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a  b  s  t  r  a  c  t

In  a  paper  examining  informal  networks  and  organizational  crisis,  Krackhardt  and  Stern  (1988)  proposed
a measure  assessing  the  extent  to which  relations  in  a network  were  internal  to  a  group  as  opposed  to
rokerage roles
ategorical attributes

external. They  called  their  measure  the  E–I index.  The  measure  is  now  in  wide  use  and  is  implemented  in
standard network  packages  such  as UCINET  (Borgatti  et al.,  2002).  The  measure  is  based  on  a  partition-
based  degree  centrality  measure  and  as such  can be extended  to other  centrality  measures  and  group
level  data.  We  explore  extensions  to closeness,  betweenness  and  eigenvector  centrality,  and  show  how
to apply  the  technique  to sets of subgroups  that  do  not  form  a partition.  In  addition,  the  extension  to
betweenness  suggests  a linkage  to the  Gould  and  Fernandez  brokerage  measures,  which  we explore.
. Introduction

Many measures of centrality – in particular, all of the measures
eferred to by Borgatti and Everett (2006) as “radial” measures of
entrality – can be written as the row (or column) sums of a cohe-
ion matrix, meaning a matrix whose cells indicate the presence
r extent of dyadic cohesion between pairs of nodes. For example,
egree centrality can be calculated as the row sums of an adja-
ency matrix, closeness centrality can be computed as the row sums
f a geodesic matrix, and eigenvector centrality can be viewed as
eighted row sums of the adjacency matrix where the weights are

he centralities of the column nodes. Similarly, the influence mea-
ures of Katz and Hubbell can be seen as the row sums of a matrix
epresenting the number of walks of all lengths between every pair
f nodes, weighted inversely by length.

As such, the (radial) centrality score of a given node can be
ecomposed into the separate contributions made by each cell in
he row of the cohesion matrix. If the rows and columns of the
ohesion matrix were to be sorted according to some categorical
ttribute of the nodes, such as gender, then for any given row, sum-
ing the values for those cells corresponding to, say, males, would

ive the contribution of male nodes to the centrality of the node
orresponding to that row. Thus, using gender as the example, we
an partition any node’s radial centrality into a portion due to the
Please cite this article in press as: Everett, M.G., Borgatti, S.P., Categorical 
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en  in the network, and a portion due to the women in the net-
ork. The relative contribution of different groups to the centrality

f each node is useful data that can be used to test a variety of
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E-mail addresses: martin.everett@manchester.ac.uk (M.G. Everett),

borgatti@uky.edu (S.P. Borgatti).
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hypotheses, such as which individuals derive their central position
from one group or multiple groups.

In this paper, we examine decomposing centrality measures into
portions that are “due” to different groups of nodes. In doing so, we
draw out an obvious correspondence with measures of homophily
such as Krackhardt and Stern’s (1988) E–I index, which in turn
allows us to generalize homophily in ways that correspond to the
many different kinds of centrality that have been elucidated in the
literature. In addition, when we consider betweenness centrality in
this light, we  are able to draw parallels with Gould and Fernandez
brokerage, and indeed extend their measures to apply not just to
adjacency but longer paths as well.

2. E–I index and degree centrality

Krackhardt and Stern (1988) propose a measure of homophily
called the E–I index, which is defined as follows:

E-I index = E  − I

E + I
(1)

where E = the number of external (between-group) friendship
edges and I = the number of internal (within-group) friendship
edges.

The measure varies between +1 and −1, where larger values
indicate greater heterophily and smaller values indicate greater
homophily. (When used as a measure of homophily it is often help-
ful to subtract the ratio from 1.) An attractive feature of the measure
attribute based centrality: E–I and G–F centrality. Soc. Netw. (2012),

is that, as a ratio, it is not dependent on the density of the network. In
addition, as Krackhardt and Stern point out, the measure allows for
variation in peoples definition of friendship and so is not sensitive
to certain kinds of measurement errors.

dx.doi.org/10.1016/j.socnet.2012.06.002
dx.doi.org/10.1016/j.socnet.2012.06.002
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:martin.everett@manchester.ac.uk
mailto:sborgatti@uky.edu
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Table 2
Closeness E–I.

Node Internal External Total E–I

HOLLY 14 24 38 0.263
BRAZEY 34 25 59 −0.153
CAROL 14 34 48 0.417
PAM 12 30 42 0.429
PAT 13 30 43 0.395
JENNIE 15 40 55 0.455
PAULINE 12 28 40 0.400
ANN 14 34 48 0.417
MICHAEL 16 20 36 0.111
BILL  22 28 50 0.120
LEE 24 35 59 0.186
DON 22 21 43 −0.023
JOHN 20 18 38 −0.053
HARRY 22 21 43 −0.023
GERY 14 22 36 0.222
STEVE 17 28 45 0.244
ARTICLEON-725; No. of Pages 8
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Krackhardt and Stern apply the measure to the network as
hole, obtaining a single value that describes the tendency of the
etwork to be heterophilous. However, the UCINET (Borgatti et al.,
002) implementation of this measure makes a number of exten-
ions. First, since E–I cannot always achieve its extremal values,
CINET provides a rescaled value that controls for the density and
roup sizes. Second, it performs a permutation test to see whether
he index is significantly higher or lower than would be expected
f the edges were distributed entirely by chance. Third, it calculates
he measure not only for the network as a whole, but for groups
nd individual nodes as well. The latter point means that, for each
ode in the network, we can compute the extent to which the node
as ties with members of its own group (internal ties) versus other
roups (external ties).

Of course, at the individual level, E + I is the number of ties a
ode has, and corresponds to the row sum of a given row in the
djacency matrix. Thus, when we calculate the E–I index at the
ndividual level, we are effectively partitioning degree centrality
nto the portion due to ties with the node’s own  group and the
ortion due to ties to all others. The relative importance of outgroup
ies is then summarized by the E–I statistic.

Table 1 shows the results of partitioning degree centrality and
he calculation of E–I for an empirical dataset known as the “camp-
et” data, available in UCINET. The data consist of ties among
articipants and instructors of a 3-week workshop. The nodes of
he network can be partitioned into three groups: female partici-
ants, male participants, and instructors. In Table 1 and in most of
ur analysis as all the instructors are male we use just two groups,
amely male and female, but occasionally we use three and we flag
hen this has been done. The data are directed, but for simplic-

ty we have taken the underlying graph, which consists of a single
omponent. In the table, the number of ties from each node to same-
roup members and other-group members are shown, along with
he E–I index for each node.

The relationship between calculating the E–I index and par-
itioning degree centrality can be generalized to other centrality

easures as well. The next sections consider closeness central-
ty, eigenvector centrality and betweenness centrality in the E–I
ontext.

.1. Closeness E–I
Please cite this article in press as: Everett, M.G., Borgatti, S.P., Categorical 
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Closeness centrality (Freeman, 1979) is defined as the sum of
eodesic distances from a node to all others. As such, we  can clearly
artition this figure into the sum of two quantities: the distances
o members of a node’s own group (call this I), and the distances

able 1
egree E–I.

Node Internal External Total E–I

HOLLY 2 3 5 0.200
BRAZEY 0 3 3 1.000
CAROL 3 0 3 −1.000
PAM 5 0 5 −1.000
PAT  4 0 4 −1.000
JENNIE 3 0 3 −1.000
PAULINE 4 1 5 −0.600
ANN 3 0 3 −1.000
MICHAEL 4 1 5 −0.600
BILL  3 0 3 −1.000
LEE  2 1 3 −0.333
DON 3 1 4 −0.500
JOHN 2 1 3 −0.333
HARRY 3 1 4 −0.500
GERY 4 0 4 −1.000
STEVE 4 1 5 −0.600
BERT 3 1 4 −0.500
RUSS 4 0 4 −1.000
BERT 22 29 51 0.137
RUSS 17 23 40 0.150

to members of other groups (call this E). As a result, we can readily
compute the E–I index in the usual manner.

Table 2 gives the results using the campnet dataset. Note that
although the computation of E–I does not change when using dis-
tances, the interpretation should be reversed: whereas normally a
positive E–I indicates heterophily (more ties to out-group members
than in-group members), now a positive E–I indicates that dis-
tances to out-group members are greater than distances to in-group
members, which is consistent with homophily.

As noted before, it is not just the E–I scores that are of inter-
est here. The partial sums that are the within and between scores
are useful variables in themselves. The decomposition essentially
suggests that there are different ways of getting to a certain level of
centrality. Some nodes might do it through a heavy reliance on their
fellow in-group members, while others achieve the same overall
level using out-group members. We  might hypothesize that the
degree of reliance on in-group members for centrality might be
related to a personality characteristic, such as openness (McCrae
and John, 1992). Alternatively, we  could use the node profile across
these scores to categorize them: for example Pam and Pat have very
similar patterns, while Brazey is quite different.

It should be noted that closeness E–I has the same problems
that closeness centrality does: the measure is technically undefined
when the network is disconnected, which is a likely occurrence in
the case of directed data. However, just as with closeness central-
ity, we can get around this using any number of variations on the
distance matrix, such as taking the reciprocals of the distances and
setting undefined distances to zero (Borgatti, 2005), or subtracting
the distances from a constant (Valente and Foreman, 1998; Everett
and Borgatti, 2010).

2.2. Eigenvector E–I and related methods

The E–I centrality can be applied in the same way  to eigenvec-
tor centrality (Bonacich, 1972). The internal centrality scores of a
given node are proportional to the actors within the group to which
that node is connected and the external centrality scores are pro-
portional to the external nodes to which the node is connected.
This can easily be expressed in matrix form. Let A = (aij) be the adja-
cency matrix corresponding to a network G and let X be a subgroup
of nodes in G. We  then define the matrices AI and AE corresponding
to X as follows
attribute based centrality: E–I and G–F centrality. Soc. Netw. (2012),

AI
ij

= aij if i, j ∈ X and 0 otherwise

AE
ij

= aij if i ∈ X and j /∈ X and 0 otherwise
(2)

dx.doi.org/10.1016/j.socnet.2012.06.002
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Table  3
Eigenvector E–I.

Internal External Total E–I

HOLLY 0.132 0.243 0.375 0.296
BRAZEY 0.000 0.097 0.097 1.000
CAROL 0.196 0.000 0.196 −1.000
PAM 0.291 0.000 0.291 −1.000
PAT 0.247 0.000 0.247 −1.000
JENNIE 0.176 0.000 0.176 −1.000
PAULINE 0.224 0.038 0.262 −0.711
ANN 0.179 0.000 0.179 −1.000
MICHAEL 0.266 0.092 0.357 −0.486
BILL  0.243 0.000 0.243 −1.000
LEE 0.073 0.024 0.097 −0.510
DON 0.225 0.092 0.317 −0.420
JOHN 0.090 0.064 0.154 −0.169
HARRY 0.225 0.092 0.317 −0.420
GERY 0.206 0.000 0.206 −1.000
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Table 4
Weighted E–I.

Internal External Total E–I

HOLLY 0.198 0.122 0.320 −0.239
BRAZEY 0.000 0.049 0.049 1.000
CAROL 0.294 0.000 0.294 −1.000
PAM 0.437 0.000 0.437 −1.000
PAT 0.377 0.000 0.377 −1.000
JENNIE 0.264 0.000 0.264 −1.000
PAULINE 0.336 0.019 0.356 −0.893
ANN 0.269 0.000 0.269 −1.000
MICHAEL 0.399 0.046 0.445 −0.793
BILL  0.365 0.000 0.365 −1.000
LEE 0.110 0.012 0.122 −0.802
DON 0.338 0.046 0.384 −0.760
JOHN 0.135 0.032 0.167 −0.617
HARRY 0.338 0.046 0.384 −0.760
GERY 0.309 0.000 0.309 −1.000
STEVE 0.145 0.024 0.169 −0.720
BERT 0.105 0.024 0.128 −0.631
RUSS 0.161 0.000 0.161 −1.000

We  note that �X(AI + AE) = A. If x is an eigenvector with cor-
esponding eigenvalue � then Ax = �x and so we can define the
nternal eigenvector centrality within X as xI = 1/�AIx and the exter-
al centrality as xE = 1/�AEx. We  note that xI + xE = x when we sum
ver all X and so this is a decomposition of the eigenvector central-
ty into internal and external scores. These can then be used to find
he eigenvector scores E–I and hence the group and whole network
–I scores. Again using the campnet data we obtain the results as
hown in Table 3.

Another way of thinking about the Internal and External scores
s as weighted averages. For example Holly has internal connections
o Pam and Pat and external connections to Michael, Harry and Don.
he sum of eigenvector centrality scores of her internal connections
s 0.538 (= 0.291 + 0.247) and her external connections are 0.991;
dding these together means she is connected to a total of 1.529.
er eigenvector centrality score is 0.375 and we  now weight the

nternal and external sums so that they add up to this value. Hence
he Internal score is 0.375 × 0.538/1.529 = 0.132 and the External
core is 0.375 × 0.991/1.529 = 0.243.

Looking at Table 3 unsurprisingly the results in this case are
ery similar to those for ordinary degree E–I, although the rank-
rders are not identical. Of course, we can do the same things with
eta centrality (Bonacich, 1987), and the methods of Katz (1953)
nd Hubbell (1965).  These have the advantage of having tunable
arameters that would allow the results to differ somewhat from
egree centrality.

. Theoretical reweighting

One benefit of this kind of decomposition – for all radial mea-
ures, not just eigenvector – is the ability to weight the partial
cores differently so as to give more weight to either internal or
xternal ties. For example, we may  be looking at leadership within
roups and have a theory that suggests that within-group ties mat-
er more for the perception of leadership than external ties. In
onstructing a structural measure of leadership we  might decide
o weight internal ties, say, three times as much as external ties. If
he Internal score is the same as the External score then we would
ant the total to remain the same and so we need to make sure our
eights sum to 2. We  therefore choose 1.5 and 0.5 as our weights

n this case and the results of doing this are shown in Table 4.
Here the focus is on the “total column”, which constitutes a
Please cite this article in press as: Everett, M.G., Borgatti, S.P., Categorical 
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ew, weighted, version of eigenvector centrality. We  can see that
t makes significant changes in the rank order of actors. For exam-
le, Holly had previously held the highest eigenvector centrality
core but with more weight being given to internal scores there are
STEVE 0.218 0.012 0.230 −0.895
BERT 0.158 0.012 0.170 −0.858
RUSS 0.244 0.000 0.244 −1.000

now seven actors with a higher score. This kind of weighting is very
consistent with the general concept of eigenvector, which from a
substantive view can be seen as differing from degree centrality by
the fact that it weights ties to certain alters higher than others.

The E–I scores resulting from this reweighting would not nor-
mally be of interest, as the weighting necessarily results in all actors
getting more homophilous scores, the exception being the extreme
E–I scores of −1 and 1 which remain the same. We  note that the
rank orders of the other scores change as well.

One way  to think of eigenvector centrality is as a form of iter-
ated degree. We  start with degree centrality and then in the next
iteration a node’s centrality is the sum of the degrees of the nodes
they are connected to. This score is then normalized and the process
repeated until the scores remain constant. In our approach we have
taken the result of this and re-apportioned the eigenvector scores
but we could have kept up the spirit of the eigenvector centrality
concept by using iterative weighting at each stage. Although we  did
not pursue that approach here but it may  be worth considering.

Finally, we note there is nothing special about eigenvector and
reweighting and this technique could have been applied to our
previous centrality indices of closeness and degree.

4. Group sizes

We  have not yet considered the effect of unequal group sizes.
Clearly, if we partition a network into two classes, one very large
and one very small, the E–I statistic is likely to be negative for vir-
tually every member of the large group, and positive for every
member of the small group, especially if the average degree is
high. In some cases this is not an issue: after all, the E–I statistic
is correctly reporting that members of the large group tend to have
members of the large group as friends, as do members of the small
group. Being a member of a majority has certain consequences, as
does being the friend of someone who is a majority member, and
so we may  well need to measure the extent to which individuals
are experiencing this. If so, E–I will do a good job.

However, if the research interest is not in measuring the actual
outcomes of actor choices but rather their underlying preferences
or tendencies, then unequal group sizes will cause E–I to produce
misleading numbers. In this case, we  want to capture the extent to
which actors are choosing members of the ingroup at rates that are
higher or lower than the relative availability of each group.
attribute based centrality: E–I and G–F centrality. Soc. Netw. (2012),

One way to handle this is normalization. In this approach, we
normalize the values of E and I before applying the (E − I)/(E + I) for-
mula. For example, if we consider degree E–I, an obvious approach
is to divide the observed value of E and I by their respective

dx.doi.org/10.1016/j.socnet.2012.06.002
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Table 5
Normalized E–I scores.

Node Internal External Total E–I

HOLLY 0.286 0.300 0.586 0.024
BRAZEY 0.000 0.300 0.300 1.000
CAROL 0.429 0.000 0.429 −1.000
PAM 0.714 0.000 0.714 −1.000
PAT 0.571 0.000 0.571 −1.000
JENNIE 0.429 0.000 0.429 −1.000
PAULINE 0.571 0.100 0.671 −0.702
ANN 0.429 0.000 0.429 −1.000
MICHAEL 0.800 0.083 0.883 −0.811
BILL  0.600 0.000 0.600 −1.000
LEE 0.400 0.083 0.483 −0.655
DON 0.600 0.083 0.683 −0.756
JOHN 0.400 0.083 0.483 −0.655
HARRY 0.600 0.083 0.683 −0.756
GERY 1.333 0.000 1.333 −1.000
STEVE 1.333 0.071 1.405 −0.898
BERT 1.000 0.071 1.071 −0.867
RUSS 1.333 0.000 1.333 −1.000

Table 6
Crosstab of all dyads in network.

Same gr oup?   

  
1  0
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Table 7
Hypothetical contingency table.

Same group? 
1 0

Is �ed?
1 10 5 15
(a+c) (b+d) N 

aximums. In the case of the campnet dataset, there are 8 female
articipants, 6 male participants, and 4 instructors. Note we  have
ow moved to using the three categories as this means the groups
ave very different sizes (the gender split was nearly equal). If Holly

s a female participant, she can at most have 7 internal ties and 10
xternal ties. As shown in Table 1, she has 2 internal ties and 3 exter-
al ties. Normalized, these become 0.286 and 0.3, and recomputing
–I gives us a score of 0.024. This is fairly different from her original
–I score of 0.2, indicating that even her fairly modest heterophily
core of 0.2 was largely due to there being more outgroup choices
han ingroup choices. The new E–I score is just about zero, indicat-
ng no preference. Table 5 shows the complete set of normalized
egree E–I scores. The same strategy can be applied to any of the
ther centralities discussed above.

An alternative approach is to abandon E–I in favor of a mea-
ure of homophily that is invariant to differences in group sizes.1

n obvious possibility in the case of non-valued ties is the point-
iserial correlation, first used in this context by Ibarra (1992).  To
se it, we cross-tabulate two dyadic variables: X and Y; X is a 1/0
ariable in which xij = 1 if node i has a tie with node j. Y is also 1/0
nd yij = 1 if node i is in the same group as node j. A crosstab of X in

 is shown in schematic form in Table 6.
Using the notation of the cross-tab, the ordinary degree E–I

ndex can be written as (b − a)/(a + b). This notation makes it obvi-
us that the E–I index counts only ties that are present: it effectively
sks, of all observed ties, what is the proportion that falls in the
ame group as ego? Hence the E–I index is a rescaling of a/(a + b),
hich runs between 0 and 1. If a measure of homophily were to
Please cite this article in press as: Everett, M.G., Borgatti, S.P., Categorical 
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onsider non-ties as well, it would automatically take into account
roup sizes. For example, consider the hypothetical contingency
able in Table 7. The E–I index is a sizeable −.333, indicating

1 Ultimately, of course, the two approaches are the same since if we rewrite the
–I  formula in terms of the un-normalized values of E and I, the result will be a new
ormula that “bakes” in the invariance property.
0 40 20 60
50 25 75

considerable homophily. However, the odds of a tie being internal
are no greater than the odds of a non-tie being internal, just as
the odds of a same-group pair having a tie is no different from the
odds of a cross-group pair having a tie. The odds ratio for the table
is 1.0 and the variables X (tie/no tie) and Y (same group/different
group) are perfectly independent. In this network, ties are being
formed at random with respect to group membership.

The reason the E–I index gets it wrong, of course, is because of
varying group sizes. For example, in this particular case, it may be
that the network is partitioned into a large group and a small group.
If choosing ties at random, a node in the large group is likely to have
most ties within group, but also most non-ties, which is not cap-
tured by EI. A solution is to replace the E–I index with a measure of
association that is invariant with respect to group size. One exam-
ple is the point-biserial correlation coefficient, which, following the
notation in Table 6, is defined by Eq. (3).

ad − bc√
(a + c)(b + d)(a + b)(c + d)

(3)

When this measure is computed on the data in Table 7,
the resulting coefficient is zero, indicating no tendency toward
homophily or heterophily, once group sizes have been accounted
for. Note that the measure achieves this by taking into account non-
ties as well as ties. The actual size of each group is not taken into
account directly.

The advantage of this approach – i.e., seeking measures of asso-
ciation that already have size invariance as a property – is that we
can connect what we  are doing with other bodies of work (e.g., in
numerical taxonomy) that have dealt with similar issues (Sneath
and Sokal, 1973). The advantage of the normalization approach,
however, is that it gives us normalized versions of the internal and
external tie counts, which can be useful variables in themselves. In
addition, as long as the relative sizes of groups are known, the nor-
malization approach can be used when non-ties are not available,
as in true personal network or ego-network research designs.

5. Overlapping groups

When calculating an E–I statistic, we  normally assume a par-
tition of nodes that divides the nodes into a set of exhaustive,
mutually exclusive classes. Typically, these are a priori partitions
corresponding to categorical variables like gender, race, ethnicity,
month of birth, country, etc. Of course, they can also be the results
of a cohesive subgroup analysis, such as a partition obtained via
a standard clustering algorithm (e.g., Ward, 1963). However, in
many subgroup analyses, the output consists of a set of overlap-
ping groups rather than partitions. Examples include cliques (Luce
and Perry, 1949), n-cliques (Luce, 1950), and k-plexes (Seidman
and Foster, 1978). This is not a problem for E–I measures, including
the generalized measures we  present here. The reason is that in
calculating a score for any individual node, the E–I measure classi-
fies all ties as in-group ties or out-group ties, effectively forming a
attribute based centrality: E–I and G–F centrality. Soc. Netw. (2012),

temporary partition. If a group-level index is needed, the internal
and external counts can be aggregated for that group, and an over-
all E–I score computed for the group. Only overall statistics for an
entire network pose any kind of problem, as a different estimate

dx.doi.org/10.1016/j.socnet.2012.06.002
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much to the overall betweenness scores. The liaison roles are nearly
exclusively taken by the original firm and TD and KG are playing
a major role in liaising between the old acquisition and the new
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eeds to be calculated for each subgroup. However, the distribu-
ion of these E–I statistics could well of interest in themselves, and
ossibly diagnostic of some kind of social property.

. Betweenness

Having extended E–I to several well-known measures of cen-
rality, it is reasonable to consider extending E–I to betweenness.
owever, betweenness is fundamentally different from the other
easures we have been considering. Whereas the previous mea-

ures were all radial centrality measures, betweenness is a medial
easure (Borgatti and Everett, 2006). That is, it is a measure that

ummarizes a property of walks (specifically, shortest paths) that
ass through (rather than originate or terminate at) a given node,
n their way from each node in the network to every node in the
etwork.

The most natural analog to our decompositions of radial mea-
ures would be to decompose betweenness centrality into the
ortions due to the groups of each pair of nodes in the network,
ather than each node. For example, if the attribute of interest
s gender, then it makes sense to decompose a node’s between-
ess into the contributions made by male–male pairs, male–female
airs, female–male pairs (if directed data), and female–female
airs. Table 8 shows the decomposition by gender combinations of
etweenness scores for each node in the campnet dataset, which

n this case has not been symmetrized in order to preserve rich-
ess. To construct this table we submitted the data to the UCINET
Borgatti et al., 2002) geodesic cube routine which is in the cohe-
ion section of the menu. This routine calculates a 3-dimensional
atrix b(i,j,k) which gives the proportion of geodesics connecting j

nd k that pass through i. Submitting this matrix to the block image
outine in which the image graphs are constructed by summing the
ntries with the gender partition yields the results displayed.

As an example of how to interpret the table, consider the first
ode, Holly. Her betweenness score is 78.33. This comes largely

rom being along the short paths that connect men  to women (54),
nd women to men  (18). Much more rarely (6.33), she dominates
he shortest paths between men, and she is never along the shortest
aths connecting women to women.

To create E–I scores, one approach is to consider to what extent a
ode’s betweenness is due to joining two nodes that are members
f the node’s own group, and how much is due to joining others
utside (either others with both others outside or one outside and
ne within the node’s own group). In that case, the E–I score for
olly would be (72 − 6.33)/(72 + 6.33) = 0.838. The strong positive
alue is interpreted as saying that Holly tends to be a heterophilous
onnector, meaning that, whenever she is along the shortest path
etween two  terminal nodes, it tends to be that one of the nodes

s a “foreigner”. Alternatively, we could consider the E in the E–I
ormula to refer to all cases where a node serves as a shortest path
onnector between pairs of nodes that are both members of the out-
roup (e.g., in Holly’s case, men), and let I refer to all other cases. In
hat case, Holly’s E–I score would be (0 − 78.33)/(0 + 78.33) = −1.0,
hich indicates that she never lies on a shortest path connecting

foreigners”.
Another way to look at partitioning betweenness centrality is

long the lines of Gould and Fernandez (1989) brokerage. They con-
ider triads in which node A has a tie to node B, and B has a tie to
ode C, but A does not have a tie to C. In these triads, B is thought
o be playing a structural role called a broker. If nodes in this net-
ork can belong to different groups (e.g., departments), then the
Please cite this article in press as: Everett, M.G., Borgatti, S.P., Categorical 
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roker may  find themselves in a variety of different situations: bro-
ering between nodes of its own department, brokering between
ts own department and another department, brokering between
odes that are both members of another department, and so on.
Fig. 1. Gould and Fernandez brokerage roles.

Gould and Fernandez regard these different possibilities as differ-
ent sub-roles that the broker may  play, and give them different
names. They are as follows (see also Fig. 1): (1) Coordinator role,
where A, B and C all belong to the same group; (2) Gatekeeper role,
where A belongs to one group, and B and C belong to another; (3)
Representative, where A and B belong to one group, and C belongs
to another; (4) Consultant,2 where A and C belong to one group,
and B belongs to another; and (5) Liaison, where A, B and C each
belong to a different group.

The brokerage structures of Gould and Fernandez can be
extended to the case of betweenness. Instead of requiring B to be
adjacent to A and C, we let B be along a shortest path between them
and, for consistency with Freeman’s betweenness (1979), assign a
weight to the A → C connection equal to the number of shortest
paths from A to B divided into the number of such paths that involve
B.

Given a partition of the network we can therefore decompose
the betweenness centrality into the various Gould and Fernandez
roles. If b is the betweenness score of a given node we  obtain

b = bCoord + bGate + bRep + bCon + bLiaison (4)

If we only have two  groups then the last term is always zero and
can be dropped.

As an example, we examine betweenness in a dataset collected
from the Human Resources department of a health care company.
The company had grown over the years via a series of merg-
ers, and we can group the employees by which company they
came from originally. Fig. 2 shows a network in which ties indi-
cate “to whom do you go to for help in reformulating problems”.
Actors from the original firm are in white, actors from an older
old acquisition are in gray and actors from the most recent acqui-
sition are in black. The decomposition of betweenness into the
various roles is given in Table 9. The column labeled total corre-
sponds to the raw Freeman betweenness score. The other column
labels are Coo = coordinator, Gat = gatekeeper, Rep = representative,
Con = consultant and Lia = liaison.

It is clear from the overall betweenness scores that actors TD, KG,
BD and PW have high betweenness scores and are therefore playing
crucial roles within the network. For most actors, the coordinator
and consultation roles are very low scoring and do not contribute
attribute based centrality: E–I and G–F centrality. Soc. Netw. (2012),

2 Gould and Fernandez referred to this as the Itinerant Broker role, but we  find
the UCINET term more evocative.

dx.doi.org/10.1016/j.socnet.2012.06.002
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Table 8
Decomposition of betweenness by gender combinations for the directed campnet dataset. The sum of all values in each 2-by-2 matrix is equal to the Freeman betweenness
of  the node.

Matrix: HOLLY

1      2 
Women    Men 

------ ------
1 Women   6.333 18.000 
2   Men  54.000  0.000 

Matrix: BRAZEY

1      2 
Women    Men 

------ ------
1 Women   0.000  0.000 
2   Men   0.000  0.000 

Matrix: CAROL

1      2 
Women    Men 

------ ------
1 Women   1.333  0.000 
2   Men   0.000  0.000 

Matrix: PAM

1      2 
Women    Men 

------ ------
1 Women   8.500  0.000 
2   Men  24.000  0.000 

Matrix: PAT

1      2 
Women    Men 

------ ------
1 Women  10.000 15.000 
2   Men  14.500  0.000 

Matrix: JENNIE

1      2 
Women    Men 

------ ------
1 Women   3.333  3.000 
2   Men   0.000  0.000 

Matrix: PAULINE

1      2 
Women    Men 
------ ------

1 Women   4.000  3.000 
2   Men   5.500  0.000 

Matrix: ANN

1      2 
Women    Men 
------ ------

1 Women   0.500  0.000 
2   Men   0.000  0.000 

Matrix: MICHAEL

1      2 
Women    Men 
------ ------

1 Women   7.000  2.000 
2   Men  37.833 12.000 

Matrix: BILL

1      2 
Women    Men 
------ ------

1 Women   0.000  0.000 
2   Men   0.000  0.000 

Matrix: LEE

1      2 
Women    Men 
------ ------

1 Women   0.000  0.000 
2   Men   5.000  0.000 

Matrix: DON

1      2 
Women    Men 
------ ------

1 Women   0.000 14.000 
2   Men   2.333  0.000 

Matrix: JOHN

1      2 
Women    Men 
------ ------

1 Women   0.000  0.000 
2   Men   0.000  0.000 

Matrix: HARRY

1      2 
Women    Men 
------ ------

1 Women   0.000  0.000 
2   Men   2.333  0.000 

Matrix: GERY

1      2 
Women    Men 
------ ------

1 Women   7.000  3.000 
2   Men  28.833 15.833 

Matrix: STEVE

1      2 
Women    Men 
------ ------

1 Women   3.500  2.500 
2   Men   5.667  5.167 

Matrix: BERT

1      2 
Women    Men 
------ ------

1 Women   3.500  2.500 
2   Men   4.333  3.333 

Matrix: RUSS

1      2 
Women    Men 
------ ------

1 Women   7.000  4.000 
2   Men  21.667 14.667 

Table 9
G&F betweenness for the network in Fig. 2.

Node Coo Gat Rep Con Lia Tot

JB 1.50 1.58 7.31 0.00 3.85 14.25
TB  0.87 3.20 5.57 6.03 6.38 22.06
MC  0.00 3.67 0.37 0.00 0.00 4.03
CC  0.00 0.00 0.89 0.20 4.17 5.26
BD  0.00 1.44 3.70 0.20 0.20 5.54
TD  0.87 0.20 10.93 3.03 4.93 19.96
PD  0.00 4.65 1.08 2.33 2.99 11.05
JF  0.00 1.31 5.33 1.00 0.33 7.97
KG  0.87 4.22 7.18 2.03 3.74 18.03
SM  0.00 0.81 0.82 0.00 0.00 1.63
BS  0.00 2.02 0.73 0.33 1.84 4.93
AS  0.00 0.53 0.14 0.00 1.52 2.19
JT  0.00 0.00 0.00 0.00 0.00 0.00
PW  0.00 4.86 6.40 2.03 1.12 14.41
CW  0.20 6.57 0.73 0.50 3.43 11.43
TW 0.00  1.17 0.00 0.00 0.10 1.27
Tot 4.31 36.23 51.18 17.68 34.60 144.01
acquisition. We  would note that TD’s major role in keeping paths
from blues to blacks short is probably not obvious to the actors
themselves, and lengthening these paths would be an unintended
consequence of TD leaving. We can see that TD is the only node
that plays all five betweenness roles. BD acts as a representative
for the new acquisition as does TD for the original firm. In contrast
the dual role of gatekeeper is taken on by PW for the new acqui-
sition and by KG for the original firm. It is interesting to note the
corresponding roles of BD and TT and of PW and KG. No such roles
are much in evidence from the old acquisition with just JB having
a small gatekeeper role. It would appear that most of the members
of the old acquisition have been marginalized.

Burt’s (1992) theory of structural holes and Granovetter’s (1973)
theory of weak ties indicate that having connections to similar
attribute based centrality: E–I and G–F centrality. Soc. Netw. (2012),

others has less benefit than having connections to different oth-
ers. We  may  well expect in this case that liaison betweenness has
more benefit than the other forms of betweenness. In this exam-
ple the two highest betweenness actors also had the two  highest

dx.doi.org/10.1016/j.socnet.2012.06.002
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Fig. 2. Members of the HR department of a 

etweenness liaison scores and so we could well expect they would
eap the most benefit. But the third highest betweenness actor had

 zero liaison betweenness score so may  not be in such a good
osition as the raw overall betweenness suggests.

The above method can be applied to other medial measures such
s flow betweenness or random walk betweenness.

The decomposition scores given in Table 9 suffer the same issues
ith respect to group sizes as the decompositions of radial cen-

rality measures discussed earlier, and indeed we could normalize
hem in much the same way. In this case, however, we introduce a
ifferent approach, which is to compare the observed values with
he expected values of a baseline model. For illustration, the base-
ine model we choose is one that takes the social structure and
roup sizes as givens and otherwise assumes that the assignment of
odes to groups is independent of network location. In this model,
he generic formula for the expected value for any betweenness
ole can be written as

∑G
ni(nj − 1)(nk − 2)
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[r]
h

= bhp[r] = bh
i,k,j

N(N − 1)(N − 2)
(5)

here bh is the betweenness score of node h, ni is the size of group
, N is the number of nodes in the network as a whole, and the

able 10
xpected values for the betweenness decomposition.

Node Coo Gat Rep Con Lia Tot

JB 1.01 3.13 3.14 3.14 3.82 14.25
TB  1.57 4.85 4.86 4.86 5.91 22.06
MC  0.29 0.89 0.88 0.89 1.08 4.03
CC  0.37 1.16 1.15 1.16 1.42 5.26
BD  0.40 1.22 1.22 1.22 1.49 5.54
TD  1.42 4.39 4.40 4.40 5.35 19.96
PD  0.79 2.44 2.43 2.43 2.96 11.05
JF  0.57 1.76 1.76 1.75 2.14 7.97
KG  1.29 3.96 3.97 3.97 4.84 18.03
SM  0.12 0.36 0.36 0.36 0.44 1.63
BS  0.35 1.08 1.09 1.09 1.32 4.93
AS  0.16 0.48 0.48 0.48 0.59 2.19
JT  0.00 0.00 0.00 0.00 0.00 0.00
PW 1.03 3.18 3.17 3.18 3.85 14.41
CW  0.81 2.52 2.51 2.52 3.06 11.43
TW 0.09 0.28 0.28 0.28 0.34 1.27

10.27 31.70 31.70 31.73 38.61 144.01
care organization. Nodes colored by group.

summation is over all G groups. Using the convention that i is the
source group, j is the sink group and k is the broker, we can express
the probabilities of each role by restricting the values that i, k and
j take on in the summation. For the coordinator role we require
i = k = j. For the gatekeeper role, i /= k = j. For the representative role,
i = k /= j. for the consultant role, i /= k /= j and i = j. For the liaison
role, i /= k /= j and i /= j.

Table 10 gives the expected values for the healthcare dataset. If
we compare the first row to the observed values in Table 9, we can
see that actor JB plays the representative role twice as often as we
would expect by chance, and plays the gatekeeper role just half as
often as we would expect.

7. Conclusion

In this paper we  have considered the decomposition of central-
ity scores based on the contributions of different groups of nodes. In
doing this, we are able to show connections with two well-known
metrics: the E–I homophily index, and the Gould and Fernandez
brokerage metrics. Specifically, the E–I index can be seen as a mea-
sure based on partitioning degree centrality. We  show that E–I can
be generalized to other radial centrality measures such as close-
ness centrality and eigenvector centrality, creating a closeness E–I
and an eigenvector EI, respectively. We  also show that the Gould
and Fernandez brokerage measures, which partition ego network
brokerage into five types based on the group memberships of the
nodes involved, can be generalized to the whole network case such
that what is partitioned is a node’s betweenness centrality score.
This enables us to characterize the different ways that a node might
lie along the shortest paths between two others.
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