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1. INTRODUCTION

Most calculations in lattice gauge-field theory (LGFT) have been performed
within the Lagrangian formulation, which is based on a path-integral approach to
the imaginary-time propagator. Although the Lagrangian approach is conceptually
both elegant and simple, and a great deal of work has been done to improve the
accuracy of the Monte Carlo methods used in its numerical implementation, thereby
increasing its viability further, nevertheless the much less studied Hamiltonian ap-
proaches have at least four important advantages. Firstly, since it is based on an
imaginary-time evolution, the Lagrangian approach does not allow easy access to
the vacuum wave functional. By contrast, such a wave functional is at the core of
any Hamiltonian approach. Once the wave functional is known, most important
properties of theories such as QCD, including, for example, confinement and chiral
symmetry, should follow automatically. Secondly, time-dependent phenomena can
only be discussed in a real-time (Hamiltonian) setting. Thirdly, the physical inter-
pretation of the variables is much more transparent in the Hamiltonian framework,
where, for example, electric and magnetic operators have their classical meanings.
Lastly, the Hamiltonian approach may be studied both with analytical techniques
and numerically. Thus, for example, we can study low-lying excitations with a har-
monic approximation and we can disentangle the dependence of observables on the
parameters in the approximation.



In view of these advantages, we develop here a consistent approach to Hamilto-
nian LGFT using the maximal-tree gauge, which is further formulated in terms of
a set of angular variables. The various constraints in the theory are discussed and
implemented, and an independent and complete set of variables is determined for
the colourless sector. We describe a general scheme to construct the eigenstates of
the electric energy operator using an efficient symbolic method. It is shown how the
one-plaquette problem for SU(N) LGFT can be mapped onto an N -fermion problem
for arbitrary values of N . The low-lying energy spectra are investigated numeri-
cally, and explicit solutions are shown for SU(2), SU(3), SU(4), and SU(5). Previous
attempts to use the coupled cluster method to include multi–plaquette correlations
have largely been confined to the ground–state energy and low–lying excitation gaps
(glueball masses) in the pure gauge (gluon) sector (i.e., without fermions) of the
U(1) and SU(2) cases in one and two spatial dimensions [1,2]. We conclude with a
brief discussion on how the new maximal-tree formulation might profitably be used
to make further progress for the non-Abelian SU(N) gauge theories with N ≥ 2 in
three spatial dimensions where, as we show, significant new complications arise.

2. HAMILTONIAN LATTICE GAUGE THEORY

The original Abelian gauge theory of electromagnetism was extended by Yang
and Mills [3] using gauge fields of more complicated structure, which included internal
degrees of freedom. This generates self-interactions since the gauge fields do not
commute, but are chosen to obey the commutation relations of a specific Lie algebra.

2.1. The Lagrangian

We shall concentrate on a gauge-field Lagrangian where the field AAAµ is an element
of the Lie algebra su(N),

L =
1

2g2
Tr[FFFµνFFF

µν ] . (1)

Here the field tensor FFFµν is defined as

FFFµν ≡ ∂µAAAν − ∂νAAAµ − i[AAAµ,AAAν ] , (2)

and the field variable AAAµ is an element of the algebra, conveniently parametrised as

AAAµ ≡ g
1

2
λaAa

µ . (3)

The λa are the N2 − 1 generators of the Lie algebra, satisfying the commutation
relations

[λa, λb] = 2ifabcλc . (4)

The index a thus runs from 1 to N 2 − 1. The λa can be represented by traceless
N ×N matrices, normalised such that their squares have trace 2, as can be seen from
the anticommutation relations

{λa, λb} = 2dabcλc +
4

N
δabI . (5)



In Eq. (3) we have absorbed the coupling constant g into the field AAAµ, so that we
can interpret the fields geometrically, since the field tensor is now the curvature that
follows from the covariant derivative

dddµ ≡ ∂µ − i[AAAµ, ·] , (6)

from which follows the relation

[dddµ, dddν ] = −i[FFF µν , ·] . (7)

As we are interested in the Hamiltonian, we perform the standard equal-time
quantisation and reformulate the Lagrangian in terms of generalised electric and mag-
netic fields. This is strictly speaking a 3-dimensional result, since this interpretation
requires the use of three-dimensional algebra. We shall nonetheless use the result
below for other numbers of spatial dimensions as well. We find

L =
1

g2
Tr

[

D
∑

k=1

(EEE2
k −BBB2

k)

]

, (8)

where BBBi ≡ − 1
2
εijkFFF jk and EEEi ≡ FFF i0. Since we wish to impose the temporal

gauge AAA0 = 0, we separate the Lagrangian into two parts, thereby isolating the
AAA0-dependent part [4],

L =
1

g2
Tr

[

D
∑

k=1

(EEE2
k −BBB2

k)

]

AAA0=0

+
1

g2
Tr [AAA0GGG + AAA0XXX (AAA0)] , (9)

where we have added a total divergence. The function XXX is second order in AAA0 and
does not contribute to the equations of motion or to the constraint equations in the
temporal gauge (AAA0 = 0) discussed below.

Since the time-derivative of AAA0 does not occur in the Lagrangian, the equation
of motion for AAA0 is a time-independent algebraic equation, and thus AAA0 is constant.
This set of equations (one for each colour index) is the non-Abelian analogue of the
Gauss’ law constraint, and in the absence of colour charges they take the simple form

Ga(~x) = 0 , (10)

where

Ga(~x) =

D
∑

i=1

[∂iE
a
i (~x) + gfabcAb

i (~x)Ec
i (~x)] =

D
∑

i=1

dddiE
a
i . (11)

The components of the fields can be obtained via the relation

Aa
µ =

1

g
Tr[AAAµλa] , Ea

µ =
1

g
Tr[EEEµλa] . (12)

The constraints obey the same commutation relations as the generators of the gauge
group. Thus, Gauss’ law cannot be implemented as a strict operator condition as



it leads to contradictions, since the non-commuting constraints cannot all be di-
agonalised simultaneously. However, within the (in this case colourless) physical
subspace defined by

Ga(~x)|Phys〉 = 0 , (13)

no such problem arises, since the eigenvalue of the commutators is also 0. The space
of states consists of wave functionals, taking values on the SU(N) group manifold.
From Eq. (13) we find N2−1 functional conditions on each wave functional, consisting
of functions on the group manifold at each space point.

As is well known, quantization of problems involving redundant degrees of free-
dom (i.e., where some of the equations of motion are constraints) is quite involved.
The two main techniques used are Dirac and BRS quantization, and they require a
large amount of additional analysis. For more details one can consult the seminal
work by Dirac [5,6], as well as Refs. [4,7–10]. If we are able to work within the phys-
ical subspace only, we can ignore these formal problems and define the quantisation
of the canonical momenta, Πa

i ≡ ∂0A
a
i , by

Πa
i (~x) = Êa

i = −i
δ

δAa
i (~x)

, (14)

which involves a functional derivative [11,12] with respect to the field variables.

Since Aa
0 is not dynamical, we cannot associate a canonical momentum with it.

We therefore use the temporal gauge, Aa
0 = 0, which leaves us with a residual gauge

freedom φφφ(~x) independent of the time coordinate, such that under the transformation

AAAµ(~x) → φφφAAAµ(~x), where

φφφAAAµ(~x) = φφφ(~x)AAAµ(~x)φφφ−1(~x) + i[∂µφφφ(~x)]φφφ−1(~x) , (15)

with φφφ ∈ SU(N), the Lagrangian is invariant,

φφφFFFµν(~x) = φφφ(~x)FFFµν(~x)φφφ−1(~x) . (16)

2.2. Discretization and the Hamiltonian

Many quantum field theories suffer from singularities, both in the infrared and
ultraviolet limits. In many interesting cases, such as QCD [13], these are renor-
malizable. Rather than dealing directly with the continuum, we shall regularise the
problem by introducing a simple hypercubic lattice in the D-dimensional space, with
lattice spacing a. Since we are pursuing a Hamiltonian approach, time will remain
continuous. We shall concentrate here only on the pure gauge theory.

As is by now well known (and see our full paper [14] for further details), the
system is described by a set of gauge fields (or chromo-vector-potentials)

Al =
1

2
g

N2
−1
∑

a=1

λaAa
l , (17)



that are now defined on the links l of the lattice. They are Hermitian, since λa is
Hermitian. The chromo-electric fields, Ea

l , are the corresponding canonical momenta
obeying the commutation relation,

[Ea
l , Aa′

l′ ] = −iδll′δaa′ . (18)

The group elements are the link variables, Ul ≡ exp {iaAl}, which are thus N × N
matrices. They correspond to parallel transporters on the lattice. Since Al is an
element of the su(N) Lie algebra, Ul is an SU(N) matrix. The product of four such
group elements around a primitive square on the lattice (usually called a plaquette or
Wilson plaquette) defines the corresponding plaquette operator, Up ≡ U1U2U

−1
3 U−1

4 .
Their traces form the simplest gauge-invariant quantities on the lattice.

Ignoring temporarily problems with overcompleteness of the variables, one can
derive the Kogut-Susskind Hamiltonian [9],

HKS =
g2

2aD−2





∑

l

N2
−1
∑

a=1

Ea
l Ea

l + λ
∑

p

Tr[2 − Up − U−1
p ]





≡ g2

2aD−2
(HE + λHM ) , (19)

where D is the number of spatial dimensions, and λ ≡ a2D−6/g4. The sum on l in
the electric term HE runs over all links, while the sum on p in the magnetic term
HM runs over all plaquettes on the lattice.

Our physical states are now gauge-invariant in the vacuum sector. So far, the
price we have paid for adopting the Hamiltonian approach is twofold. Firstly, explicit
Lorentz invariance has been broken and, secondly, the problem remains of determin-
ing the physical subspace.

2.3. The constraints: A first look

As we have seen above, the gauge freedom leads to constrained dynamics. The
residual gauge symmetry involves all time-independent local gauge transformations.
These gauge freedoms thus generally prove an obstacle to establishing a proper set
of variables in which the wave functional may be expressed. Before proceeding let us
do some simple counting of the number of independent (i.e., unconstrained) degrees
of freedom in our formulation. The primitive variables are the set Ea

l defined on the
set of Nl links. Hence, the total number of degrees of freedom is (N 2 − 1)Nl, where
the first factor is simply the number of SU(N) group generators. However, there
are constraints between them due to Gauss’ law. Thus, we can readily derive the
lattice versions Ga

i of the continuum generators Ga(~x), for each of the Ns lattice sites
i. Hence, the number of (unconstrained) independent degrees of freedom is

Nu = (N2 − 1)(Nl − Ns + 1) , (20)

where the additional unity term in the second factor in this expression arises due to
the overall global gauge degree of freedom that would finally still remain.



Table 1

The number of degrees of freedom on a hypercubic lattice of size n × n × · · ·n, for
different numbers of space dimensions, D. [Note: The D =“1” case comprises n
plaquettes on a line.]

Dimensionality, D “1” 2 3 D ≥ 2

number of sites, Ns 2(n + 1) (n + 1)2 (n + 1)3 (n + 1)D

number of links, Nl 3n + 1 2n(n + 1) 3n(n + 1)2 Dn(n + 1)D−1

number of 1
2
D(D − 1)n2

plaquettes, Np n n2 3n2(n + 1) ×(n + 1)D−2

As shown in Table 1, we see that the total number of plaquettes, Np on the
lattice is given by Np = Nl −Ns +1 for the cases D = 1 and D = 2, but this relation
is not true for D > 2. The construction of Gauss’ law makes it clear why it is so
attractive to work with plaquette variables or, more generally, with traces of products
of group operators Ul around closed loops (i.e., Wilson loops), since these variables
are automatically gauge-invariant. Hence, for D = 1, 2 the plaquette variables form a
complete (i.e., neither over- nor under-complete) set of unconstrained variables. We
turn below to the vexed question of what variables to choose for D > 2.

3. GAUGE FIXING AND MAXIMAL TREES

As we have seen above, it is the gauge freedom that leads to the constrained
dynamics and the fact that the set of link variables must, in general, be over-complete.
However, since the link variables are still one of the most attractive sets to use, we
are motivated to fix the gauge as much as possible. We actually choose to fix the
gauge fully (apart from an overall global gauge transformation that we cannot fix) by
separating all of the links on the spatial lattice into two sets. One set is chosen to be
just sufficient to connect any two lattice sites in a unique way. Any such set of links
is called a maximal tree [15,16]. Its choice for a given lattice is clearly not unique,
but one such choice is shown in Fig. 1 for D = 3. The case shown corresponds to
the union of all links on the x-axis for y = z = 0, and all links in the y-direction for
z = 0, and all links in the z-direction, with an obvious labelling for the axes.

Thus, all SU(N) link variables Ul are thereby divided into two non-overlapping
sets, {Ul} → {Vl | l 6∈ tree; Wl | l ∈ tree}. The variables {Wl} are now associated with
the irrelevant gauge degrees of freedom; they are essentially the irrelevant longitudinal
electric fields. Conversely, the variables {Vl} form our basis for the relevant degrees
of freedom, the magnetic variables. However, these latter link variables are not by
themselves invariant under local gauge transformations. Hence the wave function
cannot depend directly on them since, gauge invariance would then be violated.



Figure 1. A particular choice of maximal tree for D = 3 (left graph), and the
path associated with a typical variable Xl for a particular link not on this tree (right
graph).

Instead, we transform the links not on the tree into closed loops by combining them
with (unique) paths on the maximal tree joining each end of the link from and
to the origin, as is illustrated in Fig. 1. In this way we make a unique mapping,
Vl ↔ Xl; ∀l 6∈ tree, where Xl simply comprises a product of the corresponding Ul or
U−1

l operators on the links comprising the closed loop, where the inverse operators
appear on links pointing back to the origin, in a convention that orients the links on
the maximal tree along the direction away from the origin. Thus, all the variables
Xl transform in the same way under local gauge transformations with the gauge
transformation at the origin, and are invariant under all other local gauge changes.
We know that when we fix the gauge we cannot fix a global gauge transformation,
and we are thus led to identify this with the one at the origin.

We have shown [14] that the electric field operator Ea
l associated with the link

l on the maximal tree can be transformed by a body-fixed frame rotation, such that
when it acts on one of the Xm-variables one of the following relations holds, depending
on the position of the link,

Ea
l Xm = −1

2
λaXm , Ea

l Xm =
1

2
Xmλa , Ea

l Xm = −1

2
λaXm +

1

2
Xmλa . (21)

In this last equation the first result holds if link l is part of the path leading up to
link m from the origin, the second result holds if it is part of the path leading back
back from link m to the origin, and the third result holds if it is part of both paths.
In this way the electric field operator generates long-range interactions between two
link variables Xl and Xl′ .

The links Wl on the maximal tree change under local gauge transformations,
and any function in the physical subspace must hence be a function only of the
gauge-invariant Xl variables. The gauge is effectively fixed by setting the SU(N)
matrix operators Wl to be the unit operator, so that we have {Vl; Wl} → {Xl; 1}.
It is now a matter of simple counting to show that the Xl variables are precisely
the (unconstrained) canonical variables of our Hamiltonian theory in the colourless
sector, as summarised in Table 2. On a finite lattice of length n in D dimensions
there are Ns = (n + 1)D lattice points, and Nl = Dn(n + 1)D−1 links. The maximal
tree contains Nt = n+n(n+1)+n(n+1)2+ · · ·+n(n+1)D−1 = (n+1)D−1 = Ns−1
links, as can easily be seen from (the D-dimensional generalisation of) our explicit



Table 2

The number of degrees of freedom in the maximal tree approach on a hypercubic
lattice of size n × n × · · ·n, for different number of space dimensions, D.

Dimensionality, D 2 3 D ≥ 2

number of sites, Ns (n + 1)2 (n + 1)3 (n + 1)D

number of links, Nl 2n(n + 1) 3n(n + 1)2 Dn(n + 1)D−1

number of links on tree, Nt n + n(n + 1) (n + 1)3 − 1 (n + 1)D − 1

number of independent Xl Dn(n + 1)D−1

variables, Nl − Nt n2 2n3 + 3n2 −(n + 1)D + 1

choice of maximal tree. Therefore there are Nl −Nt = Dn(n + 1)D−1 − (n + 1)D + 1
remaining links, and the same number of variables Xl. Each of these variables has
N2 − 1 degrees of freedom. Hence, the number of degrees of freedom of the Xl

variables is precisely equal to Nu, the number of unconstrained canonical degrees of
freedom in the theory, as given by Eq. (20).

3.1. The Hamiltonian in terms of the Xl variables

We now start with the Kogut-Susskind Hamiltonian of Eq. (19) and assume that
it will act on a function of the variables Xl. For the electric piece of the Hamiltonian,
HE , we make use of the result in Eq. (21). In the magnetic part, HM , we can set
all of the links on the maximal tree to unity. After some algebra we arrive at a
final expression for our Hamiltonian given entirely in terms of our complete set of
(unconstrained) canonical variables, Xl. We do not quote the somewhat unedifying
expression here. The interested reader is referred to Ref. [14] for further details and
the full expression.

4. COLOUR NEUTRALITY AND FURTHER CONSTRAINTS

Although we have solved the major problem above of the constrained dynamics
due to the gauge freedom, we still have to face a further problem of overcompleteness
related to the number of degrees of freedom in the traces of SU(N) matrices. This
leads to the existence of dependences among the traces of the Wilson loop variables,
usually known as Mandelstam constraints [17].

Our wave function in the pure gauge sector studied here should be a colour
singlet, and the above complications arise when we impose colour neutrality on the
wave function. Thus, the natural choice for us is now to work with traces of products



of the variables Xl, as discussed above. A suitable approach would be to construct
a basis of eigenstates of the electric part of the Hamiltonian, HE , and calculate
matrix elements of the magnetic energy between these states. Such an approach is
a quite natural calculational scheme for the Hamiltonian approach. One can also
use the method inherent in the Lagrangian calculations, which is based on invariant
integration over the full group [18]. However, for a proper Hamiltonian approach this
discards many of the advantages of the method.

To find eigenstates of the electric operator, one can resort to three general ap-
proaches. Firstly, group theory gives us, in principle, a way to construct general
eigenstates, the group characters. However, for a large basis, and N > 2, this is
extremely involved [19], unless it can be automated, and we see no easy way to do
this.

A second approach is based on integrating configurations, and constructing or-
thogonal combinations from them. In this case one must start off with much larger
overcomplete sets of configurations, and at increasing orders the integration, based
on Creutz’s integration method [20,21], tends to become more and more involved
[22].

The third approach is based on the action of the electric operator itself, which
leads to a block-diagonal matrix which has to be diagonalized to recover the eigen-
states. In combination with a symbolic method explained more fully elsewhere [14],
this seems to be the most powerful approach, which allows one to tackle any arbitrary
SU(N) group. This is the method that we have developed and that we prefer to use
with the maximal tree approach, although we note that it also has wider applicability.
For further details the reader is referred to Ref. [14].

Our whole approach so far has been designed for applications in mind using a
universal method of microscopic quantum many-body theory in the Hamiltonian for-
mulation, such as the coupled cluster method (CCM) [23]. We do not have the scope
in the present paper to discuss in any detail such many-body applications. Instead,
we consider below the simpler limit where all plaquettes appear independently, and in
so doing we introduce an extremely useful set of angular variables that considerably
aid and simplify the analysis. We show that they serve to map an SU(N) one-loop
problem onto an N -fermion problem on a torus.

5. THE SINGLE-PLAQUETTE PROBLEM

If all of the loop variables are combined in such a way that they form plaquettes
[21], we may consider our wave functional as depending only on the plaquette vari-
ables. Since the trace of a matrix is invariant under similarity transformations, we
may write

Tr[Um] = Tr
[

(

V UV −1
)m
]

=

N
∑

j=1

eimφj ; m ∈ [1, 2, · · · , N ] , (22)

where V diagonalizes the SU(N) unitary matrix U of the one-plaquette problem.
Hence, out of the N2 − 1 degrees of freedom for SU(N) the trace depends only on



its N eigenvalues exp(iφj), all of which lie on the unit circle in the complex plane.

The angular variables φj satisfy the constraint
∑N

j=1 φj = 0 coming from the SU(N)
condition, det U = 1.

The wave functions of the one-plaquette problem can be expressed in a basis of
group characters [24] labelled by the standard SU(N) partitions λ ≡ [λ1, λ2, · · · , λN ].
These are simply proportional to the eigenstates of the electric operator (which is just
the quadratic Casimir operator) for the single plaquette. We denote the group char-
acters of SU(N) as χλ(φ), where we use the shorthand notation φ ≡ [φ1, φ2, · · · , φN ].
They may be represented as

χλ(φ) =
ε(λ1, λ2, · · · , λN )

ε((N − 1), (N − 2), · · · , 2, 1, 0)
; λ1 > λ2 > · · · > λN = 0 , (23)

where ε(λ) is the determinant of the N × N matrix M with elements given by
Mkl = exp(iλkφl). The determinant in the denominator is a Vandermonde de-
terminant of the eigenvalues of U , namely ∆ ≡ ε((N − 1), (N − 2), · · · , 2, 1, 0) =
∏N

k<l=1[exp(iφk) − exp(iφl)]. Its presence and its antisymmetry properties in the
angular-variable eigenvalues allow us to map the original one-plaquette problem,
which is symmetric under the interchange of the eigenvalues (i.e., an effective bosonic
problem) but which has a complicated integration measure, into a much simpler
fermionic problem by mapping Ψλ → Φλ ≡ ∆Ψλ. In the electric part of the Hamil-
tonian we write correspondingly,

N2
−1
∑

a=1

EaEa → ∆





N2
−1
∑

a=1

EaEa





1

∆
= DN − N(N2 − 1)

24
, (24)

where the differential operator DN , given by

DN = −1

2

N
∑

i=1

∂2

∂φ2
i

+
1

2

(

1√
N

N
∑

i=1

∂

∂φi

)2

, (25)

acts on the antisymmetric wave function Φ.

When the the term Tr[U ]+Tr[U−1] in the magnetic part, HM , of the Hamiltonian
in Eq. (19), acts on a wave function, it now reduces to a multiplication [24] of group
characters,

[χ1(φ) + χ1(−φ)]ελ =
∑

λ′=λ+1

ελ′ +
∑

λ′=λ−1

ελ′ , (26)

where the symbols λ± 1 in the sums denote the inclusion of all possible partitions in
which one and only one of the λi → λi ± 1 (with 1 ≤ i ≤ N), while still fulfilling the
requirements in Eq. (23). The operators Tr[U ] and Tr[U−1] thus act as raising and
lowering operators, which act in a simple way on the Young tableaux corresponding
to the group characters or wave functions with specific symmetry properties [14].

We see from the above results that for a single SU(N) loop comprising L links
(where L = 4 for a plaquette), the electric operator, HE , in the Hamiltonian essen-
tially yields L times the difference between the total kinetic energy of the N particles
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Figure 2. The lowest levels of the SU(N) single-plaquette energy spectra for N =
2, 3, 4, 5.

(now fermions) on a torus (represented by the angular variables φi; i = 1, 2, · · · , N)
and their centre-of-mass energy. It is very naturally expressed in terms of the momen-
tum operators pj ≡ −i ∂

∂φj
. The magnetic term, HM , for the single plaquette is also

easily seen to be given as 2λ
∑N

j=1(1−cos φj). The constraint det U = 1 now reduces

to a constraint on the centre-of-mass motion, Φ ≡ N−1
∑N

j=1 φj = 0. We need also

to impose the constraint on the centre-of-mass momentum, P ≡
∑N

j=1 pj = 0, since

Φ is an unphysical variable for the SU(N) problem. A straightforward application of
the Dirac quantisation procedure to handle the constraints then easily leads to the
following realisation of the one-plaquette Hamiltonian,

H =
g2

2a



2
N
∑

j=1

[pj − P/N ]2 + 2λ
N
∑

j=1

[1 − cos(φj − Φ)]



 , (27)

which we have written for the physical case D = 3, for which λ ≡ g−4. In this form the
Hamiltonian is now manifestly translationally invariant. In the weak-coupling limit
(g → 0) (or, equivalently, λ → ∞) we may readily use the harmonic approximation
for the magnetic (“potential energy”) term of the N -fermion problem. In this limit
the entire centre-of-mass energy factorizes. This great simplification allows for the
easy implementation of the constraint det U = 1, and the degeneracies νn of the nth
level of the equidistant spectrum are now given by νn = PN (n) − PN (n − 1), where
Pm(n) is the number of different ways the positive integer n can be partitioned as
the sum of m positive integers.

5.1. Numerical Results

We now investigate the one-plaquette spectra of a few of the relevant SU(N)
gauge theories, namely for 2 ≤ N ≤ 5. The method we use to solve the problem is
first to work in a basis of eigenstates of the electric Hamiltonian, and then to evaluate
the action of Tr[U ] and Tr[U−1] on these states. For the low-lying spectra that we
calculate we solve the linear eigenvalue equations numerically. From the form of the
Hamiltonian in Eq. (19) or Eq. (27), we see that it is convenient to define a scaled



energy ε as follows,

E =
g2

2a
ε +

N

g2a
, (28)

which we use for representing the numerical results.

For SU(2), the one-plaquette Schrödinger equation reduces to the Mathieu equa-
tion and the spectrum is given by its odd characteristic values, as shown in the left
panel of Fig. 2. No such closed-form analytical solutions seem to exist for SU(N)
with N > 2 , and we resort to the numerical procedure described above to obtain
the remaining results shown in Fig. 2. We note that the spectra for N > 2 are much
richer than for N = 2. They include not only many avoided crossings but also, very
interestingly, what appear to be several real crossings in the cases N = 4 and N = 5.
We have verified that the distances between the respective two levels in these latter
cases are equal to zero within our numerical accuracy. Such real crossings, of course,
are a reflection of some (otherwise hidden) symmetry in these theories. They clearly
deserve further investigation.

Finally, we note that the region of the coupling constant shown in Fig. 2 is
insufficient to observe the asymptotic convergence to the harmonic approximation
discussed above. However, we have checked numerically, by going to values g−4 ≥
50, that our stated results for the degeneracy factors for the equidistant harmonic
oscillator spacings in this limit are correct.

5.2. Independent-plaquette wave functionals

The results for the one-plaquette problem have more consequences for more
general (e.g., variational or CCM) wave functionals than one might at first suspect.
Thus, if the trace variables, ξm ≡ m−1Tr(Um), of the one-plaquette matrix are used,
the wave functional is a function of the group characters only. The specific wave
functional that is the sum of one-plaquette functions,

〈{φα
j }|Σ〉 =

∑

plaquettes α

F
(

{φα
j }N

j=1

)

, (29)

naturally leads to the sum of one-plaquette problems, leading to total energies which
are the sum of one-plaquette energies. However, the corresponding product wave
functional

〈{φα
j }|Π〉 =

∏

plaquettes α

F
(

{φα
j }N

j=1

)

, (30)

also leads to the same result as we now show. This absence of correlations between
nearest-neighbour plaquettes, follows in our case from the symmetry of (the original
bosonic) wave functional, Ψλ, in the angular variables,

Ψλ(· · ·φi · · ·φj · · ·) = Ψλ(· · ·φj · · ·φi · · ·) , (31)

where we decompose

F (φ1 · · ·φN ) =
∑

λ

cλΨλ(φ1 · · ·φN ) . (32)



Therefore the cross-product term from the electric operator vanishes,

DNΨ′

λ(φα
1 · · ·φα

N )Ψ′

λ′(φ
β
1 · · ·φβ

N )

= Ψ′

λ′(φ
β
1 · · ·φβ

N )DNΨ′

λ(φα
1 · · ·φα

N ) + Ψ′

λ(φα
1 · · ·φα

N )DNΨ′

λ′(φ
β
1 · · ·φβ

N ) , (33)

where α and β are plaquettes containing the link l, and Ψ′

λ = det(J)Ψλ, where
det(J) = |∆|2 is the Jacobian of the transformation from trace variables to angular
variables, Jmj ≡ ∂ξm/∂φj = i exp(imφj). The differential operator DN contains
both sets of angular operators, ∂φi

= ∂φα
i

+ ∂
φ

β

i

. Therefore the Hamiltonian, when

acting on the product wave functional |Π〉, also reduces to the sum of one-plaquette
Hamiltonians.

6. SUMMARY AND DISCUSSION

In summary, we have shown how to fix the gauge by using the maximal-tree
gauge, which is specific to the lattice versions of gauge field theories. It does not
suffer from the typical problems of gauge fixing in the continuum. We then intro-
duced a very natural set of angular variables, simply related to the trace (or Wilson
loop) variables for a fundamental plaquette, in terms of which the SU(N) one-loop
problem can be mapped onto an N -fermion problem on a torus. Exact solutions
were obtained for a single plaquette in both the weak-coupling (g → 0) and strong-
coupling (g → ∞) limits. The eigenstates in the strong-coupling limit are the group
characters of the corresponding group, and in the weak-coupling limit the harmonic
approximation to the fermion problem leads to explicit formulas for the degeneracies
of the equidistant energy levels. In terms of the group characters (i.e., the eigenstates
of the electric piece of the Hamiltonian), the ground and low-lying energy states of
the single plaquette can be determined numerically for arbitrary values of the cou-
pling constant, since the Hamiltonian reduces to a simple linear equation in terms
of these group characters. The terms in the magnetic piece of the Hamiltonian are
simple raising and lowering operators in this basis, and hence the energy spectra are
found by a simple configuration-interaction method technique of diagonalizing the
resultant block-diagonal Hamiltonian matrix in a restricted basis. The procedure
can be automated using the theory of multiplication of group characters, in terms of
the Young tableaux of the corresponding group.

Another, somewhat unexpected, advantage of our approach is the fact that cor-
relations between spatially distinct trace variables cancel. This leads to the intriguing
possibility that spatial correlations in the full lattice problem might be weak in our
approach, which would in turn tend to suggest that successive approximations in a
fully consistent microscopic many-body approach based on our approach might be
expected to converge rapidly. Clearly, the simplicity of the angular variables formu-
lation is promising for more elaborate wave functionals. An obvious extension to
include correlations is to employ the coupled cluster method (CCM) [23], which has
been extensively applied with great success to a wide variety of quantum many-body
systems and quantum field theories. Typical applications of the CCM to strongly
interacting continuum quantum field theories include φ4 field theory [25,26] and a
model field theory of pions and nucleons [27]. There have been many applications of



the CCM to various spin-lattice models in quantum magnetism [28]. Other applica-
tions to lattice field theories include the O(4) nonlinear sigma model as a model of
meson field theory with a phase transition due to chiral symmetry breaking [29].

Previous attempts to use the CCM in lattice gauge theory have largely been
confined to the ground and low-lying excited states in the pure gauge (gluon) sectors
of the U(1) and SU(2) cases in one and two spatial dimensions [1,2]. As we have
seen, for D < 3 the plaquette variables Up form a natural complete set. However,
they are overcomplete for D ≥ 3. One of our key aims here has been to find a natural
complete set of variables for this case. We have shown that the variables Xl fulfil
this role.

At the heart of the CCM is the parametrization of the ket-state many-body wave
function as an exponential of a correlation operator formed from a linear combination
of mutually commuting creation (or excitation) operators with respect to a model or
reference state |Φ〉,

|Ψ〉 = eS |Φ〉 ; S =
∑

I

cI |I〉〈Φ| . (34)

The creation operators here excite from the model state to an arbitrary excited
state |I〉, and do not act between different excited states on overlapping lattice-site
configurations.

From this vantage point the key question is then the choice of the form of the
model state |Φ〉 and of the states in which to expand the many-body Hilbert space.
Clearly, the simplest choice for the model state is just the chromo-electric vacuum.
As for the remainder, this is precisely the question that we have addressed here,
where we have established the viability for such purposes of the set of independent
maximal-tree variables, Xl, and their conjugate variables, Ea

l . Thus, for the colourless
(pure gauge) sector we have to use closed contours, which are traces over products
of Xl variables, since only these variables are invariant under gauge transformations
generated by Gauss’ law.

We conclude with some final comments. Firstly, we note that the form of our
SU(N) Hamiltonian in the Xl variables is very different from the naive Kogut-
Susskind form of Eq. (19). This is likely to have an important effect on the role
of correlations in the ensuing analysis. Secondly, a price that we pay for using the
maximal-tree gauge is that the tree, and hence our Hamiltonian, has a preferred
direction and we thereby lose explicit translational invariance. Although this is pre-
sumably restored in a full CCM calculation carried out to all orders, in practice we
need to make approximations via a systematic hierarchy of choices for which excited
states |I〉 to include in the CCM ket-state correlation operator S in Eq. (34), and it
is difficult to know in advance how serious the loss of translational invariance might
be in practice at attainable levels of implementation. An obvious next step in this
regard would be to investigate the possibility of designing different, more symmet-
ric, choices for the maximal tree in order to circumvent this problem. On the other
hand, although the current choice might turn out to be problematic for a study of the
vacuum sector, it would seem to be a natural choice for the study of the interaction
between fixed sources on the lattice, which explicitly breaks translational invariance.
Such studies are themselves an obvious next step in the extension of the current ap-
proach away from the pure gauge sector to include fermions. We note that some very



preliminary steps in this direction have already been taken in the much simpler case
of the Schwinger model of quantum electrodynamics in one spatial dimension, whose
Hamiltonian form on the lattice has been investigated, using CCM techniques, with
the inclusion of massive staggered fermions [30].

REFERENCES

[1] R. F. Bishop and Y. Xian, Acta Phys. Pol. B24, 541 (1993); R. F. Bishop,
A. S. Kendall, L. Y. Wong, and Y. Xian, Phys. Rev. D 48, 887 (1993); R. F. Bishop
and Y. Xian, in Condensed Matter Theories, Vol. 9, eds. J. W. Clark, K. A. Shoaib,
and A. Sadiq, (Nova Science Publ., Commack, N.Y., 1994), p. 433; S. J. Baker,
R. F. Bishop, and N. J. Davidson, Phys. Rev. D 53, 2610 (1996).

[2] C. H. Llewellyn Smith and N. J. Watson, Phys. Lett. B302, 463 (1993).

[3] C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

[4] L. D. Faddeev and A. A. Slavnov, Gauge Fields, Introduction to Quantum The-
ory, (Benjamin Cummings, Reading, Mass., 1980).

[5] P. A. M. Dirac, Principles of Quantum Mechanics, 4th ed., (Oxford University
Press, Oxford, 1967).

[6] P. A. M. Dirac, Lectures on Quantum Mechanics, (Belfer Graduate School of Sci-
ence, Yeshiva University, New York, 1964); Lectures on Quantum Field Theory,
(Belfer Graduate School of Science, Yeshiva University, New York, 1966).

[7] T. Muta, Foundations of Quantum Chromodynamics, (World Scientific, Singa-
pore, 1987).

[8] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, (Princeton
University Press, Princeton, 1992).

[9] J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

[10] J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).

[11] F. A. Berezin, The Method of Second Quantization, (Academic Press, New York,
1966).

[12] B. Felsager, Geometry, Particles and Fields, (Odense University Press, Odense,
1981).

[13] G. ’t Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972).

[14] N. E. Ligterink, N. R. Walet, and R. F. Bishop, Ann. Phys. (N.Y.) 284, 215
(2000).
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