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Abstract—In recent years, three new absorbing boundary condi-4
tions (ABCs) have appeared in the literature, namely, the multiple5
absorbing surfaces, the reradiating boundary condition, and the6
Huygens ABC (HABC). The last is a generalization of the first two.7
The HABC mainly relies on the radiation of a field opposite to the8
outgoing field by means of surface currents. This paper focuses on9
the implementation of the HABC in the corner regions of compu-10
tational domains. It is shown rigorously that the Huygens surface11
radiating the opposite field is not a normal Shelkunoff surface. Ad-12
ditional branches, called extensions, must be added in the corner13
regions.14

Index Terms—Absorbing boundary condition (ABC), finite dif-15
ference, finite-difference time-domain (FDTD) method, Huygens16
surface.17

I. INTRODUCTION18

TWO novel absorbing boundary conditions (ABCs) were19

presented independently some years ago in the literature:20

the multiple absorbing surfaces [1] and the reradiating boundary21

condition (rRBC) [2], [3]. Both rely on the same principle of22

canceling the outgoing field leaving a computational domain23

by means of equivalent currents that radiate a field equal in24

magnitude and opposite in sign to the field to be cancelled. This25

concept has been generalized and investigated in details in [4],26

where it is called the Huygens ABC (HABC).27

As shown in [4], the HABC is equivalent to a traditional28

operator ABC. This is because the HABC concept cannot be29

implemented rigorously. More precisely, the required equiva-30

lent currents are not known on the boundary where they must31

be applied so that they are replaced with an estimate com-32

puted using an operator, for example, a Higdon operator [5],33

[6]. However, the HABC is not just another implementation of34

traditional operator ABCs [4]. First, it can be easily designed to35

absorb evanescent waves [4]. Second, it can be combined with36

such other ABCs as the PML ABC [4] or a real stretch of coor-37

dinates [7]. For these reasons, and since in addition it is simpler38

than the PML ABC, the HABC is a promising ABC that may39

challenge the well-established PML ABC in some problems, or40

can be used to improve the effectiveness of other ABCs.41
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The papers [1]–[4] mainly present the principle and the theory 42

of the proposed ABCs on a plane boundary assumed as of infinite 43

extent. Although numerical experiments are reported in these 44

papers in two or three dimensions, little attention is paid to the 45

corners of the computational domain. By contrast, this paper 46

focuses precisely on this question, which is a critical question 47

since the equivalent currents that generate the opposite wave are 48

not just a usual Huygens surface. 49

As stated by the Shelkunoff theorem, a Huygens surface is 50

a closed and continuous surface that splits the physical space 51

into two regions, in general, an interior region and an exterior 52

region. Sources in one region can be replaced with equivalent 53

currents that radiate the same field as the sources into the other 54

region. Huygens surfaces are currently used with the finite- 55

difference time-domain (FDTD) method either to generate an 56

incident wave or for the near-to-far field transformation [8]. In 57

Cartesian coordinates, they take the form of a parallelepiped. 58

In the HABC [4] and in its special cases [1] and [2], [3], the 59

situation is more complex. The reason is that the exact equivalent 60

currents are replaced with estimates computed with an operator 61

that is discontinuous at the corners of the HABC. If a normal 62

Huygens surface is used. the radiated field is discontinuous so 63

that spurious sources are produced in the corners. To overcome 64

this problem, additional surfaces must be added to the Huygens 65

surface. They extend from the corners or edges to the outer end 66

of the computational domain. We call them the extensions of 67

the Huygens surface. 68

In papers [1] and [2], [3], the need for extensions is not 69

discussed and even mentioned. However, there is some evidence, 70

as in Fig. 6 in [1] or in Table I in [3], that the Huygens planes 71

were extended up to the outer boundary ending the domain. 72

In other words, what we call here extensions were used in the 73

numerical experiments. The rationale for the authors to do this 74

is not reported. It may be a proper understanding of the corner 75

problem or the simplification of the implementation suggested 76

by a brief comment in [1]. Thus, in view of future developments 77

of the HABC, there is a need for clarification and a proper 78

theoretical justification of the implementation in the corners. 79

This is the purpose of this paper. It shows in detail why the 80

extensions are needed and reports some numerical experiments 81

that demonstrate the impact of the extensions on the correctness 82

of the computed results. The absence of extension has a limited 83

impact on the results when the HABC is set closely to the outer 84

boundary ending the domain, as in the experiments in [1]–[4], 85

but when the space between the HABC and the outer boundary 86

is large, as in the method [7], the presence of the extensions is 87

primordial. Without extension, the computed results are strongly 88

erroneous. 89
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Fig. 1. A plane wave propagating toward an infinite wall HABC.

The content of this paper is as follows. Section II summarizes90

the properties of the HABC [4] on a wall boundary. Section III91

shows that the field radiated by a normal Huygens surface is92

discontinuous in the corner regions of the HABC. Section IV93

presents the extended HABC, which removes the discontinuity.94

Section V shows several experiments in the 2-D case to illustrate95

the theory. Finally, Section VI briefly illustrates the effectiveness96

of the combination of the HABC with a stretch of coordinates97

[7] to solve some typical open problems of electromagnetic98

compatibility.99

II. HABC ON A WALL BOUNDARY100

Let us consider a plane HABC placed in front of a plane PEC,Q2 101

with an incident wave propagating at an angle of incidence θ.102

This is a 3-D problem depicted in Fig. 1 looking along the plane103

of incidence. From [4], the estimate of the field at the HABC104

location can be written as follows:105

Ũ(xHABC , t) =
M∑

k=1

akU(xHABC − δxk , t − δtk )

+
N∑

k=M +1

ak Ũ(xHABC , t − δtk ) (1)

where U is either the E or H field, and Ũ is the estimate of U .106

The first term is a linear function of U at M interior locations107

xHABC − δxk and previous times t − δtk . The second term is108

a combination of N − M estimates at previous times t − δtk .109

When an incident wave Ui+ (t) comes from the left-hand side,110

from [4], the wave Ut+ (t) transmitted by the HABC, i.e., the111

field to the right of the HABC if the PEC were absent, is the112

derivative on time of the incident wave:113

Ut+(t) = T+(θ)
∂Ui+(t)

∂t
(2)

with114

T+(θ) =
1

1 −
∑N

k=M +1 ak

N∑

k=1

ak

(
δtk − cos θδxk

c

)
(3)

where c is the speed of light. We assume that the numerical 115

technique is the FDTD method [8] so that the shifts in space and 116

time δxk and δtk are multiples of the steps on space and time 117

Δx and Δt, respectively. We use the first-order Higdon operator 118

with which the estimate reads: 119

Ũn+1(IHABC) = Un (IHABC − 1) + +w Un+1(IHABC − 1)

− wŨn (IHABC) (4)

where n is the index on time, I is the index on space in x 120

direction, and 121

w =
cΔt − Δx

cΔt + Δx
. (5)

The estimation (4) is a special case of (1) with M = 2 and N = 122

3. Using (1), (3), and (4), the coefficient T+ (θ) of the Higdon 123

operator is obtained as follows: 124

T+Hig(θ) =
1

1 + w

[
(1 − w)Δt − cos θ (1 + w)Δx

c

]

=
(1 − cos θ)Δx

c
. (6)

Consider now a wave Ui−(t) propagating from the right-hand 125

side of the HABC, such as the reflected ray in Fig. 1. From [4], 126

the wave Ut−(t) transmitted to the left-hand side of the HABC 127

is the integral on time of Ui−(t): 128

Ut−(t) = T−(θ)
∫ t

−∞
Ui−(t′)dt′ (7)

with 129

T−(θ) =
1 −

∑N
k=M +1 ak

∑N
k=1 ak (δtk + cos θ δxk/c)

(8)

or in the special case of the Higdon operator: 130

T−Hig(θ)=
1+w

[(1−w)Δt+cos θ(1+w)Δx/c]
=

c

(1+cos θ)Δx
.

(9)
For the problem in Fig. 1, the incident wave is differenti- 131

ated by the HABC and transmitted with the coefficient T+ (θ), 132

reflected from the PEC with the coefficient −1, and then in- 133

tegrated by the HABC and transmitted back into the interior 134

domain with the coefficient T−(θ). The net result is the apparent 135

reflection: 136

R(θ) = −T−(θ)T+(θ) (10)
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Fig. 2. Discontinuity of the transmitted wave at the corner of a 2D HABC.

where a term corresponding to the free space propagation be-137

tween HABC and PEC has been omitted. For pure traveling138

waves, this term is a phase term of modulus one. For evanescent139

waves, it would equal the natural decay of the wave. As shown140

in [4], the reflection (10) equals, rigorously, the reflection ob-141

tained by enforcing the estimate (1) as a boundary condition.142

This is easily verified in the case of the Higdon operator, where143

using (6), (9), and (10), we obtain R(θ) = −(1 − cosθ)/(1 +144

cosθ), which is the well-known reflection from the first-order145

Higdon operator [5], [6]. Therefore, the ABC composed of a146

HABC surface and a PEC surface is equivalent, rigorously, to147

the corresponding operator ABC.148

III. HABC AT THE EDGES AND CORNERS OF A149

COMPUTATIONAL DOMAIN150

Let us first consider the 2-D case depicted in Fig. 2, where151

an HABC without PEC behind it radiates the wave opposite to152

the incident wave. Assume that the outgoing wave is a plane153

wave at incidence θ with respect to the vertical in Fig. 2, and154

consider two rays that strike the HABC to the right and to the155

left of the corner C. Then the incidence on the Huygens surface156

is θ for ray 1 and π/2 − θ for ray 2. The transmitted waves157

corresponding to the two rays are the derivative on time of158

the incident wave, multiplied with the coefficients T+ (θ) and159

T+ (π/2 − θ), respectively, where T+ is given by (3) in general160

or (6) in the special case of the Higdon operator. It is obvious161

from (3) or (6) that the magnitudes of the two transmitted rays162

are different, except in the case where θ = π/4. This is true for163

all rays as long as they strike the HABC on the two sides of the164

corner C, and whatever may be their distance from C. Thus, the165

transmitted field is discontinuous behind the HABC. The wave166

is no longer a plane wave. Its magnitude varies in the direction167

perpendicular to the propagation. This also occurs in 3-D at the168

edges of the HABC, which are similar to 2-D corners, and at169

the 3-D corners, where there are three different transmission170

coefficients. In both 2- and 3-D, such discontinuities produce171

additional components to the field, i.e., they act as spurious172

sources.173

The discontinuity in the transmitted wave originates in the174

estimate of the opposite field radiated by the Huygens surface.175

If the exact outgoing field was used as equivalent current, the176

Fig. 3. The extensions of the HABC at the corners in the 2D case.

radiated field would be exact. With the HABC, the unknown 177

outgoing field is replaced with an estimate computed using an 178

operator that depends on the incidence on the Huygens surface. 179

At the corner, the operator and then the estimates (3) or (6) are 180

discontinuous simply because the incidence angle experiences 181

an abrupt change, from θ to π/2 − θ in the 2-D case in Fig. 2. 182

This results in a discontinuity in the radiated field that produces 183

a nonphysical source that may be very large, as demonstrated 184

by a numerical experiment in the Section V. 185

IV. EXTENDED HABC 186

A simple modification of the Huygens surface permits the 187

discontinuity in the transmitted field to be removed. Let us first 188

consider the 2-D case. The modification is depicted in Fig. 3. 189

It consists of extending the HABC surfaces (reduced to lines in 190

2-D) up to infinity in theory or up to the end of the computational 191

domain in practice. The equivalent currents on the extensions 192

are enforced as on the normal HABC surfaces. For instance, the 193

equivalent currents on extension 1 are computed using the same 194

operator as on the normal horizontal HABC and are enforced 195

by means of the same modifications to the Maxwell equations. 196

With the extended HABC in Fig. 3, ray 1 crosses the verti- 197

cal HABC, where it is differentiated on time and transmitted 198

with coefficient T+ (θ). Then it crosses extension 1, where it is 199

differentiated another time and transmitted with T+ (π/2 − θ). 200

Similarly, ray 2 crosses the horizontal HABC, where it is differ- 201

entiated and transmitted with T+ (π/2 − θ), and then crosses 202

extension 2, where it is differentiated and transmitted with 203

T+ (θ). In the region in-between the two extensions, the two 204

transmitted waves are the second derivative of the incident wave 205

and their magnitudes are equal to T+ (θ) T+ (π/2 − θ). Thus, in 206

this region, the discontinuity of the field is removed and the field 207

remains a plane wave. 208

In summary, the space outside the HABC is split into three 209

regions. Two regions, where the field is the first derivative on 210

time, separated by the region, where the field is the second 211

derivative on time. The field is a true plane wave in each region. 212

As verified by numerical experiments in Section V, no spurious 213

source is present. 214
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Fig. 4. Reflection of a plane wave from the corner of an extended HABC.

Fig. 3 and the aforementioned derivations address the 2-D215

case. In 3-D, there are edge regions similar to the 2-D corners.216

At the 3-D corners, by extending the three Huygens planes up to217

infinity, the space outside the HABC is split into seven regions.218

It can be seen that the field in all the regions is a true plane219

wave, without discontinuity of the transmission coefficient. In220

three regions, the field is the first derivative of the incident wave,221

in three others it is the second derivative, and in the last it is the222

third derivative. In this seventh region, the transmission is the223

product of three coefficients (3) or (6) and is the same for all the224

rays so that the continuity of the field is ensured.225

Consider now the reflection of a plane wave from the corner226

region when a PEC is present behind the HABC, as depicted in227

Fig. 4. The ray shown in Fig. 4 is differentiated and transmit-228

ted by the vertical HABC with the coefficient T+ (θ), reflected229

from the PEC, differentiated and transmitted by the horizontal230

extension 1 with T+ (π/2 − θ), reflected from the horizontal231

PEC, integrated and transmitted by extension 2 with T−(θ), and232

finally integrated and transmitted by the horizontal HABC with233

T−(π/2 − θ). The net reflection reads:234

REXTcorner = T+(θ)T+

(
π

2 − θ

)
T−(θ)T−

(
π

2 − θ

)
. (11)

Using (10), this can be rewritten as follows:235

REXTcorner(θ) = RABC(θ)RABC

(
π

2 − θ

)
(12)

where RABC (θ) and RABC (π/2 − θ) are the reflections from the236

operator ABC on the vertical and horizontal boundaries, respec-237

tively. From this, the reflection from the corner of the HABC is238

identical to the reflection from the corner of the domain bounded239

by the operator ABC relying on the same operator as the HABC.240

Obviously this is not true in the absence of extensions, since then241

the coefficients T+ (π/2 − θ) and T−(θ) are missing in (11) so242

that the reflection differs from the reflection from the corner243

of an operator ABC (12). The presence of the extensions per-244

mits the discontinuity to be removed in the corner, and renders245

the HABC equivalent, rigorously, to the corresponding operator246

ABC.247

Fig. 4 addresses the 2-D case. In 3-D, the three Huygens248

planes are extended up to the PEC. The reflection from the249

Fig. 5. Numerical experiments with a plane wave striking a corner of the
HABC. The spatial and time steps of the 2D FDTD domain are 5 cm and 100 ps,
respectively.

HABC corners is then the product of six coefficients, which 250

is the generalization of (11) to 3-D. As in 2-D, this reflection 251

equals that of the corresponding operator ABC. 252

The implementation of the HABC extensions in a computer 253

code is simple. Since the equivalent sources on the extensions 254

are identical to those on the normal HABC surfaces, the only 255

thing to do is a change of the limits of the loops, where the 256

equivalent currents are enforced. This is apparently what was 257

done with the rRBC from the Table I in [3]. 258

In principle, the extended HABC could be used with other 259

outer boundaries than the PEC, so as to combine the HABC with 260

another ABC [4]. At least with operator ABCs, which use only 261

nodes located in the direction perpendicular to the ABC. This is 262

the case with Higdon operators, but not with Engquist–Majda 263

ABC [9], which uses FDTD nodes in the transverse direction. 264

With the PML ABC, we think that the extension of the HABC 265

is possible as well by using extensions up to the PEC ending the 266

PML. 267

Only homogeneous waves have been considered previously. 268

However, the results and conclusions in [4] also apply to nonho- 269

mogeneous waves. Thus, the derivations and conclusions about 270

the corner regions are also valid for evanescent waves, i.e., the 271

extensions are also needed with evanescent waves. This is illus- 272

trated in Section V by an experiment with a scattering structure 273

surrounded with strongly evanescent fields. 274

V. NUMERICAL EXPERIMENTS 275

This section reports two experiments, which validate the the- 276

ory in the previous section, and one experiment, which demon- 277

strates that the extension of the HABC is of primordial impor- 278

tance for further developments of the HABC technique. The 279

experiments were performed in the 2-D case, which permits an 280

easy generation of incident plane waves. 281

A. Continuity of the Field Behind the Extended HABC 282

In this experiment depicted in Fig. 5, a plane wave strikes the 283

corner of a 2-D HABC. The wave is generated by means of a 284

Huygens surface [8] placed close to the HABC. Both surfaces 285
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Fig. 6. The field transmitted behind the HABC in the absence of PEC, at P1
(upper part) and P2 (lower part) in Fig. 5. Comparison of the theoretical field
with the FDTD fields computed with and without HABC extensions.

are truncated by nonphysical conditions so that the calculation286

is only valid for a clear time which is about 350 time steps at287

the corner region with the larger than 2000 cells domain used in288

the experiment. The incidence is 60◦ with respect to the vertical289

ABC. The incident wave is a Gaussian pulse 15 time steps in290

width. The FDTD domain is large enough behind the HABC291

in order to ensure that the reflection from its outer boundary is292

not viewed in the corner region for the whole duration of the293

calculation.294

The calculations have been performed using the HABC with295

and without extensions. The results are shown in Fig. 6 at the296

two locations denoted as P1 and P2 in Fig. 5.297

At point P1, the wave should be the derivative of the inci-298

dent wave multiplied with the coefficient T+Hig (π/2 − θ). This299

theoretical prediction is plotted in the upper part of Fig. 6. The300

extended HABC result agrees very well with the theory. Without301

extension, the field differs from the prediction because of the302

discontinuity of the transmission by the HABC.303

At point 2, the field with the extended HABC should be the304

second derivative of the incident field multiplied with T+ (π/2 −305

θ) and T−(θ). The lower part of Fig. 6 compares this theoretical306

prediction with the FDTD results. The agreement is excellent307

with the extended HABC. Conversely, without extension, the308

field is quite different because of the discontinuity and because309

it remains proportional to the first derivative so that its magnitude310

is about that at P1.311

B. Comparison of the HABC With an Operator ABC312

in a Corner Region313

In this experiment depicted in Fig. 7, a PEC is present 20314

FDTD cells behind the HABC. As in Fig. 5, the incident wave315

is generated by a Huygens surface close to the HABC so that316

Fig. 7. Numerical experiments with a plane wave striking a corner of the
HABC, with a PEC behind the HABC.

TABLE I
THE THREE CALCULATIONS WITH THE DOMAIN IN FIG. 7

only the reflected field is present in the interior domain at the 317

observation point P3. Three calculations were performed whose 318

calculation settings are summarized in Table I. The first one 319

with the PEC and the HABC without extension, the second one 320

with the PEC and the HABC with extensions, and the third one 321

without HABC and with the PEC replaced with the Higdon 322

operator ABC. The three reflected fields at point P3 are plotted 323

in Fig. 8, with in addition to the theoretical reflection from a 324

Higdon operator ABC. 325

We can observe three pulses in Fig. 8. They correspond to the 326

three rays represented in Fig. 7. Ray 2 is the reflection from the 327

vertical boundary with incidence θ, ray 1 from the horizontal 328

boundary with incidence π/2 − θ, and ray 3 from the corner. For 329

the Higdon operator ABC and θ = 60◦, the corresponding reflec- 330

tions R(θ), R(π/2− θ), and R(θ) R(π/2− θ) are 0.3333, 0.0718, 331

and 0.0239, respectively. These reflections have been used along 332

with the differences between the ray paths to compute the the- 333

oretical reflection plotted in Fig. 8. As observed, the Higdon 334

operator result and the extended HABC result agree very well 335

with the expected theoretical reflection. The extended HABC is 336

equivalent, rigorously, to the Higdon ABC. Conversely, with- 337

out extensions, the HABC yields a strongly different result, the 338

reflection from the corner (ray 3, third pulse) is one order of 339
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Fig. 8. The reflected field at point P3 in Fig. 7. Comparison of the theoretical
field with the results of the three FDTD calculations defined in the Table I.

Fig. 9. The 2D FDTD domain for the experiments with a plane wave striking
a 2D 300-cell long thin plate. The FDTD steps equal 5 cm and 100 ps. The
incident electric field is parallel to the PEC plate and is generated by a normal
Huygens surface set 2 FDTD cells from the plate. The HABC is dHABC from
the plate and the outer PEC is dPEC from the plate.

magnitude larger than the correct reflection, because of the spu-340

rious source produced by the discontinuity of the transmitted341

wave.342

C. Experiment With a Scattering Structure343

A 300-cell-long 2-D PEC plate of zero thickness is struck by344

an incident plane wave propagating downward (see Fig. 9). The345

incident waveform is a unit step with a rise time of 10 time steps.346

An HABC surface and a PEC are placed at dHABC and dPEC347

from the plate, respectively. For the experiments reported in348

Fig. 10, the HABC surface is placed at various distances dHABC349

from the PEC structure, ranging from 10 to 898 FDTD cells, and350

the PEC is 900 cells from the structure in all the calculations.351

Fig. 10 shows the electric field normal to the surface at the end352

of the plate. The HABC without extensions is used in the upper353

part of Fig. 10, and the extended HABC in the lower part.354

As can be observed in Fig. 10, the effect of the extension355

is very important when the separation between the scattering356

structure and the HABC becomes small. Even with dHABC =357

10 cells, which is only 1/30 of the structure size, the extended358

HABC yields results superimposed on the solution computed359

with the HABC placed 900 cells away, i.e., almost superimposed360

on the exact solution. This means that the Higdon operator361

Fig. 10. Comparison of the HABC without extension (upper part) and with
the extensions (lower part) when a plane wave strikes a PEC object. The outer
PEC is 900 cells from the object and the HABC is placed various distances from
the object.

implemented as an HABC can very well absorb the traveling 362

waves even when it is quite close to the scattering structure. 363

Obviously, the evanescent waves are not absorbed by the HABC 364

based on the Higdon operators [4]. In the experiments in Fig. 9, 365

they decrease in the large space surrounding the HABC so that 366

their apparent reflection is negligible. 367

VI. EFFECTIVE ABC FOR ELECTROMAGNETIC 368

COMPATIBILITY PROBLEMS 369

Typical problems of electromagnetic compatibility consist of 370

computing the field on the surface or in the vicinity of a PEC 371

object struck by an incident wave. In such problems, the scat- 372

tered field is composed of traveling waves at high frequency 373

and evanescent waves at low frequency, with a transition about 374

the fundamental resonance of the object. As shown above, an 375

HABC with the Higdon operator effectively absorbs the trav- 376

eling waves, even if it is close to the object. However, a large 377

domain is still needed outside the HABC for the natural decrease 378

of the evanescent waves. 379

To reduce the exterior domain, several ways can be imag- 380

ined. One is the introduction of an operator designed for the 381

evanescent waves, used either as a traditional operator ABC or 382

in the form of an additional HABC. This was tested success- 383

fully in waveguides [4]. Another idea was introduced in [7]. 384

It consists in keeping a large physical domain, as in Fig. 10, 385

but with a strongly stretched FDTD mesh, so as to reduce the 386

overall number of FDTD cells. This is possible because only 387

the low frequency evanescent waves must be absorbed outside 388

the HABC. Since their characteristic length of decrease is of the 389

order of the structure size, use of quite large FDTD cells can be 390

envisaged. This has been confirmed by experiments such as that 391
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Fig. 11. Electric field at the corner on the surface of a 2D 500 × 50 PEC
parallelepiped computed with various absorbing boundary conditions. The lower
part is the difference of the computed result with the reference solution.

in [7]. Thus the combination of an HABC for the absorption392

of the traveling waves with a stretched mesh for the absorption393

of the evanescent waves forms an effective ABC. We call it the394

Stretched Mesh HABC (SM-HABC).395

A comparison of the SM-HABC with other ABCs is provided396

in Fig. 11 with a 2D canonical case. The incident wave is a397

double exponential of the form exp(−t/tf )-exp(−t/tr ) where398

tr = 1 ns and tf = 100 ns. The 2D object is a 25 m long399

parallelepiped of 500 × 50 FDTD cells of size 5 cm.400

The settings of the SM-HABC calculations are similar to401

those in Fig. 9, with the 500 × 50-cell object surrounded with402

a HABC placed 3 cells from it, and with a large exterior do-403

main filled with strongly stretched cells. The separation dPEC404

between the object and the outer PEC is 75 m, that is 3 object405

sizes. The stretch of the mesh is a geometrical expansion that406

begins 4 cells from the object. Two cases are reported in Fig. 11.407

In the first one, the mesh is stretched upon ng = 7 cells up to the408

outer PEC, with ratio g = 2.68. This means that the separation409

dPEC , which corresponds to a physical distance of 1500 cells of410

5 cm, is filled with only 11 FDTD cells. In the second case, the411

mesh is stretched upon ng = 11 cells, with g = 1.82, so that the412

actual separation is dPEC = 15 cells.413

Two calculations were performed with a PML ABC placed 2414

FDTD cells from the object. The first one used a 12 cell thick415

PML with a polynomial conductivity of power 2 and the normal416

stretching factor. This PML is not optimum in the sense of [10],417

but it is probably representative of the PMLs employed by most418

users. The second one used the best PML which is the CFS-419

PML optimized for 3D wave-structure interactions [11], [12].420

It is only 5 cells in thickness. Finally another result in Fig. 11421

was computed with the second order Engquist-Majda ABC [9]422

placed 250 cells from the object.423

It is clearly seen in Fig. 11 that the SM-HABC can challenge 424

the PML ABC. Despite the extremely large cells used to fill 425

the large domain, the accordance with the reference solution 426

is similar to the accordance of the PML ABC. More precisely, 427

the lower part of the figure shows that the two SM-HABCs 428

outperform the normal 12-cell PML. Also, the magnitude of the 429

error with the SM-HABC and ng = 11 cells is very close to that 430

observed with the optimum CFS-PML. The overall number of 431

FDTD cells is slightly larger with the SM-HABC than with the 432

optimum CFS-PML, but the cost of one cell of vacuum is smaller 433

than the cost of one cell of PML. Thus the computational costs 434

of the two ABCs are roughly similar. However, the SM-HABC 435

has a significant advantage in comparison with the CFS-PML. 436

Its implementation is far simpler. This is an attractive feature. 437

The same conclusions also hold in the 3D case. This will be 438

demonstrated in a forthcoming paper devoted to experiments 439

with realistic 3D scattering objects. 440

VII. CONCLUSION 441

The implementation of the HABC in the corner regions of 442

2D or 3D computational domains has been analysed in details. 443

We have shown that the Huygens surface must be extended 444

up to the surrounding PEC. The extensions that may seem in 445

discordance with the equivalence theorem are necessary because 446

of the replacement of the exact outgoing field with an estimate 447

that is discontinuous at the corners of the HABC. The extensions 448

remove the spurious sources produced by the discontinuity, and 449

render the HABC rigorously equivalent to an operator ABC. 450

With the extensions the HABC is a highly effective ABC 451

for the absorption of the travelling waves. By combining the 452

HABC with a strategy to absorb the evanescent waves, as done 453

in this paper with the SM-HABC, highly effective ABCs can be 454

constructed for the solution of problems of electromagnetism, 455

especially in the field of electromagnetic compatibility. 456
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[7] J.-P. Bérenger and F. Costen, “Application of the Huygens absorbing 475
boundary condition to wave-structure interaction problems,” IEEE AP-S 476
Int. Symp., Toronto, Jul. 2010. 477

[8] A. Taflove and S. Hagness, “Computational electrodynamics: The finite- 478
difference time-domain method,” Artech House, 2005. 479

[9] B. Engquist and A. Majda, “Radiation boundary condition for the numer- 480
ical simulation of waves,” Math. Comput., vol. 31, pp. 629–651, 1977. 481
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while staying active in the field of numerical electromagnetics in topics such as 528
LF propagation, absorbing boundary conditions, and FDTD subgridding. Q7529
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