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Abstract—This paper investigates global optimization methods
from the perspective of population-based and restarted point-
based heuristics. We examine the performance of a standard
evolutionary computation (EC) methodology, a derivative-based
sequential quadratic programming (SQP) algorithm and a novel
derivative-free stochastic coordinate ascent (SCA) algorithm. All
methods are analyzed by random sampling of the feasible search
space. A comparison was made to evaluate the three algorithms,
in the light of newly updated IEEE CEC2013 benchmarks, on a
set of multimodal and composite test cases. Results revealed that
while the standard EC algorithm is generally more robust, on
the basis of convergence efficiency both the restarted SCA and
SQP algorithms have shown remarkable performance on some
of these benchmarks. The results further suggest that depending
on the nature of the problem landscape and dimensionality the
three algorithms, chosen from different optimization frameworks,
perform complementary to each other.

I. INTRODUCTION

Optimization enables searching for optimal solutions to
facilitate effective decision making in practice. Evolutionary
optimization in particular has diverse application areas [1],
including problems in but not limited to continuous, discrete
(i.e. combinatorial), temporal and multiobjective domains.

Optimization problems involve multiple and often con-
flicting design requirements. Consequently, the search for
an optimum solution is challenging. Fundamental differences
exist in the nature of the typical solution space (landscape) of a
local optimization problem and that of a global one (cf. Fig 1).
In a local landscape (Fig. 1a), only one optimal solution exists,
but such problems are mostly idealistic. A global landscape
(Fig. 1b), however, involves a combination of many local and
global optimal solutions. In fact, the majority of practical
optimization problems are of the global type. Regardless,
optimization methods are expected to find the global optimum
solution with minimum possible computational cost.

Several solution techniques exist for the different types
of the aforementioned optimization problems. Two main cat-
egories are the numerical and heuristic methods. This pa-
per aims to investigate the behavior of three different cate-
gories of optimization methods, namely restarted derivative-
free, restarted derivative-based and evolutionary algorithms,
on global optimization benchmarks. Based on robustness and
convergence efficiency, we empirically compare and analyze
the performance characteristics of three algorithms:

1)  astandard evolutionary computation (EC) algorithm;
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2)  a sequential quadratic programming (SQP); and
3) anovel stochastic coordinate ascent (SCA) algorithm

on a variety of optimization landscapes.

On a broad scope, the first contribution of this paper is a
‘high-level’ classification — in form of a research relevance
tree — of the various global optimization methodologies in
Section II. In Section III we first introduce the standard
genetic algorithm (GA) which features the standard elitism
replacement method, Section III then introduces the derivative-
based SQP algorithm. Also in Section III, this paper proposes
a novel stochastic coordinate ascent derivative-free algorithm.
In Section IV this paper empirically compares and analyzes
the three optimization methodologies on two sets of global
optimization benchmarks built for the CEC2013 competition
on real-parameter optimization. The paper concludes with
remarks on further research in Section V.

II. BACKGROUND: OPTIMIZATION METHODS

The research relevance tree in Fig. 2 classifies the global
optimization methods into two broad categories, namely
population-based and restarted point-based methods. Note that
the restarted methods are also called multi-start approaches
[2]. While the population-based approaches span the nature
and non-nature inspired heuristics, majority of the restarted
methods are numerical and have their origin in mathematical
programming (MP) and operations research (OR) [3].

The evolutionary algorithms (EAs), such as the genetic
algorithms (GA), genetic programming (GP) and evolutionary
strategy (ES), are only a few examples of the many naturally
inspired population-based heuristics. See [4], [5] for extensive
survey on evolutionary computation methods and applications.

For the population-based methods (cf. Fig. 2), since this
study is focused on evolutionary computation, a genetic algo-
rithm which is one of the most widely used EAs is utilized.
Detail principle of GA and its mathematical model is presented
in Section III-A. For the restarted point-based methods (cf. Fig.
2) however, a sequential quadratic programming algorithm and
a stochastic coordinate ascent algorithm are used. While the
SQP algorithm is a 2nd order derivative-based method (Sec-
tion III-B), the newly proposed SCA algorithm is derivative-
free (Section III-C). Therefore, this paper investigates global
optimization with these three algorithms as representatives of
the various optimization frameworks depicted in Fig. 2.
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(a)

Fig. 1. An illustration of local and global optimization landscapes. (a) A local
optimization problem (top) has only a single optimal solution (bottom). (b)
Global optimization problem (top) with many optimum solutions and ridge-

like plateaus (bottom).
Global Optimization
Methods
|
I |
Population-based Restarted Point-based
Approaches Approaches

Nature Inspired Other Heuristics ~ Derivative-based Derivative-free Methods

Heuristics (e.g. Gaussian/Response ~ Methods (e.g. Coordinate search
(e.g. EAs, PSO) surface methods) (e.g. SQP) methods, SA)
Fig. 2. A Research Relevance Tree showing a Classification of Global

Optimization Frameworks.

III. POPULATION-BASED AND RESTARTED POINT-BASED

HEURISTICS

This section presents the three algorithms which are later
evaluated on global optimization problems in Section IV.

A. An Evolutionary-based Method — The Genetic Algorithm

The standard genetic algorithm (GA) [6] is an iterative
procedure (Algorithm 1) that evolves a pool of candidate
solutions across generations . GA begins with a fixed sized
initial population P(t) : |P(t)] = N (line 2). The sample
solutions in the initial population are usually created randomly
within the feasible search space. At every generation (lines
4-11), a stochastic selection process (line 5) is applied on
the initial population to choose better solutions following
an evaluation that is based on some measures of fitness.
Evolutionary variation operators (crossover and mutation) are
then applied (lines 6-7), at their respective probabilities P, and
P,,, to create an offspring pool; fitter samples are then selected
from the parent and offspring pools and the process is repeated
until termination condition is reached (line 4).

Notice from Algorithm 1 that, at any generation ¢, the pa-
rameters: P(t), Qs(t), @, (t) and Q,,(t) respectively represent
the data structures for the population at the initial generation, at
the end of selection, and after the recombination and mutation
operations. G and P denote the genotype and phenotype spaces
respectively. Specific parameterizations for the GA used in this
paper are provided later in Section IV.
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Algorithm 1 A Standard Model of Genetic Algorithm

set counter ¢ <— 0;
initialize P(t) : P(t) = {xi|x; € P};
evaluate the fitness of P(t);
while not termination do
Qs(t) « select from P(t);
Q. (t) + recombine Qs(t);
Qm (t) ¢ mutate Qr(”?
evaluate the fitness of @, (¢);
P(t + 1) « select from {Q,,(t) U P(t)};
t—t+1;
end while

[N
R e R S L S >

B. A Derivative-based Method — The SQP Algorithm

Besides the above evolutionary computation methods,
many other numerical optimization methods [7] with origin
in MP are also in common use. In this section we introduce
the sequential quadratic programming (SQP) algorithm which
is inherently a local optimization method, but in this paper it
is put into a restart framework to enable global search. SQP
is a line-search based quasi-Newton method that is typically
applied to nonlinear optimization problems of the form

maximize f(z):z € (€))
where n is the dimensionality of the problem’s search domain.
In SQP, the iterative progression relied upon the computed
search direction d; € " and the evaluated step size parameter
ap:{ap € 10 < ay <1}, such that

"in2>1,

@

where the search direction d; is obtained by setting the gradient
of the 2nd order Taylor approximation of (1) to zero at every
iteration ¢, and solving for d such that:

Vi(z)

d=— _

V2f)"

Note that H = V2f ¢
function f(z) in (1).

Tip1 = Ty + udy,

—[H(x)] 'V f(2). )

X7 is the Hessian of the objective

SQP algorithm works in two phases which consist of an
outer (linearization) phase and an inner (optimization) phase.
At any given search point x;, the linearization phase approx-
imates the original (nonlinear) objective function (1) with a
quadratic model; and the nonlinear constraints (if any) with
their approximate linear expressions. This linearization trans-
forms the original problem (1) into a sequence of quadratic
programming (QP) subproblems as in (4)

1
max f(z) 'z + izTHz cHe ™ 4)

ze "
This QP subproblem is then optimized using any QP solver.

Notice from the iterative model in (2) that the step size
parameter « is a positive scalar that is expected to substantially
improve the function value. It is normally the optimizer of the
merit function defined as:

pla) = f(re+ oudy) a0 > 0. Q)



Algorithm 2 The Sequential Quadratic Programming (SQP)

Algorithm 3 Stochastic Coordinate Ascent Algorithm (SCA)

1: set counter t < 0;

2. Ty  To; /I zq is the starting point

30 dy < dp; /I dy is the initial search direction
4: while Vf(z;) > Tol; and ¢ < MaxIter do

5. linearize (1) into a QP subproblem (4)

6: H($t) — V2f(fl’t)

7. evaluate search direction d; (3)

8: if o =1 satisfies Wolf conditions [7] then

9: ap <1

10: else

11: evaluate oy : oy >0
12:  end if

13: Typ1 < Ty + oudy;

14: t+t+1;

15: end while

Generally, the ideal value for the step size parameter is the
global optimizer of the merit function (5) and requires several
evaluations of the objective function f and its gradient Vf.
Thus, at every iteration ¢, inexact line search algorithms are
typically used to try out a sequence of candidate values for a;;
based on some pre-defined termination conditions a suitable
value for oy is accepted. A simple condition that ensures o
provides a meaningful improvement in f entails:

flay + audy) < f(24). (6)

The SQP model adopted in this paper is described in
Algorithm 2. Note that this SQP model utilizes interior point
method (IPM) [8], [9] to solve its QP subproblems (line 5).
Also, the inexact line search algorithm used for estimating a
suitable value of the step size parameter is based on the popular
Wolf conditions [7] (lines 8 and 11). Further details on this
SQP formulation can be found in [9].

C. A Derivative-free Method — The Proposed SCA Algorithm

The coordinate ascent (CA) algorithm is an inexpensive
multidimensional optimization method. It also has its ori-
gins in MP. However, unlike the SQP algorithm, the CA
is a derivative-free method and works by decomposing an
n-dimensional optimization problem into n one-dimensional
subproblems. Then, the CA algorithm, which was shown to
have linear time complexity [10], cycles through the different
coordinate directions during the search.

In this paper, given any continuous optimization problem
(see equation (1)), we propose a novel stochastic coordinate
ascent (SCA) algorithm as outlined in Algorithm 3. Unlike
the traditional CA methods, at every iteration this SCA algo-
rithm locally optimizes (1) by randomly! searching a set of
coordinates around the current solution point ;.

As can be seen from Algorithm 3 (lines 1-5), SCA operates
only within a defined neighborhood ( ) of the initial search
point z;. The initial neighborhood size (i.e. the step size),
defined by 6% | i € [1,n], is set to 1% of the width of
the problem’s search domain across all n dimensions (line

'Random here means selection of a set of dimensions in the state space in
a stochastic manner.
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1: Problem’s dimension n;
: Problem’s search bounds [Z;, z;] : i =1 to n;
: Starting point z;, and search neighborhood ;
: Search neighborhood radius:
8%+ 0.0l x (7; —z;):i=1tom
: Minimum neighborhood radius &,,;, <+ 10~%;
. repeat until termination condition: 5 < ,,,i
Generate AndEvaluateSearchPoints(xy,0r,n);
if max(f(X )) > f(x,) then // better solution found
9.z 2 | f(2?) =max(f(X ));  // replace z,

R )

10:  else _ /I x; is better than all its neighbors
11: O %6}{7 Vi=1:n; /I shrink the neighborhood
12:  end if

13: end (repeat)
14: return (z, f(z¢))

4). Note that the 1% initial radius is empirically decided so
as to constrain the SCA algorithm to focus around a limited
area of the starting point z;. This restricted form of local
search also mitigates the risk of creating infeasible solutions
(i.e. points outside the feasible bounds) by the SCA algorithm.
During the optimization cycle, the size of this neighborhood
() is expected to continuously shrink over iterations (line
11). Therefore, as a stopping criterion, a minimum threshold
for the neighborhood (i.e. step) size d,,;, is empirically set to
10~8 (line 5).

Having set its initial parameters, the main SCA algorithm
(Algorithm 3) loops through lines 6-13 until the stopping
condition is satisfied (line 5). In line 7, the algorithm invokes
the Generate AndEvaluateSearchPoints sub-function (Al-
gorithm 4) which generates and evaluates the fitness of a new
set of fixed-size search points X within the neighborhood ()
of the current point x;. Now, if the fitness of the best sample in
the set X' is greater than that of x4, the best sample becomes
the next solution point x4 (lines 8-9). Otherwise the radius of
the neighborhood is halved (lines 10-11). The SCA algorithm
returns the locally optimum solution point with its fitness value
(¢, f(x¢)) in the region of the initial starting point (line 14).

The sub-function in Algorithm 4 generates and evaluates
the appropriate search points in the neighborhood ; Fig.
3 further illustrates this process. The neighborhood of the
current search point x; is sampled in a circular (or spherical)
manner; and the number of the sample points depends on the
dimensionality n of the search domain (see Algorithm 4, lines
3 and 7). From Fig. 3, note that the size of the set of the
sample points (X ) in the neighborhood of x; is given by:

& | = 2n,
6,

Hence for higher dimensions (n > 3) the proposed SCA
algorithm essentially conducts a block coordinate ascent search
[11], i.e. the algorithm searches the multi-dimensional neigh-
borhood by successively optimizing any three randomly chosen
dimensions at every iteration — hence the naming convention
stochastic coordinate ascent. In a series of experiments, the
next section evaluates the performance of the above three
algorithms.

Vn < 3;
otherwise.

@)



Algorithm 4 Neighborhood Samples Generation Function

1: Generate AndEvaluateSearchPoints(xy, dg,n)
2: if (problem dimension n < 3) then
3: /I generate 2n samples at radius dr from z;

X {[z} — 0, a) 4+ 0%] . Vie [L,n]};

4:  f(X ) < evaluate the fitness of samples in X ;
5: else
6: k< U(n,3); // chose any 3 from the n-dimensions;
7: [/ generate 2k samples at radius dr from x;
X {[z} — 0, ) + 0] Vi € [L K] 5

8. f(X )+ evaluate the fitness of samples in X ;
9: end
10: return (X , f(X ))

n=1

¢ S e

n=2 n>2
Notation:
n = Dimensionality
x, = Starting Point
Jr = Neighbourhood size

Fig. 3. The search neighborhood for the SCA algorithm for an n-dimensional
search domain. The current search point z+ represented by a black (red in
color) dot is at the center of the linear (for n = 1), circular (for n = 2) or a
spherical (for n > 2) search domain. Situated at a neighborhood radius dp,
the new search points represented by grey dots (green in color) are 2, 4 or 6
depending on the dimensionality of the search domain.

IV. EXPERIMENTS

This section evaluates the three optimization frameworks
described thus far. The objectives of these experiments are:

1)  to examine the performance characteristics of the EC,
SQP and SCA algorithms on two categories of global
optimization tasks of varying complexities; and

2) to compare and analyze the fitness characteristics of
the three algorithms regarding how much progress is
been made and how fast (robustness and efficiency).

Detail parameter settings for the EC, SCA and SQP algo-
rithms are described in Table I. In all experiments, the restarted
algorithms (SCA and SQP) are repeatedly run on random
uniform samples in the feasible search space. For the standard
EC algorithm, a pool size N (cf. Table I) that yields good
performance is chosen depending on the problem dimension.

A. Evaluation Benchmark Test functions

Two categories of global optimization benchmarks from the
redesigned test problems used in the CEC2013 competition on
real-parameter optimization [12] are used in these experiments.
As shown in Table II, we compare the three algorithms on a
set of three multimodal and composition benchmarks having
varying dimensionalities over the optimization period MaxFES
=n x 10,000 function evaluations. Since the SQP algorithm
requires derivatives, only benchmarks with no discontinuities
in their search space are selected.
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TABLE 1. PARAMETER SETTINGS FOR THE EC, SCA AND SQP
ALGORITHMS
Parameter Name Symbol Description/Values

EC Algorithm

Population Size N N € {200,400, 750, 1000}
Initial Population Py Uniform random distribution
Encoding - Real-valued

Selection Scheme Binary Tournament

Crossover: Intermediate

Operator type recombination operator

M Mutation: BGA mutation operator
Crossover Probability Pe 1.0
Mutation Probability P 0.01

- Generational-Elitist

Max-FEs ~ Max. evaluations (n x 10,000)
SQP Algorithm

Minimum Gradient of f Toly Toly = Vf < 10-8

Maxlter 100
SCA Algorithm

Replacement Scheme
Termination Criterion

Maximum Iteration

Neighborhood size or 0.01
Min. neighborhood size Omin 108
TABLE II. BENCHMARK TEST PROBLEMS — SELECTED FROM THE

CEC2013 COMPETITION ON REAL-PARAMETER OPTIMIZATION

Category Acronym
Multimodal ~ F6, F7 and F8
Composition F21, F22 and F23

Dimensionality (n) Max. Evaluations (MaxFES)

n € {10,30, 50} 10,000 X n

The evaluation criteria in the CEC2013 competition [12]
require optimizing all the benchmarks for n € {10,30, 50}
dimensions in 51 repeated runs. Then for each run, 11 opti-
mization error values

fcrror = (fz(x) - f:("l’)) (8)

are recorded after (0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,
1.0) x MaxFES evaluations, where fe..o is the error between
the current best solution (f;(z)) and the true optimal solution
(f#(z)). For each problem, we record the mean values of
ferror- Note that all benchmarks are of minimization type.

B. Experiment 1: Evaluation on the Multimodal Benchmarks

In this section, we examine the performance of the three
algorithms on a set of multimodal benchmarks (F6, F7 and
F8) over n = {10, 30,50} dimensions.

Results — Analysis and Interpretation

Fig. 4 shows the performance comparison results for the
EC and the restarted SQP and SCA algorithms on varying
dimensions of the CEC2013 multimodal benchmarks (F6,
F7 and F8); the results are averages of 51 repeated runs.
As described earlier, each of these benchmarks is rotated,
asymmetric, and highly multimodal with huge number of local
optima [12]. Notice, from the plots labeled A and B in Fig.
4, that the performances of the EC and SCA algorithms are
not significantly different’> on the 10 and 30 dimensions of
the F8 benchmark. In fact, none of the three algorithms is
significantly better than any other on the 50 dimensions of the
F8 benchmark (labeled C).

2The Kruskal-Wallis nonparametric test is used in a multiple comparison
procedure with v = 0.01.



Multimodal Benchmarks (F6 to F8)
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Fig. 4. Performance comparison of the EC, SCA and SQP Algorithms on the CEC2013 Multimodal Benchmarks of varying sizes. Results are averages of 51
independent runs. The vertical axes are in log scale; the horizontal axes are the 11 linearly sampled Function evaluations over the optimization period (see text).

Composition Benchmarks (F21 to F23)
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Fig. 5. Performance comparison of the EC, SCA and SQP Algorithms on the CEC2013 Composition Benchmarks of varying sizes. All results are averages of
51 repeated runs. The vertical axes are in log scale; the horizontal axes are the 11 linearly sampled Function evaluations over the optimization period (see text).

It is observed from across the various dimensions of the F6 EC algorithm is inherently global and can maintain sufficient
and F7 benchmarks (Fig. 4) that, it is only the EC algorithm diversity necessary to sustain optimization progress. This char-
that mostly enjoys steady progress by continuously minimizing acteristic performance of the standard EC algorithm can be
the optimization error (feqqo) Over the entire optimization attributed to the provision of the carefully chosen population
period. This is not unexpected since, with such largely flat sizes suitable for the different sizes of these benchmarks (see
and rugged landscapes in F6 and especially F7 (see [12]), the the parameter settings in Table I).
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On the other hand, still on the F6 and F7 benchmarks
(Fig. 4), it is observed that the two restarted algorithms (SCA
and SQP) tend to get stuck at some local optima after a few
iterations. However, it can be noticed that the SCA algorithm
only outperforms the SQP on the 10-dimensions of the F6
benchmark. This is a surprising finding given that the SQP
algorithm mainly relies on gradient information — a feature
that is difficult to harness in such wide and ruggedly-flat
landscapes. Nevertheless, while the performances of the EC
and SCA algorithms on the F8 benchmark (see Fig. 4) are
tightly close (not significantly different at a = 0.01), it is
the SCA algorithm that yielded the best results in this case.
Overall, although none of the compared algorithms achieves
the optimum optimization error value (i.e. ferror = 0), the
standard EC algorithm outperforms both the restarted SQP and
SCA algorithms on this set of multimodal benchmarks (Fig.
4). This is mainly due to its ability to maintain steady and
continuous progress during the optimization period by avoiding
more local optimal solutions.

C. Experiment 2: Evaluation on the Composition Benchmarks

This section examines the performance of the three algo-
rithms on the composition benchmarks F21, F22 and F23 [12].

Results — Analysis and Interpretation

The results of Experiment 2 are as shown in Fig. 5. All
vertical axes (ferror) are in log scale to aid visualization, and
all results are averages of 51 independent repeated runs. Note,
however, that the performance differences between the EC and
SCA algorithms on the 10 dimensions of F22 (marked as E)
are not statistically significant within a 99% confidence level.
Also, although the two restarted algorithms (SCA and SQP)
trail the global EC algorithm on the 30 dimensions of F21
(labeled D), their performances are not significantly different
in this case. Nevertheless, in all other cases (see the unlabeled
plots in Fig. 5) the observed differences in the characteristics
of all the three algorithms are statistically significant.

It is observed from Fig. 5 that the SCA algorithm copes
better than the SQP algorithm on these composite benchmarks
(see the unlabeled plots in Fig. 5), except on the 50 dimensions
of F21. However, it can be recalled from Experiment 1 above
(cf. Fig. 4) that the SQP mostly outperformed the SCA
algorithm. These are interesting findings because often the
restarted gradient-based (greedy) methods, such as the SQP,
are assumed to yield inferior performance on such highly
multimodal problems (Fig. 4). However, the outcomes from
these two experiments suggest that it requires such highly com-
plex (composite) landscapes (Fig. 5) for a restarted stochastic
algorithm, like SCA, to outperform a restarted SQP algorithm.

In addition, it noticed from Fig. 5 that the performance
benefit exhibited by the EC algorithm over the two restarted
methods is less pronounced on these composition benchmarks
(see the 10 and 50 dimensions of F22 as well as all the
instances of the F23 benchmarks). Nevertheless, for all the
plots in Fig. 5, the slope of the optimization curves revealed
that it is the EC algorithm that mostly demonstrates continuous
progress during the entire optimization period.

Table III compares some possible limitations of the three
algorithms based on there inherent parameterizations (cf. Table
I) and the outcomes of the empirical experiments above.
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TABLE III. LIMITATIONS OF THE EC, SQP AND SCA ALGORITHMS

Complexity Convergence rate Sensitive Parameters Resilience to dimensionality
N, Pc, Ppm High

min. gradient Tol; Low

EC: Polynomial First order
SQP: Quadratic
SCA: Polynomial First order

Second order

Or, Omin Low

V. CONCLUSION

This paper investigated global optimization methods from
three different perspectives using the IEEE CEC2013 bench-
marks. We found that the ability of the standard EC algo-
rithm to search global optimization landscapes of varying
complexities by evolving a suitably sized pool of search
points has largely led to its observed superior robustness. For
the restarted approaches, however, by effectively exploiting
any available gradient information, the SQP algorithm has
surprisingly achieved better convergence efficiency than SCA
on a set of highly multimodal benchmarks. Nevertheless, on
the more complex composition benchmarks, the low-cost SCA
algorithm maintained a robust search compared to the SQP.

The experimental results revealed that the three examined
algorithms possess complementary performance characteristics
— an essential feature for building effective hybrid frameworks.
In addition, the outcomes have provided new and vital insights
into which among the algorithms should be used to kick-
start the search (which from these results is the global EC
algorithm), as well as how and when to switch among the
algorithms if combined in a hybrid framework.
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