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Abstract

Estimates were made of the efficiency with which color
spaces code color information from images of natural scenes.
Six spaces were tested, namely, CIE XYZ tristimulus space, and
the spaces CIELUV, CIELAB, CIELAB and S-CIELAB after chro-
matic adaptation with CMCCAT2000, and the space CIECAMO?2.
For each space, the information available and the information
retrieved in color matching were calculated for images of 50 nat-
ural scenes under different daylight illuminants. The information
available was decomposed into components associated with the
individual variables of the space and the interactions between
them, including redundancy and illuminant-dependence. It was
found that the information retrieved was much less than the in-
formation available, and that its decomposition depended on the
space. The differing efficiencies of the spaces were interpreted
in relation to the effectiveness of opponent-color and chromatic-
adaptation transformations, and the statistics of images of natural
scenes.

Introduction

Color spaces are used routinely for specifying or describing
the color of individual samples. But they may also be incorporated
within more general image descriptions, for example, of natural
scenes, which often contain a complex combination of spatial and
chromatic detail. Each point in the image might have its color
coded by its tristimulus values (X,Y,Z), or perhaps by the coor-
dinates (L*,a*,b") of CIELAB space [1]. Although the choice of
color space will depend on several factors, there is an advantage
in choosing one that provides an efficient color code, in the sense
of maximizing the amount of information about the scene pro-
vided by the description and minimizing any redundancy within
it [2, 3, 4, 5].

The aim of this work was to analyze how efficiently informa-
tion from a scene is coded by each of the main CIE color spaces.
The images were of natural scenes under different illuminants,
and information was expressed in terms of Shannon’s mutual in-
formation [6].

Information was calculated by two methods. The first was
based on the information theoretically available from images of a
scene. It depends only on the statistical distribution of the color-
code values in each image of the scene and how they vary with
changes in illuminant. The second method was based on the in-
formation actually retrieved with a particular matching task, by
which points in an image of the scene under one illuminant are
matched, by color, to points in an image of the same scene under
another illuminant. Estimates from the first method set an upper
limit on estimates from the second.

As a precursor to the analysis, the theoretical section which
follows gives the definition of mutual information and an expla-
nation of its decomposition into components. These components
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are associated with the individual variables of a color space and
the interactions between them, including redundancy and illumi-
nant dependence. The methods section contains details of the two
kinds of information estimator, along with a brief description of
the scenes and illuminants. The results for six color spaces are
then summarized. Differences in the information retrieved across
spaces and in redundancy and the illuminant-dependent compo-
nent are considered in the discussion section. Opponent-color and
chromatic-adaptation transformations were both critical in deter-
mining the efficiency of coding and the retrieval of information.
Some partial results on the decomposition of the information
available for different color spaces have been reported previously

[7].
Theory

To fix ideas, suppose that the color at each point in an im-
age of a scene under some illuminant E is coded by its tristimulus
values (X,Y,Z), and consider, in particular, the luminance vari-
able Y. Suppose that y is the value of Y at a particular point in an
image of the scene under illuminant E and y' is the corresponding
value in the image of the scene under illuminant E’. If the point
is chosen randomly, then the values y and y' can be thought of
as samples from random variables Y and Y’, respectively. Sup-
pose that the probability density functions of ¥, Y’, and of the
pair (Y,Y’) are fg, fr/, and frg/, respectively. Then the mutual
information I(Y;Y’) between Y and Y’ is given [6] by

fee (v,Y) /
7o) fe0) P D
where the integrations are taken over the spaces spanned by Y
and Y. The logarithm is to the base 2, and mutual information
expressed is in bits.
Mutual information can be expressed as a combination of
differential entropies [8], which are also based [6] on the proba-
bility density functions fg, fgr, and fgg, thus

W)=~ [ fo(y)log fe(s) dy,
h(Y') =~ / fer()log fer () &', )

h(Y,Y') =~ / fee (v.y)log fpe(v,y') dydy’.
The mutual information (1) is then given by

1YY =hY)+hY')—h(Y,Y). 3)

1Y) = [[ fee () 108

The definition of mutual information can be straightfor-
wardly extended from the single variables ¥ and Y’ to the tris-
timulus values (X,Y,Z) and (X',Y’,Z’), thus

I(X,Y,2; X" )Y Z)=h(X,Y,Z)+h(X',Y' Z)
*h(X,Y,Z,X/,Y/,Z/), (4)
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where all differential entropies are calculated as in (2) with the
corresponding multivariate probability density functions. In an
exactly analogous way, mutual information can be defined for the
same two images of a scene for any other color space.

Redundancy and illuminant dependence

Again, suppose that coding is by tristimulus coordinates
(X,Y,Z). To simplify notation, let / stand for the mutual infor-
mation I(X,Y,Z; X',Y',Z") as in (4) and let I, I, and I5 stand for
the individual mutual-information components associated with
the first, second, and third variables; that is,

L =I1(X:X"),
L=I(Y;Y'), )
L=1Z;7).

The difference between / and the sum I + I + I3 represents the
contribution from the interactions between the variables of the
color space. These interactions can be measured by the multi-
information [9, 10], which is a form of generalization of mutual
information [4], and which here divides into two components.

The first component is quantified by the multi-information
between (X,Y,Z) and the multi-information between (X',Y’,Z');
that is,

M(X:Y;Z) = h(X)+h(Y)+h(Z)—h(X,Y,Z),
and
M(X"Y"Z') = h(X")+h(Y')+h(Z) - h(X'Y',Z)).

The sum of these two quantities defines an intrinsic redundancy
R; that is,

R=MX;Y;Z)+M(X';Y';Z). (6)

The redundancy R arises from the dependence between the vari-
ables of the space [4], [11], and should not be confused with the
notion of redundancy considered by Barlow and others [2].

The second component is quantified by the multi-
information between (X,X’), (¥,Y’), and (Z,Z’). This quantity
defines an extrinsic component D; that is,

D=MX,x";v,Y'z,7),
=h(X,X")+h(Y,Y") +h(Z,2"), )
—n(X,x"\v.Y' z,2".
This component is strongly illuminant dependent.

It may then be shown that the mutual information / in (4) has
the following decomposition

I=hL+hL+5L—-R+D. (8)

Both R and D are necessarily positive. An efficient representation
is one that maximizes I} + I, + /3 and minimizes R and D [4, 11].

Methods

The information available and the information retrieved were
estimated separately for the chosen set of images of natural scenes
under different daylight illuminants.
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Information available estimator

For each scene, daylight change, and color space, the indi-
vidual information components /1, I, and I3 (5), the redundancy
R (6), and illuminant-dependent component D (7) were obtained
from the corresponding differential entropies (2). The informa-
tion available I was then calculated from (8).

A modification of the Kozachenko-Leonenko estimator of
differential entropy [8] was used to obtain the individual en-
tropies. This modification involved estimating each entropy af-
ter previously whitening the data (so that the variance-covariance
matrix coincided with the identity), which gave better estimates.
If Var(X,Y,Z) is the variance-covariance matrix of the variables
(X,Y,Z), then the differential entropy h(X,Y,Z) is given [6] by

1
h(X,Y.Z) = h(X",Y",Z") + 5 log|Var(X,Y.Z)| ©

where | - | denotes the determinant of a matrix and

X+ X
v* | =[Var(x,v,2)]" [ v
z z

Information retrieved estimator

With a complex scene, matching points in an image of the
scene under one illuminant, solely on the basis of their color, to
points in an image of the same scene under another illuminant is
an uncertain process. To take a trivial example, the tristimulus
values (X,Y,Z) of a point under illuminant E will not, in general,
coincide with its tristimulus values (X’,Y’,Z") under illuminant
E’, so that a nearest-neighbor match will generally be wrong. By
introducing a chromatic-adaptation transformation in the coding,
such as CMCCAT2000 [12], errors lessen, but they do not disap-
pear.

A relevant way to quantify the error in matching is to mea-
sure how far the incorrect match 7 is from the correct match j
in terms of the number k; of potential matches that are closer to
j than i [13]. To accommodate the variance-covariance struc-
ture of the data, color matching was based not on the simple
Euclidean distance between variables but on the Mahalanobis
distance. The relative frequencies of these numbers k; may
then be interpreted as estimates of a probability mass func-
tion {po,p1,---,Pks---,PN—1} of a random variable K, so that
P{K = k} = py. The discrete entropy of K [6] is

N—-1

H(K)=—"Y pilogpx,
fry

where log0 = 0, as in [6]. From this discrete entropy, a mutual
information I,¢ch can be obtained in a way analogous to that with
differential entropy (3), but taking the form

Imatch = logN — H(K). (10)
This mutual information quantifies the information retrieved. Un-
like the information available, I, depends strongly on the

structure of the color space.

Color spaces and image data
The color spaces considered were as follows.
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CIE XYZ [1],
CIELUV [1],

CIELAB [1],

CIELAB [1] with CMCCAT2000 [12, 1],
S-CIELAB [14] with CMCCAT2000 [12, 1],
6. CIECAMO2 [15].

Nk w D=

All were used with their default values for a 2-degree observer,
and adaptation was assumed to be complete.

Image data were generated from 50 hyperspectral images (<
1344 x 1024 pixels) of natural rural and urban scenes [16, 17]
under three representative changes in daylight illuminant from a
correlated color temperature of 4000 K to 6500 K, from 25,000 K
to 6500 K, and from 25,000 K to 4000 K.The particular daylight
illuminants were chosen because of their special role in the CIE
specification [1], and were approximated by the CIE method for
reconstructing illuminants [18]. Tristimulus values (X,Y,Z) at
each point in the image of a scene were obtained from the CIE
1931 color-matching functions [1]. To reduce computation time,
images were spatially subsampled, with just alternate pixels being
used.

Results and Comment

Table 1 shows the mean information available and the mean
information retrieved by matching across images of scenes for
each of the six color spaces. The change in illuminant was from a
daylight of correlated color temperature 4000 K to one of 6500 K.
Means were taken over the 50 scenes. Standard deviations are
shown in parentheses.

Table 1. Mean (SD) of information available and information
retrieved with color images of natural scenes?

Color space Available bits® Retrieved bits®
CIE XYZ 20.4 (1.1) 7.4 (0.8)
CIELUV 19.8 (1.4) 8.2 (0.8)
CIELAB 20.1 (1.1) 8.5(1.0)
CIELAB, CMCCAT2000 20.3 (1.1) 11.6 (1.3)
S-CIELAB, CMCCAT2000 19.8 (1.7) 12.2 (1.4)
CIECAMO02 20.0 (1.0) 11.9(1.2)

@ Information was estimated from images of a scene under a change
in illuminant from a daylight of correlated color temperature 4000 K to
one of 6500 K. Means were taken over 50 scenes. Standard devia-
tions are shown in parentheses.

b Estimate / from (8) and (9).

¢ Estimate /natch from (10).

The mean information available was closely similar over all
the spaces at approximately 20 bits. For a change in correlated
color temperature from 25,000 K to 6500 K, the estimates were
very similar, but for a larger change, from 25,000 K to 4000 K
(not shown here), the mean information available was lower, by
approximately 3 bits.

The mean information retrieved by color matching was much
less than the mean information available, particularly so with CIE
XYZ, CIELUYV, and CIELAB spaces. Some reasons for these dif-
ferences are considered in the discussion section.

Figure 1 shows the decomposition of the mean information
available for each of the six color spaces. The values shown are
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the mutual-information components /1, I, and /3 associated with
the individual variables of the space (5), the redundancy R (6),
and the illuminant-dependent component D (7), each averaged
over the 50 scenes with a change in illuminant from a daylight
of correlated color temperature 4000 K to one of 6500 K. Error
bars indicate +1 SD of the sample (the relatively large SDs of R
and D in Fig. 1 are not necessarily inconsistent with the small SDs
of the information available [ in Table 1).

I CIE XYZ

NN CIELUV

[ CIELAB

CIELAB, CMCCAT2000
[ 1S-CIELAB, CMCCAT2000

[ JCIECAMO2
20
15 -
i
o
5
'g 10 -
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Figure 1.  Decomposition of the mean information available for six color

spaces. The mutual information associated with the individual variables (3, 5)
is indicated by I, I,, and l;, and the redundancy (6) and illuminant-dependent
component (7) are indicated by R and D, respectively. Information was esti-
mated from images of a scene under a change in illuminant from a daylight
of correlated color temperature 4000 K to one of 6500 K. Results were aver-
aged over 50 scenes. Error bars indicate +1 SD of the sample.

A similar pattern of performance was found with the other
two illuminant changes (also not shown here).

Discussion

The color spaces considered here were smoothly invertible
functions of each other. As a consequence, the information avail-
able with each should, in principle [19], have been the same for
each set of images and illuminant changes. Despite the differ-
ences in the complexity of the spaces, with CIE XYZ tristimulus
space and the color-appearance model CIECAMO2 being the most
extreme, the information available for each was almost constant.
The small differences in the information available listed in Table 1
reflect different statistical errors in the estimates.

Although an inverse of the CIECAMO02 model has been de-
scribed [15], technical anomalies have been reported [20], the
most important of which is the “brightness problem” [21]: the
calculated brightness may fail to be a real number. A solution has
been proposed [21], which was adopted here, but it leads to the
non-invertibility of the model. Fortunately, the brightness prob-
lem occurs rarely in practice, and was not found here with day-
lights with correlated color temperatures 4000 K and 6500 K and
only infrequently with 25,000 K.
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The information available was, however, coded with varying
efficiency (Fig. 1). The spaces CIELAB and S-CIELAB, each
with the chromatic-adaptation transformation CMCCAT2000,
and the space CIECAMO2 had illuminant-dependent components
D about half the size of those for CIE XYZ, CIELUYV, and
CIELAB, presumably because of the absence or inadequacies of
their chromatic-adaptation transformations. By contrast, the lev-
els of redundancy R were broadly similar for all the spaces, except
CIE XYZ. This was the only space not to have an opponent-color
transformation, which would have reduced the dependence be-
tween variables [22], especially between tristimulus values X and
Y.

As noted earlier, the information available sets a theoretical
limit to the maximum information that can be retrieved with a
given set of scenes and illuminants. The information retrieved
in color matching was, on average, about half of that available
(Table 1), but some spaces were much poorer than the best, most
notably, CIE XYZ, and slightly less so, CIELUV and CIELAB.

Two factors potentially underlying the poor performance in
color matching have already been identified in considering cod-
ing efficiency: the effectiveness of opponent-color and chromatic-
adaptation transformations. A third, more general factor affecting
color-matching performance can be traced to the relationship be-
tween the metric used to make nearest-neighbor matches and the
statistics of the images, specifically, the probability density distri-
butions of color-code values and the differences in these values.
For color matching to retrieve the maximum information possible,
the distributions need to be Gaussian [6], [23], but for none of the
spaces is this true. Examples of the non-Gaussian distributions of
color differences under CIEDE2000 for images of natural scenes
have been presented elsewhere [24].
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