ¼ CE=ZðzZÞ, then
CEðPÞ=Z ¼ CE=ZðP=ZÞ and CEðRÞ=Z ¼ CE=ZðR=ZÞ. Suppose CEðzÞ=Z 3CE=ZðzZÞ. By
[20], Table 4.7.3A, either L ¼ L1 � L2 with L1 ¼ Spinþ

8 ðqÞ and L2 ¼ ZðCÞ ¼ Zq�e � Zq�e

or L ¼ Le � Le � Le eK. In the former case,

CE=ZðzZÞ ¼ hCEðzÞ=Z;wZi;

where w A E such that w ¼ g : o, that is, w acts on L1 as a graph automorphism of order 3

and ðh1; h2Þo ¼
�
h2; ðh1h2Þ�1� for any ðh1; h2Þ A L2. Now

O3ðL2Þ ¼ O3ðZq�eÞ � O3ðZq�eÞeP and ZðKÞ ¼
�
ðx; xÞ : x A W1

�
O3ðZq�eÞ

��
eZðCÞ:

Suppose h A E such that for any u A P we have h�1uh ¼ cu for some c A ZðKÞ and
suppose h B CEðzÞ. Then we may suppose h ¼ tw for some t A CEðzÞ, and so
ð1; h2Þh ¼ ð1; h2Þo ¼ ðh2; 1Þ for any h2 A O3ðZq�eÞnf1g. But ðh2; 1Þ3 cð1; h2Þ for any
c A ZðKÞ, which is a contradiction. Thus h A CEðzÞ and so CEðPÞ=Z ¼ CE=ZðP=ZÞ.
Similarly, CEðRÞ=Z ¼ CE=ZðR=ZÞ. If L ¼ Le � Le � Le, then L=Z ¼ Le � Le � Le and
CE=ZðzZÞ ¼ hL=Z; tZ; xZ;wZi, where t, x are given above and w A EnK permutes
transitively the three components Le of L. The proof in this case is similar. Suppose
h A E such that for all u A P, h�1uh ¼ cu for some c A Z, so that hZ A CE=ZðzZÞ. Since
jW1ðPÞjf 34 and CJðPÞ=Z ¼ CJ=ZðP=ZÞ, it follows that h A CEðzÞ ¼ hL; x; ti and hence
CEðPÞ=Z ¼ CJ=ZðP=ZÞ. Similarly, CEðRÞ=Z ¼ CE=ZðR=ZÞ.

Case 4.4. Now we prove the rest of Property 7.1 (d). Suppose Property 7.1 (d) holds
for each Bi and suppose DE XK ¼ D for some DE ¼ DðBEÞ, so that DðBJi

Þ is abelian and
so is DðBzÞ ¼ DðBJÞXC. If Bz is a major subsection, then D ¼ DðBzÞ is abelian. If pf 5,
then DE ¼ D. Suppose p ¼ 3 and there exists x A ZðDEÞnD. Then x A EnK , x A CEðDÞ
and DE ¼ hD; xi is abelian. If ZðDEÞeD, then take z A ZðDEÞ with jzj ¼ 3, so that
DE eCEðzÞ ¼ LA. A proof similar to that of Case 1.2 with some obvious modifications
shows that DE is abelian.

Suppose z A D with jzj ¼ 9 and zZðKÞ A Z
�
D=ZðKÞ

�
. By [20], Table 4.7.3A,

9 j ðq � eÞ and CEðzÞ ¼ Spine
10ðqÞ � ðq � eÞ:ð6� � 2�

e Þ or
�
SL2ðqÞ � SLe

5ðqÞ
�
� ðq � eÞ:6�.

In this case, CE=ZðKÞ
�
zZðKÞ

�
is also given by [20], Table 4.7.3A, and we have

CK=ZðKÞ
�
zZðKÞ

�
¼ CKðzÞ=ZðKÞ. Thus D=ZðKÞeCKðzÞ=ZðKÞ and DeCKðzÞ. In particu-

lar, z A ZðDÞ and we may suppose ðz;BzÞ is major. Hence D ¼ DðBzÞ is abelian. It follows
that Property 7.1 (d) holds for B.

Case 5. Let K :¼ E7ðqÞ with q even and B A BlkðKÞ. Then either Li is classical, or Li

is exceptional given in Cases 3 or 4. If Li is classical, then apply Propositions 8.1, 8.2, 8.3
and 8.5. If Li is exceptional, then apply the results given in Cases 3 and 4. Either Property
7.1 (a*) holds for B or Property 7.1 (d) holds for B (with H :¼ K :¼ E7ðqÞ).

Let q be odd, K ¼ 2:E7ðqÞeE :¼ 2:E7ðqÞ:2, B A BlkðKÞ and BE A BlkðEÞ covering
B. Either Property 7.1 (a*) holds for some B-subgroups ðP; gÞe ðR; bÞ or Property 7.1 (d)
holds for B.

Again let D :¼ DðBÞ and m� :¼ gcdðm; q � eÞ.
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Suppose Property 7.1 (a*) holds for some Bi-subgroups ðPi; giÞe ðRi; biÞ. A proof
similar to that of Case 3.2 with some obvious modifications shows that there exist
B-subgroups ðP; gÞe ðR; bÞ and y satisfying the first part of Property 7.1 (a*) (with
H ¼ K). Suppose Bi satisfies either Property 7.1 (b) or (c) for some i. Then p ¼ 3 and C

is given by Table 2. A proof similar to that of Case 3.1.3 shows that Property 7.1 (a*) holds
for some B-subgroups ðP; gÞe ðR; bÞ. Suppose ðP; gEÞe ðR; bEÞ are BE-subgroups such
that gE is covering g and bE is covering b. Then DðgÞ ¼ DðgEÞ and DðbÞ ¼ DðbEÞ for
some DðgEÞ and DðbEÞ. But DðgÞ ¼ DðbÞ is abelian, so DðgEÞ ¼ DðbEÞ is abelian. A proof
similar to that of Case 4.1 shows that (9.5) holds and so Property 7.1 (a*) (with H ¼ E)
holds for B-subgroups ðP; gÞe ðR; bÞ.

Since E=K ¼ 2 and p is odd, it follows that DðBEÞ is abelian whenever DðBÞ is
abelian.

Case 6. Suppose K :¼ E8ðqÞ. Either Property 7.1 (a) holds for some B-subgroups
ðP; gÞe ðR; bÞ or Property 7.1 (d) holds for B.

In this case ðz;BzÞ is a major subsection of B and either Li is classical, or Li is excep-
tional given in Cases 3, 4 or 5. If Li is classical, then apply Theorem 8.6. If Li is excep-
tional, then apply the results in Cases 3, 4 or 5. Thus if each DðBiÞ is abelian, then DðBJi

Þ
is abelian, and so D ¼ DðBzÞ ¼ DðBJÞXC is abelian. Suppose DðBiÞ is non-abelian for
some i, say i ¼ 1.

If pf 7, then B1 satisfies Property 7.1 (a*), z is of parabolic type and the proof is
similar to that of Case 3.2.1.

Suppose p ¼ 5, so that B1 satisfies Property 7.1 (a*) and C is given by [20], Table
4.7.3B. Thus l ¼ 1 or 2. If z is parabolic, then a proof similar to that of Case 3.2.1 shows
that we may suppose (9.3) holds.

If z is equal-rank, then

C ¼ hL1 � L2; 5 : 5i; L1 ¼ L2 ¼ SLe
5ðqÞ;

so that L ¼ L1 � L2. Here e ¼G1 such that q1 e ðmod 5Þ. A proof similar to that of
Case 3.1.3 shows that we may suppose L ¼ L1 � L2. By Case 2, B satisfies Property 7.1
(a*).

Suppose p ¼ 3, so that C is given by [20], Table 4.7.3A, and l ¼ 1 or 2.

If some Bi satisfies either Property 7.1 (b) or (c), then C is given by Table 2. In par-
ticular, l ¼ 2 and DðBiÞ ¼ 31þ2

þ .

If l ¼ 1, then B1 satisfies Property 7.1 (a*) and we may suppose (9.3) holds. By Case
2, B satisfies Property 7.1 (a*).

Suppose l ¼ 2, so that L ¼ Le � E6ðqÞu and C ¼ hL; 3 : 3i, where Le ¼ SLe
3ðqÞ with

q1 e ðmod 3Þ.

43An and Eaton, Nilpotent blocks of quasisimple groups for odd primes



If L1 ¼ E6ðqÞu and B1 satisfies Property 7.1 (a*) for ðP1; g1Þe ðR1; b1Þ. Let
P2 ¼ R2 ¼ A

�
DðB2Þ

�
, and let ðR2; b2Þ be a B2-subgroup and set ðP2; g2Þ ¼ ðR2; b2Þ. By

Case 4 and the remark of Case 3.1.2, CJi
ðRiÞ=Zi ¼ CJi=Zi

ðRi=ZiÞ for i ¼ 1; 2. By Lemma
9.1, we may suppose L ¼ L1 � L2 and a similar argument to that of Case 2 shows that B

satisfies Property 7.1 (a*).

Suppose L1 ¼ Le and B2 satisfies Property 7.1 (d), so that DðB2Þ is abelian. In this
case B1 satisfies Property 7.1 (b) with DðB1Þ ¼ 31þ2

þ or B1 satisfies Property 7.1 (a*). Note
that J ¼ J1 � J2 over ZðLÞ ¼ 3 and J1 ¼ He given in Case 3.1.2.

Let ðPe; gÞe ðRe; bÞ be defined as in Case 3.1.2. Then there exists

y A CHe
ðPeÞXNHe

ðReÞnCHe
ðReÞ

satisfying Property 7.1 (a*).

Let P2 ¼ R2 ¼ A
�
DðBJ2

Þ
�
¼ DðB2Þ and let ðP2; b2Þ ¼ ðR2; b2Þ be the Sylow BJ2

-
subgroup. Since He ¼ J1, it follows that Pe � P2 eRe � R2 e J. Set

P ¼ ðPe � P2ÞXC; and R ¼ ðRe � R2ÞXC:

Then PeReD and P, R are abelian. Since ZðLÞ ¼ 3, it follows that b � b2 is a block
CJðRe � R2Þ and g � g2 A Blk

�
CJðPe � P2Þ

�
. Since J=C ¼ 3, it follows that b � b2 covers a

unique block bR of CCðRÞ and similarly, g � g2 covers a unique block gP of CCðPÞ. Since
BJ is the unique block covering Bz, it follows that ðP; bPÞe ðR; bRÞ are Bz-subgroups. Since
He=Le ¼ 3, it follows that y A Le ¼ L1. Now B satisfies Property 7.1 (a) (not (a*)) for
B-subgroups ðP; bPÞe ðR; bRÞ (with H ¼ K). r

Lemma 9.3. Let G be a quasisimple group such that G=ZðGÞ is alternating or of Lie
type and G is an exceptional cover. Let p be an odd prime. Then every p-block of G with

nonabelian defect groups has a subpair with at least two irreducible Brauer characters.

Proof. We must consider the cases G=ZðGÞGPSL2ð4Þ, PSL2ð9Þ, A7, PSL3ð2Þ,
PSL3ð4Þ, PSU4ð2Þ, PSU4ð3Þ, PSU6ð2Þ, 2B2ð8Þ, O7ð2Þ, O7ð3Þ, Oþ

8 ð2Þ, G2ð3Þ, G2ð4Þ, F4ð2Þ
and 2E6ð2Þ. We may use [18] to confirm all but the cases F4ð2Þ for p ¼ 3, and 2E6ð2Þ for
p ¼ 3; 5; 7 (noting that the three double covers of Oþ

8 ð2Þ have the same block structure—
see [14]), as in each case the block itself has at least two irreducible Brauer characters.
The result holds for F4ð2Þ for p ¼ 3 by [22]. Note that 2E6ð2Þ has abelian Sylow 5- and
7-subgroups, so we are left with p ¼ 3 and G=ZðGÞG 2E6ð2Þ. In this case we do not
know the Brauer characters of G, so we are forced into a slightly involved argument to
make use of the current literature. Note that it su‰ces to consider the case jZðGÞj ¼ 4.
Our group G has three conjugacy classes of elements of order three, 3A, 3B and 3C. For
each such x A G, we have CGðxÞ=ZðGÞGCG=ZðGÞ

�
xZðGÞ

�
. Consider a block B covering the

block c of ZðGÞ containing the irreducible character l, say. We may assume that c is faith-
ful. By examination of the character table in [14], only two irreducible characters lying over
l vanish on 3A, 3B but not on 3C (w184 and w202 in the notation of [14]). Since a 3-block of
positive defect must possess at least three irreducible characters, it follows by a theorem of
Green that B must have a defect group D containing elements of 3A or 3B. Suppose
x A ZðDÞ has order three. Write Q ¼ hxi. Note that DCGðDÞeCGðQÞ, so there is a
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B-subgroup ðQ; bQÞ with defect group D. If x A 3A, then CG=ZðGÞ
�
xZðGÞ

�
GQ � PSU6ð2Þ.

We have seen that every block with nonabelian defect groups of a double cover of PSU6ð2Þ
has at least two irreducible Brauer characters, so it follows that lðbQÞ ¼ 1 if D is nonabel-
ian. If x A 3B, then CG=ZðGÞ

�
xZðGÞ

�
GQ � Oþ

8 ð2Þ:3, and the same argument applies as for
3A. r

Theorem 9.4. Let G be a quasisimple group and B a nilpotent p-block of G with defect

group D, where p is odd. Then D is abelian.

Proof. If G=ZðGÞ is an alternating group, then the result follows by Theorem 3.3
and the remarks following it. For G=ZðGÞ sporadic see Proposition 4.6. If G=ZðGÞ is a
classical group and G is a non-exceptional cover, see Propositions 8.1, 8.2, 8.3 and 8.5.
For G=ZðGÞ an exceptional group of Lie type and G is a non-exceptional cover, see The-
orem 9.2. For the exceptional covers, see Lemma 9.3. r

10. Puig’s conjecture

We complete the proof of Puig’s conjecture for quasisimple groups for odd primes,
present some general results and deduce some corollaries.

Theorem 10.1. Let G be a finite quasisimple group and let B be a p-block of G with p

odd. Then B is nilpotent if and only if lðbQÞ ¼ 1 for each p-subgroup Q and each block bQ

of CGðQÞ with ðbQÞG ¼ B.

Proof. The necessary condition for nilpotency follows from [13], 1.2. By Corollary
7.5 and Propositions 8.1, 8.2, 8.3 and 8.5 the result holds for the classical groups. By The-
orem 9.2 it holds for the exceptional groups of Lie type. The result holds for the double
covers of the alternating groups by Corollary 3.6, and when G=ZðGÞ is sporadic by Prop-
osition 4.7. For the exceptional covers of the alternating groups and of the finite simple
groups of Lie type, see Lemma 9.3. r

Lemma 10.2. Let N pG such that G=N is cyclic and of order prime to p, and

let B A BlkðGÞ cover b A BlkðNÞ. Suppose there are abelian R and P and b-subgroups

ðP; bPÞe ðR; bRÞ such that bP and bR have abelian defect groups and there is x A CNðPÞ
of order prime to ½G : N� such that x A NNðR; bRÞnCNðRÞ. Then there are B-subgroups

ðP;BPÞeðR;BRÞ such that BR and BP have abelian defect groups and x A NGðR;BRÞnCGðRÞ.

Proof. By [15], 4.1, there is BR A Blk
�
CGðRÞ

�
such that ðBRÞG ¼ B and BR covers

bR. We claim that the number of such BR divides ½G : N�. Now CGðRÞ=CNðRÞ is cyclic of
order dividing ½G : N�. The blocks of CNðRÞ and of CGðRÞ are in 1-1 correspondence with
their canonical characters. Let yR be the canonical character for bR. Since CGðRÞ=CNðRÞ is
cyclic, yR extends to an irreducible character of CGðRÞ, and since ½CGðRÞ : CNðRÞ� is not
divisible by p, the extensions are precisely the canonical characters of the blocks of CGðRÞ
covering bR. By Cli¤ord theory, the group of irreducible characters of CGðRÞ=CNðRÞ acts
transitively on the blocks B1; . . . ;Bn of CGðRÞ covering bR by inflation and multiplication,
and also transitively on the set fBG

i : 1e ie ng. Consequently the number of blocks of
CGðRÞ covering bR with Brauer correspondent B divides ½CGðRÞ : CNðRÞ�, and the claim
follows.
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For each i, we have ðBx
i Þ

G ¼ ðBG
i Þ

x ¼ Bx ¼ B, and Bx
i overs bx

i ¼ bi. Hence x per-
mutes fBi : BG

i ¼ Bg. Since this set has order prime to the order of x, it follows that x

must fix some such Bi. Call it BR. Letting BP ¼ ðBRÞCGðPÞ, we are done. r

As an almost immediate corollary we have:

Corollary 10.3. Let G be a finite group such that there is N pG with ½G : N� odd and

G=N is a p-regular cyclic group, where N is quasisimple and p > 3 is a prime. Let B be a

p-block of G. Then B is nilpotent if and only if lðbQÞ ¼ 1 for every B-subgroup ðQ; bQÞ.

Proof. Since the alternating and sporadic groups have outer automorphism groups
of order at most two, it follows that it su‰ces to consider the groups of Lie type. Suppose
first that N is not an exceptional covering group. Since p > 3, every block of N satisfies one
of Property 7.1 (a) or (d), and the result follows by Lemma 10.2 and Corollary 7.5.

Suppose that N is an exceptional cover. Then the outer automorphism group is a
2-group except when N=ZðNÞGPSL3ð4Þ, PSU6ð2Þ or 2E6ð2Þ, in which case it has order
three, and consists of diagonal automorphisms. In each case ZðNÞ is a Klein-four group.
However, in each of these cases the non-inner automorphisms transitively permute the
blocks whose kernel does not contain ZðNÞ, and the result follows in these cases too, since
B is nilpotent if and only if b is, and B-subgroups ðQ;BQÞ covering b-subgroups ðQ; bQÞ
satisfy lðBQÞ ¼ lðbQÞ. r
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