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Nilpotent blocks of quasisimple groups
for odd primes

By Jianbei An at Auckland and Charles W. Eaton at Manchester

Abstract. We investigate the nilpotent blocks of positive defect of the quasisimple
groups for odd primes. In particular, it is shown that every nilpotent block of a quasisimple
group has abelian defect groups. A conjecture of Puig concerning the recognition of nilpo-
tent blocks is also shown for these groups.

1. Introduction

Let G be a finite group and k& an algebraically closed field of odd characteristic p. A
block B of kG with defect group D is said to be nilpotent if for each O < D and each block
by of Cs(Q) with Brauer correspondent B we have that Ng(Q,bp)/Cg(Q) is a p-group,
where Ng(0Q, bp) is the stabilizer of by under conjugation in Ng(Q). In the case of the prin-
cipal block By, D is a Sylow p-subgroup of G and N¢(Q, bp) = Ng(Q) for each Q < D, so
that By is nilpotent if and only if G is p-nilpotent (i.e., G has a normal p-complement).
Note that every block of defect zero must be nilpotent, and the classification of blocks of
defect zero for finite simple groups has been the subject of a separate program of research,
culminating in [21]. Hence we give attention here only to blocks with non-central defect
groups.

Explicit characterizations of nilpotent blocks are obtained for classical groups, and
these are used to prove:

Theorem 1.1. Let G be a finite quasisimple group and let B be a nilpotent p-block of G
with p odd. Then B has abelian defect groups.

The second main result concerns the conjecture of Puig which states that a block B of
G is nilpotent if and only if /(by) = 1 for each p-subgroup Q and each block by of C(Q)
with Brauer correspondent B (where /(by) is the number of irreducible Brauer characters in
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bp). The necessary condition for nilpotency is well-known. The converse is known for
blocks with abelian defect groups (see [30]), and is also known to be a consequence of
Alperin’s weight conjecture (see [33]). We prove:

Theorem 1.2. Let G be a finite quasisimple group and let B be a p-block of G with p
odd. Then B is nilpotent if and only if [(bg) = 1 for each p-subgroup Q and each block by of
C6(Q) with (bg)® = B.

The main part of the paper concerns the representation theory of finite groups of Lie
type in non-defining characteristic, and makes use of the examination of subpairs of blocks
of classical groups given in [17]. The exceptional groups of Lie type are then treated by ex-
amination of the centralizer of an element of the centre of a defect group, and the results
for the classical groups applied.

In Section 2 we review the basic notation regarding blocks, give some general results
concerning nilpotent blocks, particularly with regard to block domination, and also prove
some technical lemmas which will be useful later on. In Section 3 we consider the alternat-
ing groups and their covering groups. Here we have able to give a rather complete descrip-
tion of the nilpotent blocks. The covering groups of the sporadic simple groups are treated
in Section 4. We give some basic notation used for the classical groups in Section 5. In
Section 6 we give a treatment of the general linear and unitary groups, where again we
are able to give a full characterization of the nilpotent blocks. In Section 7 we state the set
of properties which are central to the study of the nilpotent blocks of the groups of Lie
type. These are rather technical conditions, none of which can be satisfied by a nilpotent
block with non-abelian defect groups, which amongst other things allow us to use induc-
tive arguments when studying the exceptional groups. That these conditions hold for the
classical groups is the content of Section 8, and for the exceptional groups is the content
of Section 9.

2. Notation and general results

Let G be a finite group and p a prime. Although the classification concerns only
blocks with respect to a field of characteristic p, we use methods from ordinary character
theory, for example canonical characters, and so must use a p-modular system. Let ¢ be a
local discrete valuation ring, complete with respect to the p-adic valuation, with field of
fractions K of characteristic zero and algebraically closed residue field k = ¢/J(0) of char-
acteristic p. We assume that ¢ contains a primitive |G|th root of unity. Write Blk(G) for
the set of blocks of (/G and denote by By(G) the principal block of G.

Let N be a normal subgroup of G and write Irr(G) for the set of irreducible K-characters
of G. For 0 € Irr(N), we denote by Irr(G|6) the subset of Irr(G) consisting of charac-
ters covering 0. We denote by Irr(B) the set of irreducible characters belonging to B,
k(B) = |Irr(B)|, and combine with the above notation freely.

Let B be a p-block of a finite group G. A B-subgroup is a subpair (Q, by), where Q is
a p-subgroup of G and by is a block of QCg(Q) with Brauer correspondent (bQ)G =B
The B-subgroups with |Q| maximized are called the Sylow B-subgroups, and they are the
B-subgroups for which Q is a defect group for B. Recall that the canonical character of bo
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is the unique irreducible character in by with Q in its kernel. This will be a valuable tool
when comparing subpairs of a group with those of a normal subgroup.

A useful, and well-known, result is the following:

Proposition 2.1. Let B be a block of a finite group G. Suppose a defect group D of B
is abelian. Then B is nilpotent if and only if Ng(D,bp) = Cg(D), where (D, bp) is a Sylow
B-subgroup.

In general, we cannot say very much about the relationship between nilpotency of
blocks and nilpotency of covered blocks, and this is a main reason behind the difficulty of
the classification of nilpotent blocks of groups of Lie type.

However, we do have the following lemma by [24], Proposition 6.5.

Lemma 2.2. Let N be a normal subgroup of a finite group G such that G/N is a
p-group. Suppose that B is a block of G and that b € BIk(N) is covered by B. Then B is
nilpotent if and only if b is nilpotent.

We note that the analogous result does not hold if G/N is not a p-group. There are
many examples of non-nilpotent blocks covering nilpotent blocks, but there are also exam-
ples of nilpotent blocks covering non-nilpotent blocks, such as the following (which came
to light during a conversation with Radha Kessar):

Example 2.3. Let G =PGL(3,7), N =PSL(3,7) and p =2, so that [G: N] =3.
Then N has a unique block b with defect group D =~ 7, x Z, and b is not nilpotent. More-
over, b is covered by a nilpotent block B of G.

Note that Cy(D) = Zs x Z,. Let Irt’(Cy(D)) be the subset of Irr(Cy(D)) con-
sisting of characters of Cy(D) whose kernel contains D. Then |Irr0(CN(D))| =3. In
addition, Cy(D) has a unique character (the trivial character) ¢ € Irr’(Cy(D)) such that
Nyy(p)(€) = Ny(D), and two characters ¢ € Irr’(Cy(D)) such that Ny, (p)(¢) = Cy(D).3.
It follows that N has exactly one block » with a defect group D and b is non-nilpotent, as
Nn(D,bp) = Cy(D).3 for a Sylow b-subgroup (D, bp).

Moreover, Cg(D) = Zg x Zs, Ng(D)/Cs(D) = S5 and |Irr’(Cg(D))| = 9. In addi-
tion, Cg(D) has a unique character (the trivial character) & e IrrO(CG(D)) such that
Nyy(p)(€) = Ng(D), and eight characters ¢ e Irr”(Cg(D)) such that Ny,p) (&) = Cg(D).
It follows that G has exactly one block B with a defect group D and B is nilpotent, as
Ng(D,bp) = Cg(D) for a Sylow b-subgroup (D, bp). Since b is covered by a block of G
with a defect group D, it follows that b is covered by B.

Recall that for N <0 G, a block B of G is said to dominate the block B of G/N if the
inflation to G of an irreducible character in B lies in B.

The following lemma follows by [33], Lemma 2.

Lemma 2.4. Let Z be a central p-subgroup of a finite group G, B € BIk(G) and B the
block of G := G/Z dominated by B. Then B is nilpotent if and only if B is nilpotent.
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Let Z be a central p'-subgroup of a finite group G, and write H = HZ/Z, where
H < G. Let B € BIk(G). There is a unique block B € Blk(G) dominating B. By [25], Theo-
rem 5.8.8, Irr(B) = Irr(B) and if D is a defect group of B, then DZ/Z =~ D is a defect group
of B.

If Q is a p-subgroup of G, then Cz(Q) = C(Q)/Z (since Z is a central p’-subgroup).
Let (_Q,bQ) be a B-subgroup. Then Q = QZ/Z for a unique p-subgroup Q of G. Since
Cz(0) = C6(Q)/Z, we may consider the unique subpair (Q, bg) with by dominating b,
which we call the Brauer pair dominating (Q,b).

We show that (Q, bp) must be a B-subgroup, and that dominance of subpairs respects
the usual partial order on B-subgroups:

Lemma 2.5. Let Z be a central p'-subgroup of a finite group G, and let (Q,bQ)
and (P,bp) be B-subgroups, where B is the block of G dominated by B. Suppose (Q,bg)
and (P,bp) are subpairs of G dominating (O, bg) and (P,bj), respectively. Then
(Q,b5) = (P,bp) if and only if (Q,bg) < (P, bp). In particular, (Q,bo) is a B-subgroup.

Proof.  Let F be a splitting field of characteristic p of G, and u, the map from FG to
FG defined by ,uz< > ocxx> = Y a.X, where X = u,(x). For H < G, let /(G| H) be the

xeG xeG

H-orbits of G under conjugation. Then {[C]: C € 4/(G| H)} forms an F-basis of the fixed

point set (FG)™, where [C] := 3 x.
xeC

If H is a p-subgroup, then (FG)” = FCq(H)@® I (FG) as vector spaces, where
I'(FG) = Y (FG){l is an ideal of (FG)" and {[C]: C e 4/(G|H),|C| + 1} forms an
W<H

<
F-basis of I(FG). Thus Bry([C)) := [C n Cs(H)] gives the natural algebra homomor-
phism from (FG)" onto FCi(H) with kernel 1¥ (FG). Similarly,

(FG)" = F(Ca(H)/Z) ® I"(FG)
and u, : I (FG) — I''(FG) is an isomorphism of algebras. Now
Brg: (FG)" — F(Cg(H)/Z)
and yuy : FCq(H) — F(CG(H)/Z), 50 piy 0 Bryg = Bri o ji.
Suppose (Q,b5) < (P,bp), so that Q< P. Since 0= QZ/Z and P = PZ/Z for
p-subgroups Q, P of G and since Q is the only Sylow p-subgroup of QZ, it follows that
Q< P. Since PZ=P x Z and bQ is P-invariant, it follows that for any y e P, b}é is a

block of C¢(Q) dominating bQ, so that by the uniqueness, bé = bg and by is P-invariant.
Now

#z(Brp(bo)br) = pz (Bre(bo))bp = Bry(uz(bo))bp = Brap(bg)bp = bp + 0,

so that Brp(bg)bp # 0 and Brp(bg)bp = bp. It follows that (Q,bg) <t (P, bp). Using induc-
tion we have that (Q,bo) < (P,bp) if (0,b5) < (P, b}).



An and Eaton, Nilpotent blocks of quasisimple groups for odd primes 5

Suppose (Q,bg) <2 (P, bp), so that Q < P and Q <a P. Since by is P-invariant, it fol-
lows that bQ is P-invariant. Since Brp(bg)bp = bp, it follows that

Brp(bs)b = 1z (Brp(bo)bp) = piz(bp) = bp,

so that (Q,b5) <t (P, bj). Similarly, if (Q,bg) < (P, bp), then (0,b5) < (P,bp). O
We obtain as a consequence:

Proposition 2.6. Let G be a finite group, Z < Z(G) and G = G/Z. Suppose
B e BIk(G) and B € BIk(G) dominating B. Then B is nilpotent if and only if B is nilpotent.

Proof. Write Z, = 0,(Z2), Z, = O,(Z), G\ = G/Z, and let B, € Blk(G;) be the
unique block of G; dominated by B. Then Irr(B;) = Irr(B), and B; dominates B.

By Lemma 2.4, B is nilpotent if and only if B is nilpotent. Hence we suppose B = B
and Z = Z,.

Let (D,bj) be a Sylow B-subgroup and (D, bp) the unique B-subgroup dominating
(D, bj). Note that (D, bp) is a Sylow B-subgroup.

Suppose (Q,b ) is a B-subgroup and (Q, by) is the B-subgroup dominating (0, b o)
If xe Nz(0,b; o) then X = xZ for some x € G, and xZ < Ng(Q). Since uz(bg) = b; and
1z (bg) = bX_ = b g it follows that by and by both are blocks of Cg(Q) dommatlng bs

and by = b by uniqueness. Thus x e NG(Q,bQ) and Nz(0,b; ) Ng(Q,bp)/Z. Slnce
Z < C6(0) and Cz(0) = C(0)/Z, it follows that

N5(0.045)/C5(Q)0 = N6(Q.bg)/Ca(Q) 0.

Suppose B is not nilpotent, so that there is some B-subgroup (Q,b —) such that

N(—;(Q, )/C (0)Q is not a p-group. Thus Ng(Q,bp)/Cs(Q)Q is not a p-group and B is
not nilpotent

Suppose B is not nilpotent, so that Ng(Q,b9)/C(Q)Q is not a p-group for some
B-subgroup (Q,bg). We may suppose (Q,bg) < (D,bp). Thus 0=0Z/Z <D, and
(0,b 5) = (D, bj) for a unique B-subgroup (Q,b 5)- Let (Q,bp) be a B-subgroup dominat-
ing (Q, 5) By Lemma 2.5, (Q,bp) < (D, bp), so that by the uniqueness (Q, by) = (0, bo).

Thus No(0,h5)/C(0)0 = No(0, o)/ Co(@)0, and Nz(0,bg)/Co(O)0 is not a
p-group. It follows that B is not nilpotent. []

When considering groups of Lie type, we will often examine the centralisers of
p-elements, which may be written as central products of groups. By a central product
Gy oz G, of Gy and G, over Z < Z(Gy) n Z(G,), we mean that G oz G, = G1G>, where
G, and G, are subgroups of Gj oz G, with G| N G, = Z and |G}, G,] = 1. When it is clear
what Z is, we write Gj o Gy = Gj oz G,. Note that Gy o G, = (G) x G)/{(z,z7") : z e Z}.
For y; € Irr(G;) such that y; and y, both cover the same irreducible character of Z, we may
define y, o y, € Irr(G] o G,) so that y,y, € Irr(G) x G) is the inflation of y; o y,. We refer
to y, o x, as the central product of y; and y,.
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We will need the following technical lemma in certain cases in relation to Property 7.1

(a).

Lemma 2.7. Fori= 1,2, let G; be a finite group, G| o G, a central product of G| and
G, over Z < Z(G1) n Z(G?) and N; a normal subgroup of G; such that G;/ N; is abelian, and
let N := Ni x Ny £ G £ Gy o Gy such that n;(G) = G;/Z, where n; : (Gy 0 G2) — Gi/Z is
the canonical projection. Let 0; € Irr(N;) such that 0, has an extension 6, to G,, and let
0 =0, x 0, and ¢ € Irr(G | 0).

(i) There exist Y| € Irr(Gy) and A € Irr(G,/N>) covering the same irreducible character
of Z, such that the restriction (Y0 (6:4))|g of Yo (022) is equal to p. Moreover, if
Y e Irr(Gy o Gz | @), then Y| = .

(i) If further Z N Ny = 1, then A in (i) may be chosen with ZN,/N, in its kernel, so
that it may be regarded as a character of G,/ N> Z.

(iii) Suppose that Z n Ny = 1. If we have y € Aut(G o Gy) such that y centralizes G,
stabilizes G, Gy and 0>, and g5 € g2N2Z for any g, € Ga, then y stabilizes ¢.

Proof. (i) We first claim that we may suppose Z < G. For since Z < Z(Gj o G3),
we have that GZ is a central product over GNnZ. Now ¢|;., = ¢(1)a for some
a e lrr(G N Z). Since Z is abelian, there exists & € Irr(Z) extending «. Then ¢ = pa is an
extension of ¢ covering 0. If y/; € Irr(Gy) and A € Irr(G,/N,) such that ¥, and 4 cover the
same irreducible character of Z and (; o 6h4)|;, = @, then (Y 0 ,4)|; = ¢, and similarly
for the final statement, proving the claim.

Similarly, (Ny x N2)Z = (N1Z) o (N,Z) and ¢ covers an irreducible character
Eelr((N1Z) o (N2Z) | 0) with & = &, 0 &, for some &; € Irr(N;Z | 6;) covering the same ir-
reducible character of Z. Note that 0| Nz is also an extension of 8, to N>Z. By Gallagher’s
theorem, (01|y,,)f, = &, for some f, € Irr(N2Z/N,). Since G/N, is abelian, it follows
that f8, can be viewed as the restriction of a character f8 € Irr(G2/N2), so & = (02|, -
Write 52 = 92ﬁ, SO 52 is an extension of &, to Gs.

Let M, be a subgroup of G; such that &; has an extension 51 to My and M, is maxi-
mal with this property, that is, either M; = G or ¢ has no extension to H; for any
M, < Hy £ G). Since G,/(N;Z) is abelian, it follows that the inertia subgroup I, (&;)
equals M.

Let M = (M;0Gy)nG =G, My := G, and y € Irr(M; o M, | £). Then
G/M =~ G,/M; and y=yp 0y, forsomey,elrr(M;|E).

Since & has an extension &; to M;, it follows that Y, = &2 for some A; € Irr(M;/N;Z), so
that y|,, is an extension of & to M. Note that M =< I5(¢) and ¢ also covers an extension
of & to M. Replacing y; by y,0; for some o; € Irr(M;/N;Z) if necessary, we may suppose

¢ € rr(G [ y]y)-

Since 7|y, =<1 and Gy stabilizes & (and G;/N;Z is abelian), it follows that
I6,(y1) = My, I(y) = M and IG,.6,(7) = M; o Gy. Let y; = Indy] (y,), so that

(= 0py =Ind§)°% (7, 0 7y).
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But ¢ = Ind$ (y],,), so
Clgs®) = s Var) -

Since M and M, o G> are both normal in G; o G, and M < M o G, it follows that
(M] o Gz)\(Gl o Gz)/M = (Gl o Gz)/(M] o Gz) = G]/M1 = G/M Note also

(Mi0oGy)'nM=M foranyte G/M.

Hence the Mackey decomposition gives us

= > ((VIOVZ)r‘M): > ((V'M)t)

teG/M teG/M
and so (], 7a) s = 1. Since {(1) = p(1) = [G : M]y(1), it follows that |, = ¢.

Note that Ig.6,(p) = GioGy, and ¢ has an extension { to Gjo Gy If
Y € Irr(Gy o G1 | p), then by Gallagher’s theorem, y = {z for some 5 € Irr((Gy o G»)/G)
and so Y|, = ¢.

(i) First note that ZN, = Z x N, and (N} X N;)Z = (N1 o Z) x N, If
Eelrr((Ny x N2)Z|0), thené = (00n)x 0, forsomen e Irr(Z).

Thus we may suppose ¢, = (01 o) € Irr(N1Z) and &, = (02 x 1z) € Irr(N>2Z), and take
&, = 0, as an extension of & to G,. As shown in the proof of part (i), ¢ = (; o (622))]4
for some ; € Irr(Gy) and 4 € Irr(Gy/No Z).

giii) Since y centralizes the factor group G» /ZNZ, it follows that y stabilizes 4, so
does 6,4. But y centralizes Gy, so y stabilizes y/; o (6,4) and hence y stabilizes p. []

3. The alternating groups

To handle the case p = 3 we will need the following. The first lemma will be used in
determining non-faithful nilpotent blocks of the double covers of alternating groups. Recall
that a partition is self-associate if its Young diagram is symmetric.

Lemma 3.1. Let n be a positive integer. There is a self-associate 3-core partition A+ n
if and only if there is a positive integer m such that n = 3m? + 2m or n = 3m* — 2m.

Proof. We claim that the self-associate 3-cores, i.e., those Young diagrams which

are symmetric about the leading diagonal and have no 3-hooks, are those which arise
from partitions of the form

(3m,3m —2,3m —4,....3m —2(m — 1),m*, (m —1)%,...,22,1%)
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and
(3m —2,3m —4,3m —6,...,3m —2m, (m —1)*,(m —2)*,...,2%,1%)
for integers m = 1.

This may be seen directly from methodical construction of the possible Young dia-
grams. However, we give a formal proof here using [19]. For a fixed ¢, Garson, Kim and
Stanton give a bijection ¢ between the set of #-cores and

t . —
{no,n1,...,n1 €2 :ny+---+n_; =0},

defined as follows. We of course only need to consider the case t = 3. Let 4 be a 3-core. We
take the 3-residue diagram, i.e., in the (7, j)th cell of the Young diagram we put the residue
of j —i modulo 3 (see [23], p. 84). We also include the Oth column (with infinitely many
entries), calling this the extended 3-residue diagram. Divide this into regions labelled by
the integers as follows: the (i, j)th cell lies in the region r if 3(r — 1) < j — i < 3r. Say that
a cell is exposed if it lies at the end of a row. Define n; to be the maximal r such that an
exposed cell with value 7 lies in the region r (the inclusion of the Oth row ensures the exis-
tence of such an r).

It is verified in [19] that ¢ does indeed give a bijection. It is also shown that 1 is self-
associate if and only if ¢(1) = (no, n1,m) = (—n2, —ny, —ny), i.e., if (1) = (m,0,—m) for
some m € Z.

Suppose first that m > 0. Then the end cell on the first row is labelled 0, so the first
row has length 4; = 3(m — 1) + 1 = 3m — 2. Since regions 0 and —m lie below the leading
diagonal, the end cells lying above the diagonal are all labelled 0. Since A is a 3-core, the
difference between adjacent row lengths is at most 2, hence the row lengths decrease in
steps of two until the mth row (which has end cell on the leading diagonal). Since 4 is self
adjoint, this determines the whole Young diagram and we are done in this case.

Suppose that m < 0. Then the end cell of the first row is labelled 2, so the first row has
length A; = 3m, and by a similar argument to the above the difference between adjacent
row lengths is 2 until the (m + 1)th row (which has end cell below the leading diagonal).
Again this determines A, and we are done. [

We now consider the analogue of the above lemma which will be used for faithful
blocks. We write 4 > n for a bar partition of n (i.e., a partition with distinct parts). Recall
that a bar partition A > n is odd or even according as n — r is odd or even, where r is the
number of parts in the partition. We refer to [26] for definitions of bars and p-cores.

Lemma 3.2. Let n be a positive integer. There is an even 3-core bar partition 1. > n if
and only if there is a positive integer my with m; = 0,1 mod4 and n = (3m} —m,)/2 or a
positive integer my with my = 0,3 mod4 and n = (3m3 +my) /2.

Proof. Determining the 3-core partitions is a little more straightforward than deter-
mining 3-core partitions, and the reader can easily verify that the 3-core bar partitions are
precisely those of the form

Jo=0Bm=23m—=5.. 3m—2-3i,...,4,1)
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or

A= 0Bm—1,3m—4,....3m—1-3i,...,5,2).

Note that A, = (3r> —m)/2 and 2, = (3m? + m)/2. Also note that Z,, is even if and only if
m = 0,1 mod4; 4] is even if and only if m = 0,3 mod4. []

Theorem 3.3. Let n be an integer withn = 5 and G = /In, the double cover of A,. Let
p be an odd prime. If p & 3, then G does not possess a nilpotent p-block of positive defect.
If p=23, then G possesses a non-faithful nilpotent block of positive defect if and only if
n=3m?+2m+ 3 or n =3m?> — 2m + 3 for some positive integer m. Also if p =3, then G
possesses a faithful nilpotent block of positive defect if and only if n = (3m? — my + 6)/2 for
a positive integer my withm; = 0,1 mod4 orn = (3m§ + my + 6)/2 for a positive integer my
with my = 0,3 mod4. In each case the nilpotent blocks have defect groups of order 3 gener-
ated by (the preimage of) a 3-cycle.

Proof The properties of A, used here are described in [20] 5.2. We consider
A, £ S,, the double cover of the symmetric group. Write Z = Z(S,) and X = XZ/Z
whenever X < S For convenience of notation we write Sn =S, and A = A,. Since
we are taking p odd, for every p-subgroup Q < S, we have Cs,(0) = Cg (Q) and
Ns, (0) = Ng (Q). Suppose that B is a nilpotent p-block of A, with non-trivial defect group
D. Choose y € D of order p. Then yZ is a product of say ¢ disjoint p-cycles, fixing the other
n — pt points. Then Cs, (vZ) = (Z, 1S:) X Sy—p, and so C; () contains a normal elemen-
tary abelian p-group R such that R is generated by ¢ dlS_]Olnt p-cycles. Now R is contained
in a conjugate of D, and so in particular D contains an element x for which xZ is a p-cycle.
Write O = <{x). We have Cy,(0) = O x A,_,. By [20], 5.2.6, we have C; (0)=0x 4,
(the point here being that the central extension of A4,_, does not split). We have
N5, (0) = N, (0) x Sn_,, and Ny, (Q) = (N4 (Q) x Ay—p)<ay where a*=1. Note that

(N4, (Q): CA;,(Q)] =p—L

The p-blocks of C; (Q) are in 1-1 correspondence with the p-blocks of An_p and the
action of N ( ) on these blocks is determined by the actlon of S,,, on the blocks of A,, -
Hence for each block bg of C; (Q) we have [N; (Q,bg): C; (Q)]=(p—1)/20r p—1.

If p > 3, then this shows that N; (Q,b0)/C (Q) is not a p-group, contradicting our
choice of B nilpotent.

Now suppose that p = 3. We first show that D is generated by a 3-cycle. Suppose that
D is not cyclic. Then D contains an elementary abelian subgroup of order 9, and in partic-
ular contains distinct elements x and y for which xZ and yZ is the product of s and ¢
disjoint 3-cycles respectively (briefly, consider the centralizer of gh, for which ghZ is the
product of all the disjoint 3-cycles in gZ and hZ. This has an elementary abelian subgroup
contained in a conjugate of D and containing elements whose images in S, are all the
3-cycles making up ghZ). Then

Cs,(XZ) = (Z,1Ss) X Su—ps and  Cs,(yZ) = (Z,1S;) X Sp—pt-

Hence D contains elements g and 4 for which gZ and #Z are each a 3-cycle and these 3-
cycles are disjoint. Write R = {g,h) < D. We have

CS,, (R) ~ R x S,—¢ and CA,, (R) ~ R X A,_g.
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Now [Ng (R) : Cg (R)] = 8, and arguing as above we see that [N; (R,br) : C; (R)] is even
for every block bR of C "(R) a contradiction.

Hence D is cyclic. Suppose that |D| > 3. Then D possesses an element y of order 9.
By an argument similar to above we may assume yZ is a 9-cycle. But then y>Z is a product
of three distinct 3-cycles, which as we have seen cannot happen.

Hence D has order three and is generated by an element x where xZ is a single
3-cycle. We have Cy (D) = D x A,3. The blocks of C; (D) with defect group D are in
1-1 correspondence w1th the blocks of defect zero of An 3, and the act1on of N; (D) on
these blocks is given by the action of S,_3 on the blocks of defect zero of A,_3. Hence the
nilpotent blocks of 4, with defect group D are in 1-1 correspondence with orbits of length
two of blocks of defect zero of /in_3 under the action of S’n_3.

Now blocks of defect zero of AAn,3 are covered by blocks of defect zero of S‘n,g. We
consider faithful and non-faithful blocks separately. Note that B is faithful if and only if the
B-subpairs have kernel intersecting trivially with Z (i.e., if and only if they correspond to
faithful blocks of 4,_3).

Suppose that B is non-faithful. Blocks of defect zero correspond to 3-core parti-
tions of n— 3. By [23], 2.5.7, irreducible characters of S, 3 remain irreducible when
restricted to An 3 if and only if the corresponding partition is not self-associate. Hence
[N (D,bp): C; (D)] = 1if and only if the block of defect zero of 4,3 corresponding to
bD is labelled by a self-associate partition, and so the result follows in this case from
Lemma 3.1.

Suppose that B is faithful. Blocks of defect zero correspond to 3-core bar partitions
of n—3. By [27], p. 212, faithful irreducible characters of S, 3 remain irreducible
when restricted to 4,3 if and only if the corresponding bar partition is odd. Hence
[N (D,bp) : C; (D)] =1 if and only if the block of defect zero of A,_3 corresponding to
bp 1s labelled by an even 3-core bar partition, and so the result follows in this case from
Lemma 3.2. []

We have not yet considered all the perfect central extensions of 4¢ and 4;. However,
by the above theorem, neither yields a nilpotent 3-block with non-central defect group, and
further it is easy to check that there are no nilpotent blocks of positive defect for the other
odd primes.

It is appropriate here to extend our study to the double covers of the symmetric
groups.

Proposition 3.4. Let G = S, be the double cover of the symmetric group S, for n =5
and let p be an odd prime. If p =5, then G does not possess a nilpotent p-block of
positive defect. If p = 3, then every nilpotent block of positive defect is faithful. These have
defect one, and occur if and only if there is a positive integer my with m; = 2,3 mod4
and n= 3m? —m; +6)/2 or a positive integer my such that my =1,2mod4 and
n=(3m3+m +6)/2.
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Proof. Suppose first that B is a non-faithful block of positive defect. By, for exam-
ple, [23], 6.2.2, [(B) = p(w1) - -- p(wp—1), where the sum runs over improper partitions
(Wi,...,wp—1) of the weight w of B and p(x) is the number of partitions of x. But
p—1=2and (w,0,...,0) and (0,w,0,...,0) are improper partitions of w, so /(B) > 1
and B cannot be nilpotent.

Now suppose that B is faithful of positive defect. Then by [28], 13.17, /(B) is at least
k((p—1)/2,w), the number of (p — 1)/2-tuples of (possibly empty) partitions with sum
w (see [28], 3.11), where again w is the weight of B. If w <2, then ((w),0,...,0) and
((1%),0,...,0) are such (p — 1)/2-tuples of partitions, so /(B) > 1 and B cannot be nilpo-
tent. Now suppose that w= 1. If p =5, then (1,0,...,0) and (0,1,0,...,0) are such
(p —1)/2-tuples, and again B cannot be nilpotent. We are left with the case w =1 and
p =3. By [28], 13.17, I(B) = 2 if the 3-core u of B is even (in the sense that n — 3 — r is
even, where r is the number of parts in u), and /(B) = 1 if x is odd. Note that since B has
cyclic defect groups, B is nilpotent if and only if /(B) = 1, and so the result follows from
Lemma 3.2. [

We now turn our attention to Puig’s conjecture.

Lemma 3.5. Let G =S, be the double cover of S,, and let B be a block of G with
defect group D. If |D| > p?, then I(B) = 3.

Proof- Suppose first that B is a non-faithful block. As above,

I(B) =32 p(w1) -+~ p(wp-1),

where the sum runs over improper partitions (wy,...,w,_1) of the weight w of D. If
|D| > p?, then w=2. But (w,0,...,0), (0,w,0,...,0) and (w—1,1,0,...,0) are three
such improper partitions, so /(B) = 3.

If B is faithful, then by [28], 13.17, I(B) is at least k((p — 1)/2,w), the number of
(p — 1)/2-tuples of (possibly empty) partitions with sum w, where again w is the weight of
B. We have w = 2. Here ((w),0,...,0), ((1"),0,...,0) and ((w—1,1),1,0,...,0) are
three such tuples, so /(B) = 3. [

Corollary 3.6. Let B a p-block of G for p odd, where G is quasisimple with
G/Z(G) = A, for some n. Then B is nilpotent if and only if I(bg) = 1 for every B-subgroup

Proof. 1f B has abelian defect group D, then this is [30]. So we may assume
ID| > p2. Suppose G <t H, where H =~ S,,, and let By € BIk(H) covering B. Then By has
defect group D, and by Lemma 3.5, /(By) = 3. But /(B) = [/(By)/2 > 1, so B is not nil-
potent, and of course we can take the B-subgroup (1, B) to show the proposed equivalent
condition is also not satisfied.

It remains to consider the exceptional covers, but in these cases it is easy to check that
every block with non-central defect groups has more than one irreducible Brauer character.

O
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4. Sporadic groups

In this section we determine the nilpotent blocks with non-central defect groups of
quasisimple groups G where G/Z(G) is one of the 26 sporadic simple groups. Note that
due to Lemma 2.4 it suffices to consider the case Z(G) is a p’-group.

In order to provide a reasonably unified treatment of the classification of nilpotent
blocks of the sporadic groups, we work from [20], Table 5.3. However, in all cases the num-
ber of irreducible Brauer characters in the blocks are known, which would lead to a shorter
but less illuminating proof. To avoid an overly long proof we do use these results in show-
ing that Puig’s conjecture holds.

We use [20], Table 5.3, and apply the following simple results to demonstrate the non-
existence of such blocks in many cases:

Lemma 4.1. Suppose that D is a defect group for a nilpotent block of a finite group G.
Let x € D have order p and write Q = {x) and R = OP(C(;(Q)). Then:

(i) There is no p-regular g € Ng(Q) — Cg(Q) which fixes every block of Cg(Q).
(i) There is no p-regular g € Ng(R) — C(R) which fixes every block of Cg(R).

Proof. Note that R is contained in every defect group of every block of Cg(Q).
Hence R < D. The result then follows from the definition of a nilpotent block. [

Lemma 4.2. Let Q be a p-subgroup of G. If [ING(Q)/Cs(Q)| is prime to p and, for
every n, is strictly greater than the number of p-blocks of C¢(Q) of dimension n (or is greater
than or equal to n in the case n is the dimension of the principal block of Cs(Q)), then Q
cannot be a subgroup of a defect group of a nilpotent block of G.

Proof. In this case every p-block of Ci(Q) must be fixed by a p-regular element of
Ng(Q) — Cs(0Q), and we apply Lemma 4.1. [

Lemma 4.3. Let B be a nilpotent block with defect group D, and let 1 £ Q < Z(D).
Then Cg(Q)/Q possesses a nilpotent block with defect group D/ Q.

Proof. Let bpeBIk(DCg(D)) with b5 =B. Now DCg(D)< Cq(Q), and
b= bgG(Q) is nilpotent. D is the unique defect group of by and b = B, so D is a defect
group of b. There is a one-to-one correspondence between the blocks of Cg(Q) with defect
group D and the blocks of C;(Q)/Q with defect group D/Q. Let b be the correspondent of

b. By Lemma 2.4, b is nilpotent. []

Write Z = Z(G) and G = G/Z. Note that when Z is a p’-group, for every p-subgroup

Q of G we have Cg(Q) = C5(Q) and Ng(Q) = Nz(0Q).
Throughout our notation for the conjugacy classes of G follows that of [20].

Proposition 4.4.  Let G be a quasisimple group such that G is a sporadic simple group,
with |G|p = p. Let B be a p-block of maximal defect of G. Then B is not nilpotent.
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Proof. Let D € Syl,(G). Note that D is abelian. If Cz(D) < D, then Cg(D) £ DZ
and every p-block of Cg(D) is Ng(D)-stable. But p does not divide [Ng(D) : DCq(D)],
whilst by Burnside’s transfer theorem we cannot have Ng(D) = Cg(D), so a block with de-
fect group D cannot be nilpotent. Hence, using [20], Table 5.3, we may rule out all but the
following cases: p=3and G=Ji; p=5and G = Moy, Ji, J3, J4; p =7 and G = My, Js,
C03, C02, Suz, Ly, Ru, Fizz, Fi23, HN; pP = 11 and G = C03, CO], Ly, Fizz, Fi23, Fl.é4, HN,
F>; p=13and G = Coy, Ru, Fixs, Fi5,, Th, F; p=17and G = F,, F;; p=19and G = F,
Fi;p=23and G=F,, F;; p=29and G=F; p=3land G = F,.

Applying Lemma 4.2 with Q = D to these cases eliminates all but the case p = 3 and
G =Ji. Here Cz(D) = D x Dyy and Ng(D) = S3 x Dy, and it is clear that Ng(D) fixes
every block of C¢(D). [

Theorem 4.5.  Let B be a nilpotent p-block with non-central defect group D of a qua-
sisimple group G such that G is a sporadic simple group. Then |D| = 3 and G is one of My,
Ja, Ly. In each of these cases G does indeed possess a nilpotent block with defect group D.

Proof.  We only need to consider the case p? divides |G].

Suppose that D is a non-central defect group of a nilpotent p-block B. We assume

that Z is a p’-group. Choose x € D of order p, and write Q = {x). In each case N3(Q) is
given by [20], Table 5.3, and Cz(Q) may be deduced using [14].

Let P = 0,(NG(Q)). Then P < D.

We eliminate each possibility for the conjugacy class containing x in turn using a suc-
cession of methods until we are left with the three cases listed. For each of these we then
verify the existence of a nilpotent block with defect group Q.

Suppose that Ng(Q) = H, x H, and Cg(0) =~ O x H, for some H,, H, such that
Q< Hi, and H;/Q not a p-group. Then every p-block of C(Q) is fixed by Ng(Q) and
Ng(Q)/Cs(Q) is not a p-group, so B cannot be nilpotent. In this way we eliminate the
following pairs (G, C), where C is the conjugacy class in G containing xZ: (Mi;,34),
(M12, 3B>, (M24, 3B), (]2, 33), (Jz, 5), (C03, 3C), (C03, SB), (C02, 3B), (COQ, SB),
(Coy1,3D), (HS,34), (HS,5B), (He,3B), (He,74), (He,7B), (Ru,5B), (Fixn,3A4),
(Fix,5A), (Fix3,3A), (Fir3, 5A4), (Fi5y,TA), (F>,3A4), (F2,54), (F1,3C).

Suppose that Cz(P) is a p-group and Ng(P)/Cg(P) is not a p-group. Then every
p-block of Cg(P) is Ng(P)-stable, and B cannot be nilpotent. In this way we may eliminate
the pairs (M]z, 3A), (J3, 33), (J4, 11), (C03, 3A), (C03, SB), (C03, SA), (COQ, 3A), (COz, SA),
(Co1,3C), (Coy,5C), (HS,54), (HS,5C), (McL,3), (McL,S), (Suz,3B), (He,7C),
(He,7D), (He,7E), (Ly,3B), (Ly,5), (Ru,5A4), (O'N,7), (Fins,3B), (Firs,3C), (Fin,3D),
(Fix3,3B), (Fix3, 3C), (Fi},, 3B) [since in this case no involution in G centralizes a subgroup
of the form 3!*19), (Fi},, 3C) [since in this case no involution in G centralizes a subgroup of
the form CJ|, (Fi5,,7B), (HN,3B), (HN,5B), (HN,5C), (HN,5D), (HN,5E), (Th,3B),
(Th,3C), (Th,5A4), (F»,3B) [since no involution in G centralizes a subgroup of the form
31481 (F,,5B), (F1,3B), (F1,5B), (F1,7B), (F,13B).

Suppose that Nz(Q) = (H) x Ha)n, where n is an integer, and Cg(Q) < H, x H; for
some H| and H; such that Q is a proper normal self-centralizing Sylow p-subgroup of H;.
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Then H; < Ng(Q) fixes every p-block of Cg(Q) and Ng(Q)/Cs(Q) is not a p-group. It
follows that B cannot be nilpotent. In this way we may eliminate the pairs (Co;,54),
(Co1,5B), (Coi1,7), (Suz,3C), (Suz,5), (He,54), (O'N,34), (Fi5y,3E), (Fi}y,54),
(HN,5A4), (Th,7A), (Fy,74), (F1,54), (F\,74), (F,114), (F|,134).

Suppose that Ng(Q) = (H; x H)n for some H, and H,, where n is an integer which
is not a power of p, Q < H;, and H;n (with the appropriate action) fixes every p-block of
H; for i =1,2. Then Ng(Q) fixes every p-block of Cs(Q) and Ng(Q)/Cs(Q) is not a
p-group. It follows that B cannot be nilpotent. In this way we may eliminate the
pairs <M22,3A), (M24,3A), <J2,3A), (J3,3A), (C01,3A), (C01,3B), (SMZ, 3A), (HE, 3A),
(Ru,34), (Fi},,3A4), (HN,3A4), (Th,34), (F1,34).

The only cases left unaccounted for are Fi>3 and Fi},, where in each case xZ belongs
to the class labelled 3D. Suppose G = Fiy3 or Fi’, and xZ € 3D. In this case Z =1 (since
p = 3). We have already seen that a nilpotent 3-block of G cannot contain elements of
order three outside of 3D. Note that x is conjugate to x~! (to see this consider the orders
of the centralizers). Irreducible characters in such a block must vanish on 34, 3B and 3C.
This happens for only one irreducible character, and this lies in a block of defect zero.

If G= My and p=3, then Z=1 and Ng(Q) = (Z3 x As) -2, C(Q) = 73 x As.
Note that M,3 possesses just one 3-block of maximal defect, which cannot then be nilpo-
tent. Hence we may assume D = Q, and so if by is a block of Cg(Q) with bg = B, then
bo has defect group Q. Now Cg(Q) has two blocks with defect group Q. The action of
Ng(Q) on the blocks of Cg(Q) is given by the action of Ss on the blocks of A4s, so the
two blocks with defect group Q are fused by Ng(Q). Hence [Ng(Q,bg) : Cq(Q)] =1, and
bg is nilpotent.

If G=Jsand p =3, then Z =1 and Ng(Q) = (6M»,) -2 and Cg(Q) = (6M»). By
[14], 2M», possesses precisely two 3-blocks of defect zero fused by 2M,2 (the rest are
fixed). These correspond to two 3-blocks of Cg(Q) with defect group Q fused by Ng(Q).
Hence G possesses a nilpotent block with defect group Q (the Brauer correspondent of the
above blocks of C;(Q)).

If G=Ly and xe 34, then Z =1 and G possesses a nilpotent block with defect
group Q, since Ng(Q) = (3McL) -2, C5(Q) = 3McL, and McL possesses precisely two
3-blocks of defect zero which are fused in McL -2 (all other 3-blocks of McL are fixed by
McL - 2). These correspond to two 3-blocks of Cg(Q) with defect group Q fused by Ng(Q).
Hence G possesses a nilpotent block with defect group Q (the Brauer correspondent of the
above blocks of C;(Q)).

Note that we have shown in particular that whenever p divides the Schur multiplier of
a sporadic simple group, there is no nilpotent block of positive defect of the quotient group
(by the Sylow p-subgroup of the centre). []

We conclude:
Proposition 4.6. Let G be a quasisimple group such that G/ Z(G) is a sporadic simple

group and let p be an odd prime. If B is a nilpotent block of G, then B has defect groups of
order at most three.
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We now address Puig’s conjecture.
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Proposition 4.7. Let G be a quasisimple group such that G/ Z(G) is a sporadic simple
group and let p be an odd prime. Let B be a p-block of G. If B has positive defect, then
[(B) > 1. In particular, B is nilpotent if and only if I(by) =1 for every B-subgroup (Q, by).

Proof:  We may assume that Z(G) is a p’-group. Let D be a defect group of B. If D
is cyclic, then the result follows from the theory of blocks with cyclic defect groups. In the
following table we list all the numbers of irreducible Brauer characters in blocks with non-
cyclic defect groups, along with a reference. A “*’ will be used to denote a faithful block in a
group with non-trivial centre. The result then follows from examination of the table.

G/Z(G) | |D| [(B) reference
M 32 7 [18]
M, 33/33 8/8* [18]
My, 32/32/32 5/5%/5* [18]
My 32 7 [18]
Moy, 33 7 [18]
Ja 33/33/52/52 8/8%/6/6* [18]
J3 33 8 [18]
Jy 33/33/3%2/113 9/9/5/40 [8]/[10]
HS 32/32/32/53/53 7/7/5%/10/10* [18]
McL 36/53/53 10/12/12* [18]
Suz 37/32/37 13/5/10* [18]
Ly 37/56 21/35
He 33/32/52/73 7/7/14/10 [18]
Ru 33/33/53/53 9/9*/18/18* [18]
O'N 347327373 14/5/19/19* [18]
Cos 37/53 20/18 [18]
Co 36/53 23/16 [18]
Co, 39/33/32/54/52 )77 29/7/5/29/12/21 [7]
Fix 39/39/52/5%/52 /52 22/18%/16/16*/16* /16* [18]
Fiy; 313/52/52 32/16/16 [5]
Fi}, 316/32/52 /52 /52 /52 /52 25/4/16/16/14/16*/16* [4]
52/52)73 )73 )73 14*/14%/22/22% /22* [4]
Th 310/53 /72 10/30/24
HN 36/32/56 20/7/16 [6]
F,=B | 313/32/32/32/313 71/7/7/5/31* [9]
56/52/52/5%/7% )72 7% 7? 51/16/16/33*/24/24/21/24* | [9]
Fi=M | 3%0/33/59/52/7%/7%/11%/13% | 83/7/91/16/70/24/45/52 [18]
Table 1. Numbers of irreducible Brauer characters in blocks with non-cyclic, non-central defect groups of

sporadic groups.

If G = Ly and p = 3, then by [14] G has thirty 3-regular conjugacy classes. By [31],
aside from the principal block, G has five 3-blocks of defect zero and two 3-blocks of defect
one. Since we have shown that neither of these blocks of defect one is nilpotent, it follows
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that they each have two irreducible Brauer characters. Hence the principal block has 21
irreducible Brauer characters for p = 3. A similar computation for p = 5 shows that the
principal 5-block of Ly has 35 irreducible Brauer characters (and this is the unique 5-block
with non-cyclic defect groups).

If G = Thand p = 3, then by [14], G has sixteen 3-regular conjugacy classes. By [32], G
has four 3-blocks of defect zero and one 3-block of defect one (which we have seen cannot
be nilpotent, so has two irreducible Brauer characters. Hence the principal 3-block pos-
sesses ten irreducible Brauer characters. A similar computation for p = 5 shows that the
principal 5-block of 7/ has 30 irreducible Brauer characters (and this is the unique 5-block
with non-cyclic defect groups). For p = 7, by [32], G has fourteen blocks of defect zero, a
block of defect one (with six irreducible Brauer characters, by consideration of the inertial
quotient) and the principal block, which must then have 24 irreducible Brauer characters.

If G/Z(G) = Fi},, then the result may be found in [4], 4.2, when p = 3, and when
p = 5 or 7 for non-faithful blocks in the case |Z(G)| = 3. Suppose |Z(G)| = 3, and consider
faithful blocks B with a defect group D covering a block, say ¢ of Z(G). Suppose first
p = 5. We have D = 5% and from [4], p. 141, k(B) = 20. Note that G has only one conju-
gacy class of elements of order 5. If x e D\{1} and b € Blk(Cg(x)) with b = B, then
Ce(x) =3x5x%x Ay and b =c x By(5) x b’ for some b’ € Blk(A4y) with D(b') =5. As
shown in [4], p. 114, A9 has three such blocks by = By(Ay), b}, b5 and [(by) = I(b]) = 4,
[(b}) = 2. The canonical characters of the root blocks of 5} and b{ are linear and degree 3
characters of Cy4,(5) =5 x Ay, respectively. Since Ng(D) = 3.(5% : 444 x A4).2 and a
Sylow 3-subgroup of Ng(D) is isomorphic to 3172, it follows that ¢ x By(5) x bj and
¢ x By(5) x b} induce the same block B of G and so /(B) =20—4—2=14. Also
¢ X By(5) x bj induces another block B of G and /(B) =20 —4 =16. If p =7, then by
[4], p. 141, k(B) = k(Bo(Fiz,)) and Cg(x) =3 x Cpy,(x) for any xe D\{1}. Thus
I(B) = I(Bo(Fir4)) =22. [J

5. Notation for classical groups and their blocks

Let V be a linear, unitary, non-degenerate orthogonal or symplectic space over the
field F,, where ¢ = r for some prime r & p. We will follow the notation of [3], [11], [16]
and [17].

If V' is orthogonal (and ¢ is odd), then there is a choice of equivalence classes of qua-
dratic forms. Write #( V) for the type of V" as defined in [17], p. 124, son(V) =#n =+ or —.
Write (V) =+ if V is linear and 5(V) = — if V is unitary. If V' is non-degenerate
orthogonal or symplectic, then denote by /(") the group of isometries on ¥ and let
Iy(V)=1(V)nSL(V).

If V is symplectic, then I(V) = Iy(V) = Sp,,(q)-

If V' is a (2n + 1)-dimensional orthogonal space, then I(V) =<{—1y> x Iy(V') with
Io(V) = SO2+1(q)-

If V is a 2n-dimensional orthogonal space, then I(V)= O"(V)= O] (q) and
I(V) = 803,(q).
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If V is a 2n-dimensional non-degenerate orthogonal or symplectic space, then denote
by Jo(V) the conformal isometries of V' with square determinant. If V" is orthogonal of
dimensional at least two, then write Dy( V") for the special Clifford group of V' (cf. [17]).

Denote by GL™ (V) the general linear group GL(¥) and GL™ (V) the unitary group
u(r).

Let G = GL"(V) or I(V). Write #, = #,(G) for the set of polynomials (with coeffi-
cients in [,) serving as elementary divisors for semisimple elements of G (cf. [3], p. 6). For
I' e #,(G), let dr be the degree of I', and Jr be the reduced degree defined as in 3], [16] and

1 . . R .
[17]. So ér = dr oror = Edr according as dr is even or odd (note that if V" is symplectic or

orthogonal, I' must have even degree unless I' = X + 1).

If G = GL(V), then let er = 1. Otherwise ¢r is given by [3], p. 6. Let er be the multi-
plicative order of erg’™ modulo p. Thus we may write erdr = ep* 1 for some or and Jp-
with p ¥ J7., where e = ey _;.

Given a semisimple element se G, there is a unique orthogonal decomposition
V= > Vr(s), with s= [] s(I'), where the Vr(s) are nondegenerate subspaces of V'

ez, ez,
and s(I') e GL(Vr(s)), U(Vr(s)) or I(Vr(s)) (depending on G) has minimal polynomial
I". This is called the primary decomposition of s. Write mr(s) for the multiplicity of I' in
s(I'). We have Cg(s) = [[ Cr(s), where Cr(s) = I(Vr(s)) or GL*" (mr(s),q°") as appro-
priate. le#,

6. Blocks of linear and unitary groups

Suppose G = GL/(q) = GL"(V) and p is odd and distinct to r, and let B be a
p-block of G with a defect group D and label (s, x). Then we may write

(61) V= V()_L V+, D:D()XD+, § =580 X 84,

where Vy = Cy(D), Vi =[D, V], so € Go = GL"(V}) and s, € G, := GL" (V). For con-
venience we denote GL"(V') by G(V) and SL" (V') by S(V).

Theorem 6.1. Let G = GL"(V) = GL"(n,q) and suppose p is odd with p ¥ q. Then
the following are equivalent:

(a) B is a nilpotent block of G.
(b) mr(sy) =er =1 for all I € 7, which are elementary divisors of s.,.

(c) xr is an er-core of mr(s) whenever e for, and mr(s) < 1 whenever e|dr, where
kr = 0 is viewed as an er-core of 0 = mr(s).

(d) Let (D,bp) be a Sylow B-subgroup and 0 the canonical character of bp. Then
Co(D) =Gy x Cy and 0 =0y x 0., where C, := Cg, (D) is regular in G, Oy is an



18 An and Eaton, Nilpotent blocks of quasisimple groups for odd primes

irreducible character of defect 0 of Gy labelled by (so,x) and 0, = iR%+ (s) with
T, = Cg, (s4) a torus of both G, and C, and D, = O,(T.). Here R% (s1) is the Deligne—
Lusztig generalized character.

In particular, if B is nilpotent, then D is abelian.

Proof. Let s, =][][s(I') be a primary decomposition, so that V., = @ Vr with Vr
r T

the underlying space of s(I'). Write m for mr(s;). Then
(6.2) Cq, (s+) =1]Cr,
r

where Cr = GL*" (mr, ¢°r). We may suppose D, € Syl,(Cg, (s4)), so that

(63) D+ = HDF, Dr € Sylp(Cr)
r

So D is a direct product of wreath product p-groups.

Let I be an elementary divisor of s;. Since Cy.(Dr) = 0, it follows that p divides
g’ — er and so er | mr. Hence we may write mr = erwr for some wr. Let A(D) be the
subgroup of D generated by all the abelian normal subgroups of D. By [1], Theorem 2,
A(D) is the base subgroup of D. Write R = A(D). Then

(64) R = DO X H(RF)WI‘7 CG(R) = GO X H(KF)WF’ KF ~ GLs(éi_’qep“l')
r r

where ¢ = ey and Rr = O,(Z(Kr)) is cyclic and (Rr)"" is a diagonal subgroup of
GL (wr, ¢°7") < Cr. Thus Cg, ((Rr)"") = (Kr)"", Cg(R) is regular in G,

NGr ((RF)WF) = Kr1 S(Wr),

and we may suppose s € Cg(R), where Gr := G(Vr) and S(m) is the symmetric group on m
letters.

Suppose wa = 2 for some A. Then there is P(Dp) < (Ra)"* such that
Cs, (P(Da)) = (Ka)"™ > x GL*(28),¢"™) and P(Da) = 0,(Cg,(P(Ds))).
Thus Cc, (P(Da)) = GL*(1,¢%¢)" ™% x GL®(2, ¢%*) and
Neg, (p(oa) ((Ra)™) = (Ka)" ™2 x Ka1S(2).

There is an element ya of (N¢, ((Ra)") N Cg, (P(Da)))\Cc, ((Ra)") which swaps exactly
two factors Ky in Cg, ((Ra)"™), |yal =4, y3 € Cc, ((Ra)"™) and det(ya) = 1.

Writing yr := 1 when I' & A, define

(6.5) y:=1y, x[[yr and P(D):= Dy x [] (Rr)"" x P(Dy).
r T+A
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Then y € (Negpp))(R) N Cg(s))\Ce(R) and y* € Cg(R). Let (R, bg) be a B-subgroup, so
that D(bg) = R and we may suppose bg < &,(Cg(R), (s)). Since y € Cg(s), it follows that
v € Ng(R,br)\Cs(R), so B is not nilpotent, a contradiction. Thus mr = er for all I" and D
is abelian with each Dr cyclic.

For each T,

NGL”r(enqdl")(Dr) = <Tr, CGL‘r(er,q’jr)(Dr)>7 CGLgr(er,q‘jr)(Dr) = GLSF(LqEr(;I‘)’

where 11 € GL®" (er, ¢°7) has order er modulo GL*"(1,¢?r). If 7 = 1y, x [[r, then
r

7€ Ng(D) n Cg(s) and so 7 € Ng(D, bp), where bp is the block of Cg(D) labelled by (s, x).

Since er and p are coprime, it follows that 7z is a p’-element, er =1 and
Cr = GL*"(1,¢°"). In particular, Cg, (s;) is a torus and e |Jr-.

Conversely, if mr(s,) = er = 1, then Cr = GL*"(1,¢°") and so
Ne¢.(Dr) = Ce(Dr) = Cr.
Thus D and Cg(D) are abelian, and
Neg((D) = Ceg) (D) = Cg(s)-

Now the canonical character of bp is labelled by (s,1) and is stable in Ng(D,bp). Let
x € Ng(D,bp). Then s* and s are Cg(D)-conjugate elements of the abelian group Cg(D),
and so s* =s. Hence x € Cg(s) < Cg(D), and we have shown Ng(D,bp) = Cs(D). By
Proposition 2.1, B is nilpotent.

Note that er =1 if and only if e|dr. Since D is a Sylow p-subgroup of Cg(s), it
follows that Dy is a Sylow p-subgroup of Cg,(s0). But mr(s) = mr(so) + mr(sy), so
mr(sy) =er =1 if and only if mr(so) =0, mr(s) =1 and e|dr. In addition, mr(s) & 0
and mr(sy) =0 if and only if mr(sy) = mr(s) £ 0 and e tor. This happens by [16],
Theorem (5D), if and only if xr is an er-core of mr(s) and e fJr. Thus (b) and (c) are
equivalent.

Let (D,bp) be a Sylow B-subgroup and 6 the canonical character of bp. If (b) holds,
then Cg(D) is regular and by [11], Theorem 3.2, (D, bp) is labelled by (D, s, k). Follow the
notation of (d). By [16], p. 135, 6, is an irreducible character of Gy labelled by (so,x) and
the block b, of C containing 0, is labelled by (s, —), where — is the product of the empty
er-cores of mr(s;.). Thus b, = &,(C,, (s;)) and 0, is labelled by (s, x) for some irreduc-
ible unipotent character of Cc, (s;) = C¢, (s+) = T4. But 0, is canonical in b, so y is the
trivial character and hence 0, = iR%+ (s+). Conversely, if (d) holds, then mr(sy) =er =1
as Cg, (s4)isatorusof G.. [

For integers ¢ and m, we write p || m when p¢|m and p<*' ym.

Remark 6.2. In the notation of the proof above, we may suppose the element
7 € Cg, (s4) has determinant 1 whenever er = 2 for some I
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Proof. We may suppose ¢ = ¢°7, so that er =e. Let T be the diagonal maximal
torus of G = GL(F ® V), ¢ the Frobenius map of G such that Cg(g) = GL?(e, g), where
[ is the algebraic closure of .

Choose matrices Pj; (with i + j) of G such that Pj; acts on T as the permutation swap-
ping the (i,7) and (j, /) entries of T, the entries of P; are 1 or —1, det(P;) =1 and Pj; is
fixed by ¢. If W is generated by the matrices Pj;, then Ng(T) = TW and WT/T = S(e).

Note w? = w for each w € W. Let wy € W such that
Cr(owg) =~ GL*(1,4°),

so that wy acts on T as the cycle (1,2,...,¢). Now Cr(owy) is conjugate in G to the
Coxeter torus GL?(1,¢°) of Cg(g) and wy normalizes Cy(gw,). Thus there is an element
peSL"(e,q) such that f normalizes the torus GL?(1,¢¢) and f has order ¢ modulo
GL*(1,4°). Since Ngps(e,q) (GL*(1,4¢))/GL%(1, ¢°) = Z., it follows that

Novi(e.q) (GL(1,¢)) = <B,GL*(1,4°))

and we may suppose 7 = f.

7. A set of technical conditions

In order to investigate nilpotent blocks of exceptional groups of Lie type it is not
sufficient just to find the nilpotent blocks of classical groups. We need in addition some
somewhat technical properties which we will identify in classical groups and their extensions
by diagonal automorphisms which relate to nilpotency (in particular, they will be used to
examine centralizers of elements of defect groups of nilpotent blocks).

These properties also ensure that Puig’s conjecture holds for the groups under con-
sideration.

We state these properties in this section, along with some general results which will be
needed in proving that they hold for classical groups.

Let G be a finite group, Q a p-subgroup of G, and B € BIk(G). If p is odd, we denote
by A(Q) the subgroup of Q generated by all the abelian normal subgroups of Q. Recall that
a B-subgroup (R, bg) is called self-centralizing if Z(R) is a defect group of bg € BIk(Cg(R)).

We will prove for some finite groups of Lie type that one of (a)—(d) of the following
holds. A feature of these properties is that none can be satisfied by a nilpotent block with
non-abelian defect groups.

Property 7.1. Let K be a normal subgroup of a finite group H, and let B € BIk(K) and
By € BIk(H) such that By covers B.

(a) There exist B-subgroups (P,g) < (R,b), where R is abelian, with abelian defect
groups D(g) and D(b) respectively such that D(g) = D(b), and an element y € Nc,(p)(R)
such that y* =1, [y, x] ¢ Z(K) for some x € R and y* € Cx(R), and such that 0° = 0, where

0 is the canonical character of b. There exist By-subgroups (P,gy) < (R,by) where g
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covers g, by covers b, such that by, = by and D(by) = D(gn) is abelian for defect groups
D(by) and D(gy) of by and gy respectively.

(ax) Property (a) above holds, and there exist subgroups N; <t M; of H, and characters
0; € Irr(N;) for i = 1,2 such that M;/N; is abelian,

Z(K) é N1 X Nz é CK(R) é CH(R) é M1 (e} Mz,

0 covers 01 X 05, Zon N, =1, 0, has a y-stable extension to M, and [y,x] =1 or
[v,x] € ZoN, according as x € My or M, where Zy < Z(M)) N Z(M>) such that M, o M,
is a central product over Zj.

(b) D(B) =~ 3'*2 I(B) = 2, and either D(By) = D(B) or D(By) = 731 Z5.
(c) D(B) =32, I(B) = 2, and either D(By) = D(B) or D(By) =~ 312,
(d) Both D(B) and D(By) are abelian.

Remark 7.2. (i) Suppose that (P,g) < (R,b) are B-subgroups with abelian defect
groups D(g) and D(b), and R is abelian. By [15], Lemma 4.1, there exists a By-subgroup
(P,gm) such that g covers g. Since R < D(b) is abelian and (P, g) < (R, b), it follows that
(R,b) is a g-subgroup and by [15], Lemma 4.1, again, there exists a gy-subgroup (R, by)
such that by covers b. Thus (R, by ) is a By-subgroup and (P,gy) < (R, by).

(i) Note that in the notation of the proof of Theorem 6.1, (R, bg) is self-centralizing.
We also observe that there is some redundancy in (a) when (ax) holds:

Remark 7.3. In the notation of Property 7.1 (a) and (a*) suppose
N] XN2§E§MIOM2
such that y normalizes £ and suppose ¢ € Irr(E | 61 x 0,). Then ¢” = ¢.

Proof- Since ¢ has an extension ¢ to EZ, it follows that we may suppose Z, < E.
Let 7; : (M) o M) — M;/Z, be the canonical projection and let E;/Zy, = n;(E) for some
E,' é M,’. Then

NixN,ZEEZE|0oFE, EMjoM,.

Let { be the y-stable extension of 6, to M;, and set 92 =] X Then 92 1S an extension of 6,
to E, which is stabilized by y. Since [y, x] = 1 or N»,Z, according as x € M| or x € M, it
follows that y centralizes E| and [y, x] € N,Z, for any x € E;. By Lemma 2.7, ¢ = 9. [J

Applying Remark 7.3 to the canonical characters of b and by, we see that in the no-
tation of (a), 0" = 0 and b}; = by are automatically satisfied if the other parts of (ax) hold.

Before stating the key consequence of Property 7.1, we need the following:

Lemma 7.4. Let B be a block of a finite group G and suppose there are B-subgroups
(P,bp) < (R,bR) such that R is abelian, bp has abelian defect groups and there is a p-regular

element y € Nc,p)(R)\Cs(R) such that by = bg. Then there is a B-subgroup (Q,bg) such
that [(bg) > 1.
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Proof. For convenience write L = Cg(P). Note first that bp is not nilpotent, since
yCs(R) € NL(R,br)/Cs(R) is not a p-element and (R, bg) is a bp-subgroup. Hence by
Lemma 2.4 the unique block bp of L := L/P dominated by bp is not nilpotent either. But
bp has abelian defect groups, so by [30], Theorem 3, there is a bp-subgroup (0, b ; o) Where
Q = Q/P for some Q = P, such that I(bg) >

Note that C1(Q) < Cz(Q) and C;(Q)/CL(Q) is a p-group. By [33], Lemma 1, there
is a bp-subgroup (Q, bo) such that b is the unique block of C;(Q) covering the block b’Q of
C.(Q) dominated by by. Note that I(bg) = I(b/ )=1(bg) > 1. But P < Q, so (Q,bg) is
also a B-subgroup, and we are done. [

We make the key observation, and see also that the conjecture of Puig is a conse-
quence of any of Properties 7.1 (a)—(d).

Corollary 7.5. Suppose one of Property 7.1 (a)—(d) holds for a block B. If B has non-
abelian defect groups, then there is a B-subgroup (Q,bg) such that I(by) > 1, and hence B is
not nilpotent. In particular, B is nilpotent if and only if I(bg) =1 for every B-subgroup

(Q7 bQ)

Proof. 1If (a) holds, then the result follows immediately from Lemma 7.4, since B is
not nilpotent and there is a B-subgroup (Q, by) such that /(by) > 1. If (b) or (c) holds, then
I(B) > 1, so B is not nilpotent, and we may take (Q,bp) = (1, B). If (d) holds, then this is
[30], Theorem 3. []

We prove a lemma which will be useful in establishing the given properties. Let H be
a finite group, K <H, Z < Z(H)nK and K := K/Z < H := H/Z. Let B € BIk(K) and
B € BIk(K) dominating B, and (Q, bgp) a B-subgroup. Let y : H — H be the natural homo-
morphism, and write X = y(X) for any X < H.

If Z is a p’-group, then (Q, bp) is defined in Section 2 and it is a B-subgroup. Suppose
Z is a p-group. Then y~!(C (Q)) < Nk(QZ) and y~' (Cg(Q))/Ck(Q) is a p-group. Thus
» "' (Cg(0Q)) has a unique block by covering by and we denote by by the block of Ci(Q)
corresponding to bQ, so that by [33], Lemma 1, (Q, bp) is also a B-subgroup.

In general, since K = (K/O (2))/(Z2/0,(2)) and Z/0,(Z) < Z(K/0,(Z)), it fol-
lows that (Q,by) is defined and is a B-subgroup.

Lemma 7.6. Let H be a finite group, K<H, Z < Z(H) " K. Define K :=K/Z
and H := H/Z. Let Be BIk(K) and B € BIk(K) dominating B. Suppose the B-subgroups
(P,g) < (R,b) satisfy Property 7.1 (ax), and suppose Z(K) = Z(K)/Z. In addition, if
Z = 0,(Z), then suppose, moreover that Cy(P)/Z = Cp(P) and Cy(R)/Z = Cg(R).
Then the B-subgroups (P,g) < (R, b) satisfy Property 7.1 (ax).

Proof. Let BjeBIk(H) covering B, and By € Blk(H) dominating Bj and
x € Irr(Bj), so that y covers some € Irr(B). But Irr(Bj) < Irr(By) and Irr(B) < Irr(B),
so By covers B.

Let / be the unique block of Z covered by B. Then each character y in Irr(B) covers a
character in Irr(f’). Since Irr(B) < Irr(B), it follows that f* is the principal block. Since
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(P,g) is a B-subgroup and Z < Z(K) and since B covers f, it follows that g covers f, and
similarly, b covers f. The same applies to By and to By-subgroups.

Since Ck(PZ) = (P), it follows that we may suppose O,(Z) < P. Let
¥ € Ney(p)(R) such that y* =1, [y,x] ¢ Z(K) for some x € R, y* € Cx(R), and suppose
N; and M are subgroups of H, and 0; € Irr(N;) for i = 1,2, such that M;/N; is abelian,

Z < Z(K) £ Ny x Ny £ Ck(R) £ Cy(R) < My o My,

0 covers 0 x 6, Zyn Ny =1, 0, has a y-stable extension 6, to M, and [v,x] =1 or in
ZyN; according as x € M| or M,, where Zy < Z(M,) n Z(M;) such that M, o M, is the
central product over Z; and 6 is the canonical character of b.

It suffices to consider the cases p-group and p’-group separately. Then by [33],
Lemma 1 (iii), and Lemma 2.5, (P,g) < (R,b) are B-subgroups. If Z is a p’ group, then
Ck(R)/Z = Cz(R). If Z is a p-group, then Cy(R)/Z = Cz(R), 7' (Cz(R)) = Cu(R)
and so y~!(Cg(R)) = Ck(R). Thus in either case

Ck(R)/Z = Cg(R) and D(b)Z/Z = D(b).
Similarly, D(§) = D(g)Z/Z, and D(g) = D(b) is abelian as D(g) = D(b) is abelian.

Let y = y(y), so that 3* =1, y € Cx(P) n Ng(R), y* € Cp(R). Since [y,x] ¢ Z(K)
for some x € R and since Z(K) = Z (K)/Z, it follows that [y, X] ¢ Z(K) and in particular,
V¢ Cg(R R).

Let N; = y(N;) and M; = y(M;). Then N; << M; and M;/N; is abelian such that
Z(K)<N1 XN2<C (R)<C ( )éMloﬂz,
where M| o M is the central product over Zy = y(Zy).

Since Z < Z(K) < N; x N, and 0 is the canonical character of b, it follows that 0 is
the lift of the canonical character 0 of b. Similarly, since @ covers 0; x 05, it follows that
Z <ker(0 x 0,) and 0; x 0, is the lift of 0, x 0, for some 0; € Irr(N;). In particular,
e Irr( 2(R)|0; x 05). If g e Irr(M; o M5 |0, x 6,), then by Lemma 2.7, ¢ =y o (6,4)
for some lp € Irr(M; | 01) and A € Irr(M>/ZyN>). Since [y, x] € N2Zy for all x € M,, it fol-
lows that 7 = 1 and so 6,4 is y-invariant. But Z < ker(¢p), so Zn M, < ker(@z/l) and 6,4
can be viewed as a character of Irr(M »), which is a y-invariant extension of ¢, to M. Thus
Property 7.1 (a%) holds for B.

Similarly, if (P,gn) < (R, by ) are By-blocks such that D(gy) = D(by) is abelian, and
gu and by cover g and b, respectively, then there exist Bj-subgroups (P,gz) < (R, b i)
such that gz is dominated by gy and bz is dominated by by and D(gz) = D(gu)Z /Z
and D(bj;) = D(by)Z/Z. Thus D(gz) = D(bj7) = D(by)Z/Z is abelian.

Since gy covers g, it follows that the canonical character 6y of gy covers the canoni-
cal character 0 of g. But 0y is the lift of the canonical character of §;; and 0 is the lift of the
canonical character of g, so g covers g. Similarly, b5 covers b. This proves that Property
7.1 (a) holds for (P,g) < (R,b). [
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8. Classical groups

Suppose p is odd. In this section we demonstrate that every nilpotent block of a clas-
sical group has abelian defect groups.

Proposition 8.1. Let K:=SL/(q) <H < G:=GL](q) =GL"(V), Z<Z(K),
B e BIk(K), By € BIk(H) covering B. Let Bg € BIk(G) be a weakly regular cover of
By. Write R:= A(D(Bg)) nK. Then Property 7.1 (ax) holds for some B-subgroups
(P,g) = (R,b) with Cy(P)/Z = Cz(P) and Cy(R)/Z = Ci(R), or Property 7.1 (b) or (d)

holds, where X = XZ/Z for any X < G. Moreover, if Property 7.1 (b) holds, then n = 3d
with ged(6,d) =1 and 3 || (¢ — 7).

Proof. Suppose B¢ is labelled by (s,x). Since By covers B, it follows that
D(B) = D(By) n K for some defect group D(By). There exists a defect group D(Bg) such
that D(By) = D(Bg) n H, so

D(B) = D(By) nK = D(Bg) nK and D(By) = D(Bg) N H.
We may suppose D(Bg) € Syl,(Cq(s)).

Suppose the decompositions V' = Vy L V., D(Bg) = Dy x Dy and s = sy X 54 are
given as in (6.1). Set Rg = A(D(Bg)). Then Ry and Cg(Rg) are given by (6.4) with R
replaced by Rg.

In the notation of the proof of Theorem 6.1, suppose each wr < (p — 1). Then D(Bg)
is abelian, and both D(B) and D(By) are abelian. Thus Property 7.1 (d) holds. So we sup-
pose that wy = p for some A. There exists y € Cg(s) N K such that y € Ng(Rg)\Cs(Rg),
1yl =4, yly, = ln, Yly. =1l for all T %A, and y swaps exactly two factors Ka of
CG(RG). Let Ry := R H and R = Rg n K.

Let Pg:= P(D(Bg)) be defined by (6.5), so that P; < Rg and we may suppose
yeCs(Pg)nK. Let P:=P;nK and Py =P;n H. Since wp = p, it follows that
|Q1(Pg)| = pP~!, and P is cyclic if and only if p =3, wa =3, wr =0 for all T #+ A and
P; £ K.

We claim that Cg(P) + Cg(Pg) if and only if Vo =0, p =3 =wa, wr =0 when
FC+An=¢ ar=0,ex=1and 3| (q— ¢). In particular, D(B) = 31*2 in this case.

Indeed, if wa > 3, then P is noncyclic and so C(P) = Cg(Pg). Thus wa = 3, and so
p = 3. If wr % 0, then P is also noncyclic and hence Cg(P) = Cg(Pg). Suppose p =3 = wa
and wr =0, so that |Q;(Ps;)|=3% Define ¢c=1 by 3°|(¢*™ —¢), and choose
pe [F;MaA with |B| = 3¢. Note that xg := 1y, X diag{~2,8,8} € P and so if ¢ > 2, then
C6(P) = Cg(Pg). Thus 3 (¢©™ —¢) and so ap = 0. Note that e=1 or 2 as p = 3. If
e =2, then we may suppose f € SLy(g), since SL>(¢) contains a maximal torus Z,,.
Thus det(f) = 1, P = P; and Cg(P) = Cg(Ps), a contradiction. So e =1 and 3| (¢ — ¢).
But

Z(G(V)) x Z(G(V+)) £ Z(Ca(P)),
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so 7 = &. Since 3| (¢ —#) and 1 = Dy = 03(G(Vy)), it follows that ¥y = 0. Similarly, since
Z(G) =24y = Z(Cg(s)) = Zyar_,,, it follows that ex = 1 and the claim holds.

Suppose Vo =0, p=3=wp, wr=0 when '+ A, n=¢, oo =0, en=1 and
3] (¢ —¢). Then

C6(P) = GL*(3da,q) = G,  Ci(Ps) = GL (da,q) x GL*(2dy, q),

so P=05(Z(G)) = 0s(Z(K)) =73 and P;= 05(Z(Cs(Ps))) =23. In addition,
Cs(s) = GL*(3,¢°) and D(Bg) € Syl;(GL*(3,¢°)). Since ap =0, it follows that
3||(¢°» —er), D(Bg)=173173 and |D(B)|=3% But 3172 eSyl;(SL*(3,4%)), so
D(B) = 3.

Write Dg = D(Bg), Dy = D(By) and D = D(B). Since [Dg: D] =3, it follows
that Dy =D or Dy = Dg. Note that Dg = {(Rg,o) for some permutation o of
order 3. So D =<(R,0), C5(Dg) = Cs(D) = GL*(da,q), Cs(Cs(D)) = GL%3,q) and
{Dg,y> < C(;(C(;(D)). Thus y centralizes Cg(D) and so y € Ng(D,bp), where (D, bp)
is a Sylow B-subgroup. Since Z(D) =< Z(K), it follows that B dominates a block
BeBIk(K/Z(D)), D(B) = D/Z(D) = 3% and y stabilizes the B- subgroup (D/Z(D) bp)
with |p| = 4, where y = yZ(D). In particular, B is non-nilpotent. But D(B) is abelian, so
l(b ) = 2 for some B-subgroup (0, Q) If Q =~ 73, then

Ckzp)(Q) = Cx(Q)D/Z(D) = (Cx(Q)/Z(D)).3,

where Q = (Z(K),w) for some w e D\Z(D) of order 3. Let By be a block of Cx(Q)D
dominating EQ and by € Blk(Ck(Q)) covered by By. Then D(by) = Q and the canonical
character 0y of bg is the only irreducible Brauer character of by. If ¢ is any irreducible
Brauer character of By, then ¢ covers 0p. But Cx(Q) contains a representative set of
the conjugacy 3'-classes of Cx(Q)D, so /(Bg) = 1. In particular, l(bQ) = 1. Similarly, if
Q = D/Z(D), then I(b ) =1. Thus if /(b;) = 2, then Q=1 and b= B. 1t follows that
I(B) = I(B) = 2, and hence Property 7.1 (b) holds.

Since p is odd, it follows that Cs(R) = Cg(Ry) = C6(Rg). Let x € G such that
for any u € R, there exists z € Z(G) such that x 'ux = uz. Then x~'ux = cu for some
¢ € 0p(F,2) and so x € Ng(R) = NG(Rg). If 4 is an eigenvalue of u in some algebraic clo-
sure of F,» and my_;(u) is the multiplicity, then ¢/ is also an eigenvalue of u with the same
multiplicity. In particular, my_1(u) = my_.(u). It follows that if we choose u € R such that
my_i(u) # my_.(u) for any c € F;, then x~lux = u. Since |Q;(R)| = p?~!, it follows that
x € Cg(R) and so CG(R)/Z = Cg/2(R/Z) for any Z < Z(G), except when p =3 = wj,
oa =0 and 3 || (¢ — &), in which case D(B) = 3172, If 3 ¥(g — 57), then e = 2 and as shown
above R = Rg, in which case we still have x € Cg(R). If 3| (¢ —7), then 3|| (¢ — 1), P = Z3
and Cg(P) + Cg(Pg), which is discussed above.

Similarly, C6(P)/Z = Cg/z(P/Z) for any Z < Z(G) when Cg(P) = Cg(Ps) (note in
this case that for any u € P, we have my_;(u) = 2 for some eigenvalue A).

Suppose Cg(P) = Cq(Pu) = C6(Ps) and Cg(R) = Cg(Rg) = Cg(Rp). Thus C6(R)
is regular in G and se Cg(R). Let (P,g) and (R,b) be B-subgroups such that
(P.g) = (R,D).
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Let (P,gn) < (R,by) be By-subgroups such that gy covers g and by covers b (see
the remark after the definition of Property 7.1), and (P, gg) < (R,bs) be Bg-subgroups
such that gg covers gy and bg covers by. By [12], Theorem 3.2, we may suppose
b = &,(Cs(R), (s)) and so by, = bg as y € Cg(s) N K. Now

bg = b(0) x l_r[b(l")wr,

where 5(0) is a block of Gy labelled by (so,x) with defect 0, and b(I") = &, (Kr, (¢r)) with 7r
the restriction of s to Kr. Note that if Ut is the underlying space of Kt and view fr as an
element of G(Ur), then we have mr(tr) = er. Thus for any generator xr € Rr,

Tr = CKl_(lr) = CG(Ur)(thF) = GLCr(l,qerér)
is a Coxeter torus of both Kr and G(Ur), and Rr = O,(Trt) is a defect group of bH(I').
In particular, R¢ is a defect group of bg. We may suppose D(b) = D(bg) N Ck(R) and
D(by) = D(bg) n H, so that D(b) = R and D(by) = Ry.

Since (P, gg) < (R,bg) and D(bg) < Cg(P), it follows that D(gg) = D(bg) = Rg and
so D(g) = D(bg) N Cx(P) = D(bg) N K = R is abelian. Similarly, D(gy) = Ry = D(by).

Let 6, 0y and O be canonical characters of b, by and b, respectively. Then 6
covers 0y and Oy covers 0. Now

O = 0(0) x 0(+), O(+) := l—r[ﬁ(r)wr, o) := iR[Tir(lr)

where Irr(b(0)) = {0(0)}. If Hr := Kr nS(Ur), then there exists an element xr € Kr
which permutes all the irreducible constituents of the restriction 6(I')|;, . Since wa = p, it

follows that (9(+)|CS(V+> (r,) 18 irreducible, where Ry = S(V) <];[(Rr)wr)
Let Ko = S(Vp) and K, = S(V), so that
Ck(R) = (Ko x Ckg,(Ry),uxy, ug =upx uy,
with uy € Go\Ko and u,; € Cg, (R4)\Ck, (R;). Note that
GO = <K07u0> and CG+ (R+) = <CK+ (R+)7u+>'
Let 0 and 6, be irreducible constituents of 0|, and 0|, (g,), respectively. Then
0 €Irr(Cx(R)[0p x 0.) and Og covers 0o x 0.. But O0(+)|c, (g, is irreducible, so
0, = 0(+)|CK+ (r,) and 0 has an extension 6(+) to Cg, (R). Applying Lemma 2.7 to
K() X CK+(R+) é CK(R) é Cg(R) = G() X CG+(R+)
(with Zy = 1), we have that 0g|c,g) = 0. In particular, 0g|c g is irreducible and so is

06|c,(r)- But O covers O, 0 06|, r) = 0. Thus 0" =0, 04, = Oy, b¥ = b and by, = by.
Note that 0p|c, gy = 0. Thus Property 7.1 (a*) holds. []
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Let 7 be a non-degenerate orthogonal or symplectic space, G = Ip(V') and let G* be
the dual group of G. Then

SP2,(9)" = SOm+1(q),  SO211(9)" = Spa,(q), 803,(q)" =S03,(q).
If B is a block of Iy(V), then there exists a semisimple p’-element s € Io(¥)" such that
B< &(I(V),(s)).

Let (D,bp) be a Sylow B-subgroup of Iy(¥'). Then V" and D have corresponding decompo-
sitions

(8.1) V=VyLV, D=DyxD,.

We have VO = CV(D), V+ = [V, D], DO = {1[/0} and D+ é 10(V+) Let G() = I()(Vo),
Gy =1 (Vy), Cy := Cyyr,)(D4) and let V* be the underlying space of Io(V)".

Let z € D be a primitive element. Then z € Z(D) with |z| = p (cf. [17], p. 176). Thus
(8.2) z=zyxzy, L:=Cg(z)=LyxLy, Lo=Gy, L;:=GL*m,q°),

where zp = ly,, z < D, and dim V; = 2em. Then L is a regular subgroup of G and we
may suppose s € L* < G*. In particular,

(8.3) V*=Uy L U, and s=spXs;,
where Uy = Vi, so € Ly = Ip(Uy), U, is the underlying space of L and s e L} < Ip(U.,).

Let Cyy,)(s+) = I Cr and let Ur be the underlying vector space of Cr, so that
r

(8.4) Cr = GL*" (mr(s+),¢°") or I(Ur)
accordingas '+ X +lorI'=X + 1.

Proposition 8.2. Ler K:=QJ (¢q):=Q"(V)<H<=<Jy(V), BgeBIk(K) and
By € BIK(H) covering Bx. Write R := A(D(Bk)). Then either Property 1.1 (ax) holds for
some Bg-subgroups (P,g) < (R, b) or Property 7.1 (d) holds, where P is some subgroup of R.

Proof. Let G := SO (¢q) := SO(V) and B € BIk(G) covering Bg. Then
D(Bx) =D K

for some defect group D := D(B). Since G is self dual, we have V =TV* U=V,
U+ = V+ in (83)

(1) Since |G : K| =2, it follows that D = D(Bg) and D = D(By)n G for some
D(By). In the notation above we have

Cx(z) £L=LyxL,.



28 An and Eaton, Nilpotent blocks of quasisimple groups for odd primes
Let Ko = Q(Vy), Kt = Q(V,4) and M :=SL?(m,q°) < Ly n K, so that
(85) M, = C[(+(Z+) <L, C]((Z) = {Kp x C](+(Z+), fo Xty

and [L; : Ck, (z4)] =2, where 1 € Ly\Kj and 7, € L. Let (z, B.) be a major subsection
of Bx. Then B. covers a block By x By of Ky x Ck,(z4) with By e BIk(K)) and
B, € BIk(Ck, (z4)) such that D(B.) = D(By x B,) = D. Note since [L, : C, (z)] <2, it
follows that D(B,) = Dy & 3172

By [15], Lemma 4.1, there exists a B-subgroup (z, By) such that B, covers B.. Thus
(z, Br) is a major subsection of B.

Let R := A(D), so that z € R and

R =D x l_l_[(Rr)er Cg(R) = SO(V)p) x I;I(Kr)”’r,

where Rr = O,(Kr), mr(s;) = wrer or 2wrer according as '+ X +1 or '=X + 1,
Kr = GL*(0f,¢"). Thus R = 0,(Cg(R)), CG(R) is a regular subgroup of G and we
may suppose s € Cg(R). Set R, = [[(Rr)"", so that R, < Ck_ (z4) and

r

K() X CK+(R+) é CK(R) é Cc;(R) = L() X CL+(R+>.
Let (R4, b, ) be a B, -subgroup, so that
(By % b+)K()><CK+(Z+> = By x B,

and b, € BIk(Ck, (Ry)) as Ck, (R;) £ Ck, (z4). Now Ko x Ck, (z) is normal in Ck(z),
R < Ky x Ck, (z4) and B: covers By x B,. It follows by [15], Lemma 4.1, that there exists
a B.-subgroup (R, b) such that b covers By x b, so that (R, b) is a Bx-subgroup.

Similarly, there exists a Bp-subgroup (R,b;) such that bg covers b. Thus
bG = gp(CG(R), (S)), R = D(b(;), and so R = D(b) = D(Bo X b+)

Since L = Lo x L, with Ly = Gy = SO(V)), it follows that B; = By, x By, with
By, € Blk(Gy) and By, € Blk(L. ). But By, covers B. and B. covers By x B, so By, covers
By and By, covers B.. In particular, D, = D(B,) = D(Br,). Similarly, bg = bg, X bg,
with bg, = By, € Blk(Gy) and bg, € Blk(CL+ (R+)), and bg, covers b..

Suppose D is non-abelian, so that wy = p for some A. Let P:=Dyx P, <R
and (P,g) < (R,b), where P, := P(D.) is given by (6.5). By Proposition 8.1, there exists
a B, -subgroup (P.,g.) such that (P,,g;) < (Ry,b;) and D(g+) = D(b;) = R,. By the
remark after Property 7.1, we may choose (P,g) such that g is covering By X g, so
D(g) = Dy x D(g+) = Dy x D(by) = D(b) = R.

In addition, there exists ye Cpr, (s+) N M, such that ye N¢, (p,)(R)\Cr, (Ry),
Iyl =4, y* e CL.(Ry), yly, = vy Y]y, = 1y, forall T =+ A and y swaps exactly two fac-
tors Kp of Cg(R). Since y € Cy, (s), it follows that (bg, )’ = bg, .
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Let O and 0 be canonical characters of bg and b, respectively. Then 0 covers 0,
0G = QG() X 0G+

with Irr(bg,) = {0g,} and 0, the canonical character of bg, . If Irr(By) = {0y} and 0. is
the canonical character of b., then g, covers 0. Since Cg, (Ry) = C¢y (z,)(R+), it fol-
lows by the proof of Proposition 8.1 that 0, = 0, |CK+ (R.) and ¢, = 0,.

Now
(8.6) Ck(R) = (Kp x Ck, (Ry),ugy, ug =up X ug,
with [Cg(R) : Ko x Cg, (Ry)] £ 2, where up € G and u, € Cr, (Ry). If
Ck(R) = Ko x Ck.(Ry),

then 0 =0y x 0, and 0" =0. If [Cx(R) : Ky x Ck, (R:)] =2, then Ly = {Ko,upy and
Cr.(Ry) =<{Ck, (Ry),usy. Now 0 € Irr(Cx(R) | 0 x 0,) and 0 € Irr(Cg(R) | 0) and 0,
has an extension 0. to Cp, (Ry), so by Lemma 2.7, 0G|, z) = ¢ and hence ¢" = ¢ and
A NK(R, b)

(2) Suppose K < H < Jy(V). Let (P,gu) < (R,by) be By-subgroups such that gy
covers g and by is covering b. Since Jo(V)/Z(Jo(V))K is a 2-group and p is odd, it follows
that D(gy) = O,(Z(H))D(g) = O,(Z(H))D(b) = D(by;) and both are abelian, and the
canonical character 8y of by covers 0. Now

Ko x Ck,(Ry) = Ck(R) = Cu(R) = Cpyr)(R) = Jo(Vo) x Cryrr)(Ry).

By [17], (1A), Cyyv,)(z4) = {Ly, 74 with [z, L] =1 and so Cyy,)(Ry) is a central
product Cr, (Ry) o {z». In particular, 0, has an extension g, to Cy(y,)(R;), and Og,
is also an extension of 0. Moreover, y stabilizes 0g,, since 0;, is a central product
0, o p for some f elIrr({ry)) and Ha =0g,. Since ye M, < K, and y normalizes
K., it follows that [y,x]e Ck, (R;)=Cr,(R:)nK, for any xeCr (R;). But
Crv)(Ry) = Cr (Ry) o<ty ), so [y,x] € Ck, (Ry) for all xe Cyyp,)(Ry). It follows by
Remark 7.3 that y stabilizes 0y and so by, = by. Thus Property 7.1 (a*) holds.

(3) Suppose wr < p for any I with mr(sy) + 0. Then D = D(Bg) is abelian, and so
D(By) = DO,(Z(H)) is abelian. Thus Property 7.1 (d) holds. []

Proposition 8.3. Let K := Qy,1(q) = Q(V) or K := Sp,,,(q) = Sp(V), and
K< H<Jo(V),
Bk € BIk(K) and By € BIk(H) covering Bk, where H = SO(V) when K = Q(V). Write
R := A(D(Bk)). Then either Property 7.1 (ax) holds for some Bx-subgroups (P,g) < (R,b)
or Property 7.1 (d) holds, where P is some subgroup of R.

Proof. Suppose V' is orthogonal. Replacing G by H in the proof (1) of Proposi-
tion 8.2 with some obvious modifications, we have that Property 7.1 (ax) holds for
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(P,g) < (R,b). Suppose V is symplectic, so that H/K is cyclic. Applying the proofs (1) and

(2) of Proposition 8.2 with some obvious modifications, we have that Property 7.1 (ax)
holds for (P,g) < (R, D).

If D(Bk) is abelian, then D(Bg) = D(By) n K for some D(By). Since the outer-
diagonal group of K is of order 2, it follows that

D(Bu) < KZ(H)
and so D(By) = D(Bk)O,(Z(H)) is abelian. []

Theorem 8.4. Let G = 1y(V), B € BIk(G), and (D,bp) a Sylow B-subgroup. Follow
the notation in (8.1), (8.2) and (8.3). Then the following are equivalent:

(a) B is nilpotent.
(b) Crry(D) = Go x Cy(p,\(Dy) is a regular subgroup of Io(V') and
s€ Cpn(D) = L*
satisfies the following conditions:

(1) Suppose Iy(V') = Sp,,(q) or SO2,+1(q). Then

mr(s+):{00rl ifl"zlz.XilandeMr,

0 otherwise.

(ii) Suppose Iy(V) = SOJ (q). Then
mr(s;) =0or1 if T'+ X + 1ande|or,
my_1(sy) +mxsi(s+) =00r2 if p[(q—e),
mr(sy) =0 otherwise,

where & is the type of the underlying space of (sy)y 1 when my 1(sy) +my1(sy) = 2.
(€) Crr)(D) = Go x Ciyy,\(Dy) is a regular subgroup of Io(V') and
se Cyn(D)" = L
such that T} = Cpy,)(sy) is a maximal torus of Io(U..). In particular, if 0 = 0y x 0, is the
canonical character of bp with 0y € Irr(Gy) and 0. € Irr(C..), then 0y has defect zero and

0, = iR%(er), where C,, = Cyy, (D) and T £ Cy is a dual of T7.

Proof. Suppose B is nilpotent. By Propositions 8.2 and 8.3, D is abelian, so
mr(sy) =erorOwhenI' + X + 1 and mp(s;) =2eorOwhenI' = X + 1.

Suppose mr(s;) = er =2 with I' £ X + 1. As shown in the proof of Theorem 6.1
there exists a p’-element tr € C}: of order er normalizing Dr := D n CY, so that there exists
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a p’-element of order er normalizing the Sylow B-subgroup (D, bp), a contradiction, so
er § 1 al’ld€|5r.

Suppose I' = X + 1, so that mr(s;) =2e or 0 and Cr = I(Ur).

Suppose, moreover that G = SOJ (¢), so that G = G*. Let A= X + 1 and suppose
ma(sy) = 2e. By [17], (1.14),

‘NI(UA)(<ZA>)/C1(UA)(ZA)’ = 2e.

If e = 2, then there exists ya € Ny v,)(<za>)\Cpy(v,)(2a) of order e, so that y, normalizes
the Sylow subgroup Dy of Cyy(y,)(za). Let yr = 1 € Iy(Ur) and y = 1y, x [] yr. Then
r

Ve (N(;(D) N C(;(s))\CG(D)

and y normalizes (D, bp). Since |y| = e # 1, it follows that B is not nilpotent, which is im-
possible. Thus e = 1, Iy(Ua) = SO?(2, q) with ¢ = n(U,), so p| (g — ¢).

Similarly, suppose

my_1(sy) = myy1(sy) = 2.

Since Q; (q) = SLa(¢?), Q; (¢) = SLa(g) o SLa(g) and SO; (q) = QF (¢).2, it follows that
there exists an element w € (Ng(D) N Cg(s))\Cg(D) of order 2 such that w e Ng(D, bp),
a contradiction.

If G =Sp,,(q) or SOz,:1(q), then by [17], (1.14), again, there exists an element
w € Ng(D)\Cg(D) of order 2e such that w normalizes (D, bp), which is impossible. Thus
my+1(s+) = 0 and (b) holds.

Suppose (b) holds. Then T7 := Cc:(sy) is a maximal torus of Io(U,) and so D is
abelian. Since Cg(D) is regular in G, we may suppose s € Cg(D)" and so

bp < &,(Cg(D), (s))-

Thus 6, = iR%(M) and 6 = 0y x 0, is the canonical character of bp, where 0y € Irr(Gy)
has defect 0. In particular, Ng(D, ) = Cg(D) and B is nilpotent. []

Proposition 8.5. Let K := Spin”(V') <« H such that H/K is abelian, Cy(K) < Z(H)
and H|/Z(H) <SO(V) or Jo(V)/Z(Jo(V)) according to dimV is odd or even. Let
B e BIk(K), By € BIk(H) covering B, and Z < Z(K) such that K. := K/Z = Q"(V), so
that |Z| = ged(2,q —n). Write R:= A(D(B)). Then either Property 7.1 (ax) holds for
some Bg-subgroups (P,g) < (R,b) or Property 7.1 (d) holds, where P is some subgroup of R.

Proof. Let D := D(B), G :=SO"(V) and Z, < Z(Dy(V)) such that

G=Do(V)/Z.,

sothat Z=Z, nKand Z, =7, ;.
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We may suppose D =DZ/Z < K.. Thus D is of defect type in K. where a
p-subgroup Q of K, is of defect type if Q is a Sylow p-subgroup of a centralizer Ckg.,(?)
of a semisimple p’-element ¢. So D is of defect type of G, and D has a primary ele-
ment z € Z(D) (see [17], Section 5). Thus we have the corresponding decompositions
V=VyLVy,D=DyxDy,z=1z2y%zy, Cg(z) = Lo x Ly given by (8.1) and (8.2). Since
K is universal, it follows by [20], Theorem 4.2.2, and [17], (2E), that

C:= CK(Z) = LcTc, LC = L1 X SLg(m,qe), L1 = Spln( Vo),

where T¢ is an abelian r’-group inducing inner-diagonal automorphisms on SL*(m, ¢¢)
and L,. Here for simplicity, we identify z with its preimage (with the same order) in K.
Since p is odd and D < C, it follows that D, nL; =1 and so LiL, = L x L,, where
L, =SL%(m,q°)D. < L. Let L=1L, x L, < C, so that C = LT¢. Let (z, B.) be a major
subsection of B, and B, = B; x B, a block of L covered by B., where B; € Blk(L;) and
B, € BIk(L,). We may suppose D(B,) = D1 N L, so that D(B;) = D,.

Suppose B, satisfies Property 7.1 (ax). Let Ry := A(Dy) < D(B2), R:= R X Ry,
P,:=P(Dy) <R, P=P; xP, <R and let (P,g;) < (R,b.) be BL subgroups where
Py =Ry =Dy. So gr=¢g1 X g, by = by x by with ¢g; = by = By, g2 bL2 B, and
D(by) = Ry, = D(g>). In addition, there exists y € (Nz,(R>) n Cp,(P>))\CL, (Rz) such that
y*=1, y> € C1,(Ry), and b} = by. Thus b] = by and D(b;) = R = D(gy).

(1) For te T¢ write t =111, such that [t1,f,]) =1 and #, induces inner-diagonal
automorphism on L,. Let J;={L;t;:t=tt, e T¢cy, so that C<J:=J; xJ, and
L, <J, £ L,. Let B; e Blk(J) be a weakly regular cover of B., (P,g) < (R,b) be B.-
subgroups such that g covers g, and b covers by, and (P,g;) < (R,b;) be B;-subgroups
such that g; covers g and b; covers b, so that g; covers g; and b; covers by.

If g5 = g5, x g5, and by = by, x b,, for some

dJ; € Blk(CJ,(Pl)) and le. € Blk(CJ[(Rj)),

then g;, covers g» and b;, covers b, and by Proposition 8.1 and its proof (1),

D(gs,) = D(by,) is abelian 0, ], (R = =0, and 0} = 0;,, where 0, and 0; are canonical
characters of by, and b;, respectlvely Thus D(g;) = D(by) is abelian. But P < R < D(g,)
and D(g,) is abelian, so

D(g) = D(gs) 0 Ck(P) = D(97) nK = D(b;) n K = D(b;) n Cx(R) = D(b),

which is also abelian. In addition, as shown in the proof (1) of Proposition 8.1, 6, has an
extension to Cr, (R»).

Let 0; and 0 be canonical characters of b; and b, respectively, so that 0y = 0;, x 0y,
covers 0, 0 = 0; and 0 € Irr(Ck(R) | 01 x 0,). Applying Lemma 2.7 to

Ly x CLQ(R2) = CK(R) = Ji x CJz(R2)

we have that 0J|CK<R) =60,s06” =0 and b’ = b.
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(2) If ¢ is even, then the outer-diagonal group of K is trivial, so we may suppose
q is odd. Let (P,gn) < (R,by) be By-subgroups such that gy covers g and by covers

b. Then by is a block of Cy(R) and R = D(by) n Ck(R) for some D(by). Since H in-
duces inner-diagonal automorphisms and since the outer-diagonal group of K is a
2-group, it follows that D(by) < RZ(H) and D(by) = RO,(Z(H)) is abelian. Similarly,
R = D(b) = D(g) = D(gu) n Cx(P) and D(g9n) = RO,(Z(H)) = D(by).

Now z e K < Dy(V), so by [17], (2E),

CDO(V)(Z) = DQ(V()) OZ,+, CDO(V)(Z)/Z+ = CG(Z) and C = CDO(V)(Z) ﬂK,
where L, is a central extension of L, by Z..

To show that b}, = by we may suppose

H/KZ(H) = Jo(V)/K.Z(Jo(V)) = Outdiag(K),

so that H/KZ(H) is a 2-group. Let t € Cy(z)\Ck(z), so that t* € Cx(z)Z(H). In the nota-
tion of [20], Table 4.5.2, ¢ induces an element of C* := Ciypdiag(k) (ZZ (K)) (note here C* is
not the dual group of C). But C*/C°* is a p-group, so ¢ induces an element of C°* and
hence ¢t € Cx(z)Z(H). Thus

Cy(z) =<Ck(2), Xy, ty), Xy =Xx1X2, tyg =1t

where x; € Dy(V)) and x; € L., and 15 centralizes L. . So

(Ck(2), x> £ {1, x1) 0 (o, x2) < Do(Vo) o Ly
Let Hy = {Jy,x1,tgy and Hy = {J, X, so that
Ly x Ly £ Ck(z) £ Cy(z) £ Hyo H,.
It follows that
(8.26) Ly x Cpr,(Ry) = Ck(R) £ Cy(R) £ Hyo Cyy(Ry).

By [20], Table 4.5.2,
l:+ = (Z X Lyo Zq,g)<X+>

where x; induces an outer-diagonal automorphism of order dividing ged(m, g — ¢) on L,.
Thus Cp,(Ry) = (Z x Cp,(R>) 0 Zy—;){y>» for some y, € L. inducing an outer-diagonal
automorphism on L,. View 6, as character of Z x Cr,(Ry) with Z < ker(6,). Now
Cr,(R2) £ Cyy(R2)/Z = Cp, (Ry). As shown in the proof (1) of Proposition 8.1, 0, has an
extension 6, to Cp,(R2)/Z such that 6] = 6,. By Remark 7.3, 0}; = 0y and b}; = by. Thus
the Property 7.1 (ax) holds for (R, b).

Suppose B, satisfies Property 7.1 (d), so that D(B,) is abelian. Thus D, and so D(B)
are abelian. Since D(B) = D(By) n K for some D(By), it follows that D(By) < KZ(H)
and D(By) = D(B)O,(Z(H)) which is abelian. []
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Theorem 8.6. Let K be a finite quasi-simple group of classical type over a field [,
and B e BIK(K), and let K<t H such that H/K is abelian, Cy(K) < Z(H), H induces
inner-diagonal automorphisms on K and By € BIk(H) covering B. If p|q, then either
D(B) = D(By) is cyclic or I(B) = 2. Suppose p X q and p is odd. Then one of Properties
7.1 (ax), (b), (c) and (d) holds. In addition, if Property 7.1 (b) or (c) holds, then p =3,
K =SL"(3d,q)/Z for some Z < Z(SL"(3d,q)) with ged(6,d) = 1 and 3 || (¢ — 7).

Proof. We will follow the notation of [20]. In particular, K, denotes the universal
group with the same type as K. If p|g and D(B) is noncyclic, then D(B) is a Sylow sub-
group of K and /(B) = /(By) with principal By := By(K) € Blk(K). But By dominates the
principal block B of K/Z(K) = K, and /(B) + 1 is the number of p’-conjugacy classes of
K,, so I[(By) = [(B) = 2. Suppose p .k q.

If K = AJ/(q), then set K = K, = SL (g) < GL/,(q), so that K = K/Z for some
Z <Z(GL!, ,(g)) n K. We may take H < GL!', | (¢) such that H = H/Z.

If K=B,(q9) =K, = an+1( ), then set K= Qoui1(q) = H< SOzK,H(q) such that
H=H/Z If K = B,(q) = K, = Spiny,;(q) = Spin(V), then take K = K < H = H such
that H/Z(K) < SO(V).

If K= Cy(q), then we may take K =Sp,,(q) = Sp(V) £ H < Jo(V) such that
H=H/Z.

Suppose K = DJl(q) with (n,57) = (2k 4 1,+) or (2k, —). If K = QJ (¢) = Q(V), then
K=K<H=HZJV).If K = PQ},(g) = PQ(V), then take K = an(q) < H < Jy(V)
such that H = H/Z. If K = Spin} (q) = Spin(V), then take K = K <« H = H such that
H/Z(K) = Jo(V).

Suppose K = D5, (¢) with ¢ even. Then K = H and we may take K =H = H. Sup-
pose K = D3 (q) w1th q odd, so that Z(K,) = {1,z,z,z.} and K,/Z = Q. (q), where
Z ={z). IfK Q. (q) = Q(V), then take K = K < H < Jo(V). If

K = PQj(q) = P(V),

then take K = Q(V) < H < Jo(V’) such that H/Z=H. If K = Spiny, (q)/Z' for Z' = {z,)
or {z.», then we may take K = Spin; (¢) = Spin(V') < H < Dy(V) such that H = H/Z'.
If K = Spiny, (¢) = Spin(¥), then take K = K and H = H.

Let B € Blk(K) dominating B and By € Blk(H) dominating By, so that By covers B.
By Propositions 8.1, 8.2, 8.3 and 8.5, one of Properties 7.1 (ax), (b) or (d) holds for B.

If Property 7.1 (ax) holds for B, then there exist B-subgroups (P,g) < (R, b) satisfy-
ing Property 7.1 (ax). By Lemma 7.6, Property 7.1 (ax) holds for some B-subgroups
(P,g) < (R, D).

Suppose Property 7.1 (b) holds for B. By Proposition 8.1, K = SL! (¢), ( B) = 31+2
and n+ 1 =3d with ged(6,d) =1 and 3| (¢ —#). In particular, Z(D(B)) = 05(Z( ))
and we may suppose D(B) < D(B)Z/Z. If 05(Z(K)) £ Z, then D(B) = Z3, D(By) = 3?
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or Z3173/05(Z(K)) =31+ and (c) holds. If Z is a 3'-group, then D(B) = D(B) and (b)
holds.

If Property 7.1 (d) holds for B, then D(B) and D(By) are both abelian. Since
Z < Z(H) nK, it follows that D(B) = D(B)Z/Z and D(By) = D(By)Z/Z, and so D(B)
and D(By) are both abelian. []

9. Exceptional groups

Suppose p is odd. We will follow the notation of [20]. In this section we demonstrate
that every nilpotent block of an exceptional group of Lie type has abelian defect groups.
We first prove a simple lemma.

Lemma 9.1. Let J; be a finite group and P; a p-subgroup of J; such that
Cjz(Pi/Zi) = Cp(P)/Z; for i=1,2, where Z;i=0,(Z(J;)). Let J=J xJ,
P =P x Pyand Z < O,(Z(J)). Then

C)(P)/Z = Cyz(P/2Z).
Proof. Let Z, =Z, x Z, = 0,(Z(J)). Then
Criz.(P/Zy) = Chyz,(P1/Z1) X Cyyz,(P1/Z1) = Cp,(P1)/Z1 x Cp,(P2)/Zy = Cy(P)/ Zs.

It is clear that C;(P)/Z < Cy/z(P/Z). If xZe Cjjz(P/Z) for some xeJ, then
xZ,€Cyz, (P/Zy) and so xZ, = (x1,x2)Z, for some x;e C;(P;). In particular,
x = (x1,x2)x; for some x, € Z,. Since Z, < C,;(P), it follows that x € C,(P) and hence
C12(PI1Z) = Cy(P)/Z. O

The lemma will be applied to a central product J; o J; as J; o J, = (J; x J2)/Z for
some Zy < Z(J1) nZ(J2).

Theorem 9.2. Let K be a finite quasi-simple group of exceptional type over a field [F,,
let B e BIk(K), and let K < H such that Cy(K) < Z(H), H/K is cyclic, and H induces
inner-diagonal automorphisms on K. Let By € BIk(H) be a block covering B. Choose (as we
may) defect groups D(B) and D(By) of B and By respectively such that D(B) = D(By) N K.
If p| q, then either D(B) = D(By) is cyclic or [(B) = 2. If p ¥ q and p is odd, then one of the
Properties 7.1 (a), (b) and (d) holds.

Proof. If plgq, then a proof similar to that of Theorem 8.6 shows that either
D(B) = D(By) is cyclic or /(B) = 2.

Suppose p £ ¢. Let K, be the universal group, so that K = K,,/Z for some Z < Z(K,,).
Since Z(K,) is cyclic of order 1, 2 or 3, it follows that H induces the trivial action on
Z(K.,).

Before beginning the proof proper we introduce some notation.

Write D := D(B). If Z(K) + Q(Z(D)), then take z € Z(D)\Z(K) with |z| = p. If
Z(K) =Q(Z(D)) (so in particular p =3), then take ze D such that |z| = p? and
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zZ(K) e Z(D/Z(K)). Let (z, B.) be a B-subsection, which we choose to be major in the
case z € Z(D) (that such a major subsection exists is [2], 4.15). In the case that z € Z(D),
we may further choose (z, B.) so that B. (a block of C := Ck(z)) has defect group D. By
[20], Theorem 4.2.2, C = 0" (C)T, where 0"’ (C) is a central product
0" (C)=LioLyo---o0L,

with each L; € ZLie(r), and T is an abelian r’-group inducing inner-diagonal automor-
phisms on each L;. In general, it may be the case that z ¢ 0" (C). We introduce some
more notation as follows to allow for this inconvenience: If Z(C) < 0" (C), then define
s:=/and L:= 0" (C).If Z(C) £ 0" (C), then define s =/ + 1, L, = Z(C) and

(9.1 L:=Liolyo---0L,
In all cases C = LT, ze L and L <aC. Let By be a block of L covered by B.. There are
uniquely defined blocks B; € Blk(L;) such that if y elrr(B;) with y =y, 0--- 0y, for
some y; € Irr(L;), then y; € Irr(B;). We write

BL:BI OBzO“-OBS.

Each element ¢ € T has the form ##, - - - t,¢/, where ¢’ centralizes L and ¢; induces an
inner-diagonal automorphism on L; and [L;, ;] = 1 for i + j. Let

T =<{t':t=t1th---tyot' e T,
and
(9.2) Ji=LLiti:t=tty---t;'eTy, and J:=JjoJro---oJyoT'

Then LT <uJ and T' is abelian. Let By be a block of J covering B., so that By covers By.
Thus

BJ:BJIOBJZO"'OBJ\-OBTU

where By, € BIk(J;) covering B; and By € BIk(7'). Note that if C;,(L;) < Z(L;) for all i,
then the central product J is over a subgroup of Z(L).

Case 1. Suppose each B; satisfies Property 7.1 (d). Then each D(Bj,) is abelian and
so is D(By). Thus D(B.) = D(B;) n C is abelian.

Case 2. Suppose L is a direct product of L;’s, Cj,(L;) < Z(L;) for all i and some B;

satisfies Property 7.1 (a*). Without loss of generality, take j = 1. In addition, suppose each
L; is classical and universal (or Ly = Z(C)). Thus

(9.3) L=Lx - -xL,<C<aJ=J x---xJ;xT.

We now define R;. If L; = SL”(V}), then denote G; = GL"(V;) and let Bg, € Blk(G))
be a weakly regular cover of By, and R; := A(D(Bg,)) n L;. If L; is not linear and unitary,
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thenset R, = 4 (D(Bi)). In addition, let (R;, b;) be a B;-subgroup, and note that (R;, b;) is a
Sylow B;-subgroup when D(B;) is abelian. Let

R =R x---xR;<L, bp:=by x- - xby,

so that (R, by) is a By -subgroup. Since z € O,(Z(L)) and R is abelian, it follows that z € R
and R < C. By Propositions 8.1, 8.2, 8.3 and 8.5, each defect group D(b;) of b; is abelian.
Let (R, b.) be a B.-subgroup such that b. covers b,, and (R, b;) be a B;-subgroup such that
by covers b., so that b; covers b; and

(94) bJ:b‘]lX"'XbJJXBTf

where each by, covers b;. By Propositions 8.1, 8.2, 8.3 and 8.5 again, each defect group
D(by,) is abelian, so defect groups D(b;) and D(b.) of b; and b. respectively are both abe-
lian, since we may suppose D(b.) = D(b;) n C. Note in the proof above that (R, b.) can be
any B.-subgroup such that b. covers b;. Later we will choose a special such B.-subgroup.

Suppose further that B satisfies Property 7.1 (ax) in Propositions 8.1, 8.2, 8.3 or 8.5
for Bj-subgroups (Py,g1) < (Ry,by). Let

S

N N S
Ly =1L, Ry:=][R, P=P xRy, ngglx(Hbi>7 J+:<HJi>XT/7
i=2 A

i=2 i=2
so that

CL(R) = Cp,(R1) x CL (Ry) = Cc(R) = Cp(Ry) x Cr(Ry), and  (P,g1) = (R,by).

Since B. covers By, it follows that there exist B.-subgroups (P,g.) < (R,b.) such that g.
covers g; and b, covers by. Let (P,g;) < (R,by) be B;-subgroups such that g; covers g.
and b, covers b.. Thus g, covers gy, by covers by and gy = gy, X -+ X gy, X Br:. In partic-
ular, g;, = by, for i = 2, where b, are given in (9.4). By Propositions 8.1, 8.2, 8.3 and 8.5
again, each D(by,) is abelian and D(g,,) = D(by,), and hence D(g;) = D(by) is abelian and

D(g.) = D(g;) n C = D(b;) n C = D(b.).

Let 6; be the canonical character of b; and 0, = [] 6;, so that 6 := 6, x 6, is the
iz2
canonical character of ; and the canonical character 0. of b, covers 0.

Since (P1,91) < (Ry,b;) satisfy Property 7.1 (ax), it follows that there exists
y€Nc, (p)(R1,b1)\Cr,(Ry) such that y*=1, y>e Cr,(Ry) and [y,x] ¢ Z(L,) for some
X € R;. Moreover, there exist subgroups N; <1 M; of J;, and characters ¢, € Irr(N;) for
i = 1,2 such that M;/N; is abelian,

Z(Li) SN x Ny = Cp,(R1) £ Cj(Ry) £ M oM,

01 covers ¢; X ¢y, Z NNy = 1, ¢, has a y-stable extension ¢, to M, and [y,x] =1 or in
ZN, according as x € M, or M,, where Z < Z(M;) n Z(M,) such that M, o M, is the
central product over Z.
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Let Ny = Ny x Cr,(R}), M) := My x Cy_(R,), and ¢5 = ¢, x 0. Then M,/N, and
M; /N are abelian,

Z(C) £ N3y x Ny £ Cc(R) £ Cy(R) £ Mj 0 M,

¢, has an extension ¢, to M, which is y-invariant, [y, x] = 1 for any x € M}, [y, x] € ZN;
for any x e M», Mo M} is a central product over Z and 0. € Irr(Cc(R) | 45 x ¢,). By
Remark 7.3, 0] = 0., and so by = b.. If [y, x] € Z(C) for all x € R, then

[v,x] e Z(C)n Ly = Z(L;) forall xeRy,

which is impossible. Thus [y, x] ¢ Z(C) for some x € R and Property 7.1 (a%) holds for
(P,g-) < (R,b.) (with H := K).

Case 3. Suppose that K := 2B(22%1),2G,(3%+1), 2F4 (221, Ga2(q), *Da(q), Fa(q)
or E;¢(¢q) with ¢ = ¢ mod 3, and B € BIk(K). Then B satisfies one of Property 7.1 (ax), (b)
or (d).

In each case K = K,, and z induces an inner automorphism on K, so it follows that
each L, is a classical group (or possibly L is abelian). Hence by the results of Section 8
each B; satisfies one of Property 7.1 (ax), (b), (c) or (d).

Case 3.1. Suppose B; satisfies either Property 7.1 (b) or (c) for some i. With-
out loss of generality, take i =1. By Theorem 8.6, p =3, L =SL*(3d,,q1)/Z for
some Z < Z(SL*(3d1,q1)), ged(6,dy) =1 and 3||(q1 —¢). By [20], Table 4.7.3A,
(q1,€1) = (¢,¢) or (¢%,1) and (K, C) are given in Table 2, where L, := SL}(q).

K C K C

3D4(Q) (Zq2+zzq+l o LS)'3 G2(Q) L,

2F, (22 SU;(22m+1) Fi(q) (L;oL,).(3:3)

EgC(Q) (Ls o SL3(q2))'(3 : 3) Eg(Q)u (Ls X Lo Ls)-(3 13 3)
Eq(q), (L: o SLg(q)).(3 :3) Es(q) (E¢(q),0L:)-(3:3)

Table 2. Possible (K, C) with some B; satisfying Property 7.1 (b) or (c).

Case 3.1.1. If K = G(q) or 2F4(2*"*1), then s = 1 and L = C and
B. = B = By(L),
s0 B = By(K) with D(B) = 3\™2. In particular, /(B) = 2.
Case 3.1.2. Let K = 3Dy(q), so that C = Zy(ypssqi1y ¥ He, where H, = Ly, x) with
x inducing outer-diagonal automorphism of order 3 on L,. So D(B.) = Z31Z3 € Syl;(C)

and we may suppose D(B.) € Syl;(G,), where G, = GL3(g) contains H,. Let

R, = A(D(BZ)) = (23)3 and P, =<{Z(L,),diag{l,w,w}> <R,
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such that [w| = 3 in F5. Then Cq,(P,) = Z,—, x GL}(g) and Cg,(R,) = (Z4—,)’. Thus

) X CH&(PS).

(q*+eq+1 24eq+1

Z% ) X CHS(RS) = Cc(Rs) é Cc(PS) = Z%w
As shown in the proof of Proposition 8.1 the B.-subgroups (P, g) < (R;,b) satisfy Prop-

erty 7.1 (ax).
Note that in the notation above
Ce,(P;)/Z = Cg,)2(P;/Z) and Cg,(R;)/Z = Cg,/z(R./Z) forany Z < Z(L,).
Let b, € Blk(H,) and B, € BIk(G,) covering b,, so that
D(b,) = D(B,) n H, = D(B,).

Thus D(b;) € Syl;(Cg, (1)) for some semisimple 3’-element ¢ In particular, D(b,) is
either abelian with |D(b;)| =9 and D(b,) £ L, or D(b,) = Z3!Z3. In the former case,
Cq,(D(b))/Z = Cg,y2(D(b:)/ Z) for any Z < Z(L,).

Case 3.1.3. Suppose K = E;%(q) or F4(q) and L; = L,, so that C = {L; o L), x),
where L, = L, or SL3(q2), and x = x|x; such that each x; induces outer-diagonal automor-
phisms of order 3 on L;. Let J; = {L;, x;» and By, € Blk(J,) covering B,. Let R; = R, < J|,
Py =P, <Ry and P, =R, = A(By,), so that by the remark of Case 3.1.2 above,
Cr(Pi)/Z = Cyz(Pi/Z) and C;(R;)/Z = Cjz(Ri/Z) for any Z < Z(L;). By Lemmas
9.1 and 7.6, we may suppose

LZL]XL2§C<J:=J1XJ2.

Let R=(Ry X Ry))nC, P=(P; x P,)nC and let (P,g) < (R,b) be B.-subgroups,
so that 7;(P) = P, and n;(R) = R,, where 7; is the natural projection form J to J;. A proof
similar to that of Case 2 shows that (P, g) =< (R, b) satisfy Property 7.1 (ax). If K = E;*(q)
and L; = SL;(¢?), then L, = L, and a similar proof shows that Property 7.1 (a*) holds for
some B-subgroups (P,g) < (R, b).

Note that
Cs(P)/Z = Cy/z(P/Z) and C;(R)/Z = Cj;z(R/Z) forany Z < O3(Z(L)).

Case 3.2. Suppose that each B; satisfies either Property 7.1 (ax) or (d). By Case 1,
we may suppose, moreover that B satisfies Property 7.1 (ax). In particular, a Sylow
p-subgroup of L; is nonabelian.

Case 3.2.1. Suppose p = 5, so that z is of parabolic type. By [20], Theorem 4.2.2 (f),
0" (C) is a direct product and each L; is universal. In addition, if a Sylow p-subgroup of L,
is nonabelian, then / = 1 or 2 and each L; is universal.

Suppose 7 = 1, so that s = 1 or 2. Since B; satisfies Property 7.1 (ax) and Ly = Z(C)
when s=2, it follows by Lemma 9.1 that we may suppose L=L; x L, and
Cy (L) £ Z(Ly).
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Suppose # = 2, so that s =2 or 3. Since L; has a nonabelian Sylow p-subgroup, it
follows that L, has an abelian Sylow p-subgroup and, moreover L, n O, (Z(C)) =1.
Since the central product L; o L, o L is over a subgroup of Z(C), it follows that each
p-subgroup of L, satisfies the assumption of Lemma 9.1. Since B; satisfies Property
7.1 (ax) and L; = Z(C) when s =3, it follows by Lemma 9.1 that we may suppose
L=1LyxLyx Ly and Cy,(L;) < Z(Ly).

By Case 2, B satisfies Property 7.1 (ax).

Case 3.2.2. Suppose p = 3, so that C is given by [20], Table 4.7.3A. Thus either
/=1 or /=2 with C given by Table 2. In addition, each L; is also universal for
1 é I é ¢ and CJ’.(L[) é Z(L,)

A proof similar to that of Case 3.2.1 shows that we may suppose (9.3) holds and by
Case 2, B satisfies Property 7.1 (ax).

Case 4. Let 3|(q—¢), K=K,=3.Ei(q) = E:=3.Ei(q).3, BeBIk(K) and
Bp € BIK(E) covering B. Either Property 7.1 (ax) holds for some B-subgroups
(P,g) < (R,b) with Cg(P)/Z = Cg/z(P/Z) and Cg(R)/Z = Cg/z(R/Z) for Z < O,(K),
or Property 7.1 (d) holds for B.

Let D := D(B) and m* := ged(m, q — ¢).

If some B; satisfies either Property 7.1 (b) or (c), then p =3 and C is given by
Table 2. A proof similar to that of Case 3.2.2 shows that Property 7.1 (ax) holds for some
B-subgroups (P, g) < (R,b).

Suppose some B; satisfies Property 7.1 (ax). Since z is parabolic or of equal-rank type
and z induces an inner automorphism on K, it follows that each L; is classical. We first
show that there exist B-subgroups (P,g) < (R,b) and y satisfying the Property 7.1 (ax)
with H := K.

If p =5, then z is parabiloc. A proof similar to that of Case 3.2.1 shows that the
Property 7.1 (a%) holds for B-subgroups (P, g) < (R, g).

Suppose p = 3. By [20], Table 4.7.3A,
Ck(z) = (SL3(g) x SLi(q) 0 SL3(9),3:3:3),  (SLg(q) o2- (¢ —¢)).2",

Sping (¢) 02+ ((¢ — &) x (g — €)).(2* x 2%), Spin{y(g) o (g —&).(2* x 2;) (when g = & (mod9))
with 27 =1 or 2* according as ¢=— or +, or (SLy(g) x SLi(g)) o (¢ —€).2* (when
q = ¢ (mod9)).

Thus/ =1,2 or 3. If / = 1 or 2, then a proof similar to that of Cases 3.2.1 and 3.2.2
shows that the Property 7.1 (ax) holds for B-subgroups (P,¢g) < (R, g). If / = 3, then each
L; =SL5(¢q) and Cj,(L;) < Z(L;). A proof similar to that of Cases 3.1.3 shows that we
may suppose (9.3) holds and by Case 2, the Property 7.1 (ax) holds for B-subgroups

(P,g) = (R,9).
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If all B; satisfy Property 7.1 (d), then by Case 1, D(B.) is abelian.

Now we prove the rest of Property 7.1 (ax) with H = E. Suppose (P, gr) < (R, bg)
are Bg-subgroups such that gz covers g and bg is covering b.

Case 4.1. If p =5, then D(b) = D(bg), D(g9) = D(gg), and so D(gg) = D(bg)
is abelian. Now Cg(z)=C or {(C,x) for some xe E\K. If Cg(z)=C, then
Cg(R) = C¢(R). Applying the proof of Case 2 we have that

(9.5) Z(C) SN, x N> = Cc(R) = Cey(5)(R) = M3 0 M.

Suppose Cg(z) = (LT, x) for some x € E\K, so that x induces inner-diagonal auto-
morphisms on each L;. Thus x = xx; - - - x;x’. Replacing J; by <J;, x;> and T' by {T’,x">
in the proof Case 2 with some obvious modifications, we have that (9.5) still holds. Thus
Property 7.1 (ax) holds for B-subgroups (P,g) < (R,b) (with H := E).

Case 4.2. Suppose p = 3. By [20], Table 4.7.3A,

Cr(z) = (SL§(g) x SL5(q) o SL5(¢),3:3:1,1:3:3),  (SL{(q) o2+ (g —¢)).(3 x 2%),

Sping (¢) 02+ ((¢ — &) x (¢ —¢)).(2* x 2* x 3),  Spinjy(g) o (¢ —¢).(3 x 2* x 27)  (when
g = ¢ (mod9)) with 2 = 1 or 2* according as e = — or +, or

(SL2(g) x SLS(g)) © (g —#)-(2" x 3)
(when ¢ = & (mod9)).
Suppose
Ce(z) = (SL3(q) x SL3(q) o SL3(q), £, x), so that L = SL5(q) x SL3(q) o SL3(q),

T =<ty <K with ¢ induces 3:3:3 on L, and xe€ E\K induces 1:3:3 on L. Let
L, = SL;(Q) < G;:= GL;(C]), =1 Xt X 13, X=X X X3 X x3 with ¢;, x; acting on L; and
centralizes L; when i# j. In addition, let H; = {L;t;,x;», so that H; < G;. Let

S=Ly XLy = SL5(¢) be a maximal torus, and S x S o3 .S < L. Since
Corig)(S) = Zge X Ly X Ly,

is a maximal torus, it follows that 4 := Cg(S x S o3 S) is abelian such that 4 N K =~ 2278
is a maximal torus of K and A/(A4 n K) = Z3. In particular, we may suppose ¢, x € 4 and
Cg(z) = LA with abelian 4 and L <1 Cg(z).

Similarly, if Cg(z) = (SL{(q) x (g —¢)).6*, Sping (¢) o2 ((¢ — &) x (g — &)).(2* x 6%),
Spinjy(¢) o (¢ —€).(6* x 27) or (SLa(g) x SLE(¢)) o (g —¢).6%, then A < Cg(z) and so
Cg(z) = LA with abelian 4 and L <t Cg(z), and 4 induces inner-diagonal automorphisms
on each L;.

A proof similar to that of Case 2 with LT replaced by L4 and some modifications
shows that D(gg) = D(bg) is abelian, and hence Property 7.1 (ax) holds.
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Case 4.3. Suppose p=3 and Z=Z(K). If Cg(z)/Z = Cgz(zZ), then
Cp(P)/Z = Cg/z(P/Z) and Cg(R)/Z = Cg/z(R/Z). Suppose Cg(z)/Z #+ Cg/z(zZ). By
[20], Table 4.7.3A, either L = L; o L, with L; = Sping (¢) and L, = Z(C) = Z— X Z,-,
or L=1L,x L,oL, <K.In the former case,

Cr/z(2Z) = (Cg(z)/ Z,wZ>,

where w € E such that w = y : w, that is, w acts on L, as a graph automorphism of order 3
and (h, 1) = (ha, (hiha) ") for any (hi,h2) € L. Now

O3(Ly) = 03(Zy—) x 03(Z4—;) <P and Z(K) = {(x,x): x€Q(0s(Z,-))} < Z(C).

Suppose i€ E such that for any ue P we have h~'uh = cu for some ce Z(K) and
suppose /1 ¢ Cg(z). Then we may suppose h=tw for some te Cg(z), and so
(1,)" = (1,hy)” = (hy,1) for any hy e O03(Zy-:)\{1}. But (hy,1) % ¢(1,hy) for any
ce Z(K), which is a contradiction. Thus /€ Cg(z) and so Cg(P)/Z = Cg/z(P/Z).
Similarly, Cg(R)/Z = Cg/z(R/Z). If L=L,xL,0oL,, then L/Z=L,oL,oL, and
Cgiz(zZ) =<L/Z,tZ,xZ,wZ), where t, x are given above and we E\K permutes
transitively the three components L, of L. The proof in this case is similar. Suppose
h e E such that for all ue P, h~'uh = cu for some c € Z, so that hZ e Cg/z(zZ). Since
1Q(P)| =2 3% and C;(P)/Z = C;;z(P/Z), it follows that h € Cg(z) = {L,x, ) and hence
Ce(P)/Z = Cy/z(P/Z). Similarly, Cg(R)/Z = Cg/z(R/Z).

Case 4.4. Now we prove the rest of Property 7.1 (d). Suppose Property 7.1 (d) holds
for each B; and suppose D n K = D for some D = D(Bg), so that D(B;,) is abelian and
so is D(B.) = D(By) n C. If B. is a major subsection, then D = D(B.) is abelian. If p > 5,
then Dy = D. Suppose p =3 and there exists x € Z(Dg)\D. Then x € E\K, x € Cg(D)
and Dg = <{D,x) is abelian. If Z(Dg) < D, then take z € Z(Dg) with |z| =3, so that
Dg < Cg(z) = LA. A proof similar to that of Case 1.2 with some obvious modifications
shows that Df is abelian.

Suppose ze D with |z|=9 and zZ(K)e Z(D/Z(K)). By [20], Table 4.7.3A,
91(q—¢) and Cg(z) = Spinjy(q) o (g —¢).(6* x 27) or (SLa(g) x SLi(q)) o (¢ —¢).6".
In this case, Cg/zx) (ZZ (K)) is also given by [20], Table 4.7.3A, and we have
Cx/z(x)(2Z(K)) = Cx(z)/Z(K). Thus D/ Z(K) < Ck(z)/Z(K) and D < Ck(z). In particu-
lar, z € Z(D) and we may suppose (z, B.) is major. Hence D = D(B.) is abelian. It follows
that Property 7.1 (d) holds for B.

Case 5. Let K := E;(q) with g even and B € BIk(K). Then either L; is classical, or L;
is exceptional given in Cases 3 or 4. If L; is classical, then apply Propositions 8.1, 8.2, 8.3
and 8.5. If L; is exceptional, then apply the results given in Cases 3 and 4. Either Property
7.1 (ax) holds for B or Property 7.1 (d) holds for B (with H := K := E7(q)).

Let ¢ be odd, K =2.E7(q) < E :=2.E7(q).2, Be BIk(K) and Bg € BIk(E) covering
B. Either Property 7.1 (a%) holds for some B-subgroups (P,g) < (R, b) or Property 7.1 (d)
holds for B.

Again let D := D(B) and m* := ged(m, g — ¢).
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Suppose Property 7.1 (ax) holds for some B;-subgroups (P;,g;) < (R;,b;). A proof
similar to that of Case 3.2 with some obvious modifications shows that there exist
B-subgroups (P,g) < (R,b) and y satisfying the first part of Property 7.1 (a%) (with
H = K). Suppose B; satisfies either Property 7.1 (b) or (c) for some i. Then p =3 and C
is given by Table 2. A proof similar to that of Case 3.1.3 shows that Property 7.1 (a*) holds
for some B-subgroups (P,g) < (R,b). Suppose (P,gr) < (R,bg) are Bg-subgroups such
that gg is covering g and bg is covering b. Then D(g) = D(gg) and D(b) = D(bg) for
some D(gg) and D(bg). But D(g) = D(b) is abelian, so D(gg) = D(bg) is abelian. A proof
similar to that of Case 4.1 shows that (9.5) holds and so Property 7.1 (ax) (with H = E)
holds for B-subgroups (P, g) < (R, b).

Since E/K =2 and p is odd, it follows that D(Bg) is abelian whenever D(B) is
abelian.

Case 6. Suppose K := FEg(q). Either Property 7.1 (a) holds for some B-subgroups
(P,g) = (R,b) or Property 7.1 (d) holds for B.

In this case (z, B.) is a major subsection of B and either L; is classical, or L; is excep-
tional given in Cases 3, 4 or 5. If L; is classical, then apply Theorem 8.6. If L; is excep-
tional, then apply the results in Cases 3, 4 or 5. Thus if each D(B;) is abelian, then D(By,)
is abelian, and so D = D(B.) = D(B;) n C is abelian. Suppose D(B;) is non-abelian for
some i, say i = 1.

If p =7, then B; satisfies Property 7.1 (ax)
similar to that of Case 3.2.1.

z is of parabolic type and the proof is

2

Suppose p =5, so that B; satisfies Property 7.1 (ax) and C is given by [20], Table
4.7.3B. Thus / =1 or 2. If z is parabolic, then a proof similar to that of Case 3.2.1 shows
that we may suppose (9.3) holds.

If z is equal-rank, then
C=<{LioLy,5:5), Li=L,=SLsg),

so that L = Lo L,. Here ¢ = +1 such that ¢ = ¢ (mod5). A proof similar to that of
Case 3.1.3 shows that we may suppose L = L; x L,. By Case 2, B satisfies Property 7.1

(ax).
Suppose p = 3, so that C is given by [20], Table 4.7.3A, and / =1 or 2.

If some B; satisfies either Property 7.1 (b) or (c), then C is given by Table 2. In par-
ticular, / = 2 and D(B;) = 312

If / =1, then B satisfies Property 7.1 (a*) and we may suppose (9.3) holds. By Case
2, B satisfies Property 7.1 (ax).

Suppose / =2, so that L = L, o E¢(q), and C = {L,3:3), where L, = SL;(¢g) with
g = ¢ (mod 3).
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If Ly =E¢(q), and B; satisfies Property 7.1 (ax) for (Pi,g1) =< (Ri,b1). Let
Py =R, = A(D(B,)), and let (R»,b;) be a B,-subgroup and set (P2, g>) = (Ry,b2). By
Case 4 and the remark of Case 3.1.2, C;,(R;)/Z; = Cj2(R;/Z;) for i = 1,2. By Lemma
9.1, we may suppose L = L; x L, and a similar argument to that of Case 2 shows that B
satisfies Property 7.1 (ax).

Suppose L; = L, and B, satisfies Property 7.1 (d), so that D(B,) is abelian. In this
case B satisfies Property 7.1 (b) with D(B;) = 31*2 or By satisfies Property 7.1 (a*). Note
that J = J; o J, over Z(L) = 3 and J, = H, given in Case 3.1.2.

Let (P,,g) < (R.,b) be defined as in Case 3.1.2. Then there exists
¥ € Cp,(P:) 0 Npg,(R)\Cpy, (R;)
satisfying Property 7.1 (ax).

Let P, =R, = A(D(By,)) = D(B,) and let (P3,by) = (Ry,b;) be the Sylow By,-
subgroup. Since H, = Jy, it follows that P,o P, < R, o Ry < J. Set

P=(P,oP;)nC, and R=(R,oR;)nC.

Then P < R < D and P, R are abelian. Since Z(L) = 3, it follows that b o b, is a block
Cj(R;oRy) and go g € Blk(CJ(P,c o Pz)). Since J/C = 3, it follows that b o b, covers a
unique block bg of C¢(R) and similarly, g o g covers a unique block gp of C¢(P). Since
By is the unique block covering B., it follows that (P, bp) < (R, bg) are B.-subgroups. Since
H./L, =3, it follows that ye L, = L;. Now B satisfies Property 7.1 (a) (not (ax)) for
B-subgroups (P,bp) < (R, br) (with H = K). [

Lemma 9.3. Let G be a quasisimple group such that G/Z(G) is alternating or of Lie
type and G is an exceptional cover. Let p be an odd prime. Then every p-block of G with
nonabelian defect groups has a subpair with at least two irreducible Brauer characters.

Proof: We must consider the cases G/Z(G) = PSL,(4), PSL»(9), 47, PSL;(2),
PSL;(4), PSU4(2), PSU4(3), PSUg(2), ?B>(8), 04(2), 0:(3), OF (2), G2(3), G2(4), Fu(2)
and 2Es(2). We may use [18] to confirm all but the cases F4(2) for p = 3, and ?E4(2) for
p =3,5,7 (noting that the three double covers of Og (2) have the same block structure—
see [14]), as in each case the block itself has at least two irreducible Brauer characters.
The result holds for F4(2) for p = 3 by [22]. Note that 2E¢(2) has abelian Sylow 5- and
7-subgroups, so we are left with p =3 and G/Z(G) = ?E4(2). In this case we do not
know the Brauer characters of G, so we are forced into a slightly involved argument to
make use of the current literature. Note that it suffices to consider the case |Z(G)| = 4.
Our group G has three conjugacy classes of elements of order three, 34, 3B and 3C. For
each such x € G, we have Cg(x)/Z(G) = Cg/z6)(xZ(G)). Consider a block B covering the
block ¢ of Z(G) containing the irreducible character 4, say. We may assume that c is faith-
ful. By examination of the character table in [14], only two irreducible characters lying over
/. vanish on 34, 3B but not on 3C (34 and y,, in the notation of [14]). Since a 3-block of
positive defect must possess at least three irreducible characters, it follows by a theorem of
Green that B must have a defect group D containing elements of 34 or 3B. Suppose
x € Z(D) has order three. Write Q = (x). Note that DCs(D) < Cs(Q), so there is a
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B-subgroup (0, bp) with defect group D. If x € 34, then Cg,7)(xZ(G)) = QO x PSUg(2).
We have seen that every block with nonabelian defect groups of a double cover of PSU¢(2)
has at least two irreducible Brauer characters, so it follows that /(bp) = 1 if D is nonabel-
ian. If x € 3B, then Cg/z (g (xz (G)) =~ O x Og (2).3, and the same argument applies as for
34. OO

Theorem 9.4. Let G be a quasisimple group and B a nilpotent p-block of G with defect
group D, where p is odd. Then D is abelian.

Proof. 1If G/Z(G) is an alternating group, then the result follows by Theorem 3.3
and the remarks following it. For G/Z(G) sporadic see Proposition 4.6. If G/Z(G) is a
classical group and G is a non-exceptional cover, see Propositions 8.1, 8.2, 8.3 and 8.5.
For G/Z(G) an exceptional group of Lie type and G is a non-exceptional cover, see The-
orem 9.2. For the exceptional covers, see Lemma 9.3. []

10. Puig’s conjecture

We complete the proof of Puig’s conjecture for quasisimple groups for odd primes,
present some general results and deduce some corollaries.

Theorem 10.1. Let G be a finite quasisimple group and let B be a p-block of G with p
odd. Then B is nilpotent if and only if [(by) =1 for each p-subgroup Q and each block by

of Cs(Q) with (bg)® = B.

Proof- The necessary condition for nilpotency follows from [13], 1.2. By Corollary
7.5 and Propositions 8.1, 8.2, 8.3 and 8.5 the result holds for the classical groups. By The-
orem 9.2 it holds for the exceptional groups of Lie type. The result holds for the double
covers of the alternating groups by Corollary 3.6, and when G/Z(G) is sporadic by Prop-
osition 4.7. For the exceptional covers of the alternating groups and of the finite simple
groups of Lie type, see Lemma 9.3. [

Lemma 10.2. Let N <G such that G/N is cyclic and of order prime to p, and
let B e BIk(G) cover be BIK(N). Suppose there are abelian R and P and b-subgroups
(P,bp) = (R,br) such that bp and bg have abelian defect groups and there is x € Cy(P)

of order prime to [G: N] such that x € Ny(R,br)\Cn(R). Then there are B-subgroups
(P, Bp) < (R, BRr) such that Bg and Bp have abelian defect groups and x € Ng(R, Bg)\ Cs(R).

Proof. By [15], 4.1, there is Bg € BIk(Cg(R)) such that (Bg)® = B and By covers
bg. We claim that the number of such By divides [G : N|. Now Cg(R)/Cy(R) is cyclic of
order dividing [G : N]. The blocks of Cy(R) and of Cg(R) are in 1-1 correspondence with
their canonical characters. Let g be the canonical character for bg. Since Cg(R)/Cy(R) is
cyclic, O extends to an irreducible character of Cg(R), and since [Cg(R) : Cy(R)] is not
divisible by p, the extensions are precisely the canonical characters of the blocks of Cg(R)
covering bg. By Clifford theory, the group of irreducible characters of Cg(R)/Cy(R) acts
transitively on the blocks By, ..., B, of Cg(R) covering by by inflation and multiplication,
and also transitively on the set {B : 1 <i < n}. Consequently the number of blocks of
Cg(R) covering bg with Brauer correspondent B divides [Cg(R) : Cy(R)], and the claim
follows.
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For each i, we have (BX)% = (B®)* = B* = B, and B} overs b* = b,. Hence x per-
mutes {B; : B¢ = B}. Since this set has order prime to the order of x, it follows that x
must fix some such B;. Call it Bg. Letting Bp = (Bg) CG(P), we are done. [

As an almost immediate corollary we have:

Corollary 10.3. Let G be a finite group such that there is N < G with |G : N| odd and
G/N is a p-regular cyclic group, where N is quasisimple and p > 3 is a prime. Let B be a
p-block of G. Then B is nilpotent if and only if [(bg) = 1 for every B-subgroup (Q,bop).

Proof- Since the alternating and sporadic groups have outer automorphism groups
of order at most two, it follows that it suffices to consider the groups of Lie type. Suppose
first that N is not an exceptional covering group. Since p > 3, every block of N satisfies one
of Property 7.1 (a) or (d), and the result follows by Lemma 10.2 and Corollary 7.5.

Suppose that N is an exceptional cover. Then the outer automorphism group is a
2-group except when N/Z(N) =~ PSL;(4), PSUg(2) or 2E¢(2), in which case it has order
three, and consists of diagonal automorphisms. In each case Z(N) is a Klein-four group.
However, in each of these cases the non-inner automorphisms transitively permute the
blocks whose kernel does not contain Z(N), and the result follows in these cases too, since
B is nilpotent if and only if b is, and B-subgroups (Q, Bp) covering b-subgroups (Q, byp)
satisfy [(Bg) = I(bg). [
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