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THE TRIPLE PROBLEM OF CONVERGENCE IN THE PERTURBATION
EXPANSIONS WITH NON-DIAGONAL PROPAGATORS;

M. Znojila{ M. F. Flynnbl and R. F. Bishopbl

a/Nucl• Phys. Institute, ~ez, Czechoslovakia

b/UMIST, Manchester, United Kingdom

Let us consider the standard perturbation theory of the Rayleigh-
Schrodinger type, with the Hamiltonian split

H = Ho + g HI

and pair of ansatzs

E = Eo + g El + g2 E2 +

If} :: 'ro') + ~ , 'f'" '> +-

III
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Their insertion in the Schr-cddngar-equation HI r> = E ''1'>
leads to a RS hier~rchy of relations

/31

and

141

with k = 1, 2, ••• •



In a textbook spirit, we may interpr=t El, E2, ••• as
abbreviations,

and, insertirg them in /4/, eliminate formally also the wavefun-
etion corrections,

/6/

In this way, perturbation theory m~y be interpreted as ~ reduc-
tion of the full problem to its simplified version /3/.

The "Simplicity" of Ho is usually specified ac a possibili-
ty of its compbete diagonalisation. In the modified RS /MRS/
approachl, the "siJ'!plicity"ofHo is weakened: in a given
"unper tur-bed " basis ,0), II) , ..., we admit all operators
Ho = T + 10> g < 0 I with a free parameter g and "invertible"
matrix T, i.e., with such a matrix that we may obtain81so an
explicit form of the operator R /with, say, R = l/(E. - T) where
Eo is a function of g/.

The main MRS idea is simple - we have noticed that an expli-
eit knowledge of R and V specifies alrea~ all the correctiobS
/5/ and /6/, while e presence of a free parameter g enables us
also to get rid of the eigenvalue problem /3/1• Indeed, we may
write, in an explicit manner,

1'1'. > - RIO>, (01'(0 > , <01'/'.") •. o

t ':,(E.) - ,,/ <0/ R.(£~)I() '>
/7/
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inversion of the truncated matrices N x N. 1In Ref. , the

In practice, it is useful to write g = g(Eo' and treat Eo
as a free parameter itself.

There is one important reason for using' non-diagonal T in the
split /1/ - we may make H - H as small as necec sar-y foro
a good convergence of the expansions /2/. There is a,price
to be paid of course - we must guarantee a quick pr-ac.t Lcel,con-
vergence also in a transition T ~ R and in the corresponding
MRS forms of prescriptions /5/ and /6/.

1. The T .• R convergence.

The simplest way how to define R is a brute-force numerical

related N -> 00 convergence has been reduced to a continued-
fractional convergence, by means of a restriction of T's to
tridiagonal matrices. In Ref.2, this proce dure has been-extended to 2s+1 - diagonal T's. An alternative, purely non-
numeEical type of the T -~ R transi~ion3 represents one
of the possible final solutions of this problem - we may re-
construct any trial T' into an "inve!"tible" one siTply by itS'
fixed-point re-arrangement T' = T + corrections. Numerically,
this has been illustrated elsewhere3 - we'may only summarize
here that there are no problems with the first, N ~ 00

type of convergence in practice, since its "reslilduum"may
simply be ,incorporated in the perturbation itself.
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2. The intermediete-summation convergence.

Each MRS contribution, SEy, Ek ' is defined as a RS-type sum
over intermediate states. Each incertion of R reprecents a

single summation in the RS formalism - here, the summation
goes over the two /left and right/ indices. The relateq
"additional" convergence problem may again be eliminated in
the same manner as above - we may modify the input unperturbed
propagator R' /general matrix/ and use its 2t+l - diagonal part
only, R'~ H/t/, t < 00. Again, the related modification of
~'..• T/t/ (= a general matrix now) is, in effect, again a mere
re-definition of the pe~turbation.

The numerical tests of the above idea may again be found
elsewhere4 ~d illustrate, for the cut-offs t dedreasing from
infinity, an emergence of the RS-t~pe acymptotic-series diver-
gence, especially for small t(= 0 or 1) In an opposit setting,
the analysis of the t ~ ao limit supports a hypothesis of the
MRS convergence - see Table 1here, which lists the "optimal
0!rders" /giving the optimal asymptotic-series MRS results/for
anharmonic oscillators as analysed in Ref.4.

Table 1. An "optimal order" No as a function of t.

t 0 1 3 5 1

No 2 2 4 6 10
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3. The numerical indications of the MRS convergence. of energie~;~

A .,
For any coupling of anharmonici ty x4, we Jr.aychoose H wi th .~~

;il~,
:oJ

<J
another coupling Ao as a matrix T. For a broad range of ~s,

A similar pattern is obtained also

we obtain results exemplified here in Figure 1.
pRoe (! It I 0 JJ

Fl~. i
for the very broad range of para-
meters E • For the variable 1o ~
we obtain the dependence illu-
strated here in Figure 2 for A = 1.
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.10 \
\

" 4.1,
•.•_LO 1Jt-1.e.••

l..J,.drJ.~fr
----1d~,.t!tr

,t.J.
1 tJ vrJ.e."..

z. •• ,( ()ptl..~.,.

t-l
" O,.d.~r

,
4

z.~_---,_---,_.......--+
~O-I of 40~ ~oJ. A.

'-." e, ')4) 7\ , .

We may see that the A < 1•part of the latter Figure
is a cur.ve with an inf1ec--tion point which is alm08t
order-independent. - Ve

vergence is very good for
A (inflection) ~ 1 is a•

believe that the MRS con-
I ••.Jinflectionj d . t thatAo'~ en conJec ure

"naturel" boundar~ of the convergence

asymptotic series.
domain, or at least of a domain of a rel!able use of the MRS

-----------------------------------------------------------
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