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ILC-Based Fixed-Structure Controller Design
for Output PDF Shaping in Stochastic

Systems Using LMI Techniques
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Abstract—In this paper, a generalized state-space controller
design for the shaping of the output probability density func-
tion (PDF) is presented for non-Gaussian dynamical stochastic
systems. A Radial basis function (RBF) neural network is used
to approximate the output PDF of the system. Such a neural
network consists of a number of weights and corresponding
basis functions. Using such an approximation, the dynamics of
the original stochastic system can be expressed as the dynamics
between the control input and the weights of the RBF neural
network. The task of output PDF control can therefore be reduced
to a RBF weight control together with an adaptive tuning of the
basis function parameters (i.e., the centers and widths of the basis
functions). To achieve this aim, the control horizon is divided
into certain intervals hereinafter called batches. Using these
definitions, the whole control strategy consists of three stages,
namely (a) Sub-space parameter identification of the dynamic
nonlinear model (that relates the control signal to the weights of
the RBF neural network); (b) Weight tracking controller design
using an LMI-based convex optimization technique; and (c) RBF
basis functions shape tuning in terms of their centers and widths
using an Iterative Learning Control (ILC) framework. Among the
above stages, the first two are performed within each batch, while
stage (c) is carried out between any two adjacent batches. Such an
algorithm has the advantage of the batch-by-batch improvement
of the closed-loop output PDF tracking performance. Moreover,
the controller mentioned in stage (b) is a general controller in
a state-space form. Stability analysis has been performed and
simulation results are included to show the effectiveness of the
proposed method, where encouraging results have been made.

Index Terms—Convex optimization, generalized state-space con-
troller, iterative learning control (ILC), output probability density
function (PDF) control, sub-space system identification.

I. INTRODUCTION

T HE stochastic control problem has been of interest of
many researchers during past three decades. Among

existing stochastic control strategies, mean/variance and Linear
Quadratic (LQ) control have been the first group of proposed
methods ([1], [2]). Later on, stochastic adaptive and stochastic
LQ martingale control were introduced ([3], [4]). Also, optimal
and predictive stochastic control strategies have been devel-
oped for stochastic systems ([5], [6]), respectively. In more
recent works, sliding mode control for jump stochastic systems
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Fig. 1. Scheme of the output PDF control.

[7], adaptive nonlinear stochastic control [8], and also robust
fuzzy stochastic control [9] have also been proposed. In these
methods, the system under control has been assumed to be
of Gaussian type. For example, the random process has been
considered as Markov and Wiener processes in [8] and [9],
respectively.

It has been shown that in systems where either the system
variables or the noise are not Gaussian, existing methods may
not be sufficient to characterize the closed loop system behavior.
As a result, the control of output PDF, rather than the mean/
vairance was proposed [10]. Fig. 1 shows the concept of output
PDF control. Here, the set point is a desired PDF for the system
output PDF to follow.

Since PDFs are non-negative and constrained functions,
mathematical expressions of stochastic systems PDF generally
lead to complicated partial differential equations (PDEs). For
instance, for the stochastic systems described by Itô differential
equations, the Fokker–Plack–Kolmogorov equation should be
formulated in order to describe the dynamics of the system
output PDF [11]. Furthermore, control of only the mean and
variance of system outputs may not be sufficient for some
practical applications. Examples are fibre length distribution
control in paper-making [12], Molecular Weight Distribution
Control (MWDC) ([13]–[16]), and Particle Size Distribution
Control (PSDC) in polymerization and powder industries
([17]–[20] and [7]). For such practical control problems, the
stochastic distribution control has been developed recently,
where the purpose has been to design a controller so that the
PDF of the system output follows a pre-specified desired dis-
tribution (represented by a targeted PDF), as close as possible.
To simplify system modeling, B-Spline neural networks were
initially used to approximate the output PDF and a number of
algorithms and practical applications were developed ([10],
[21], [22]). The key idea of the B-Spline approximation to the
output PDF was to relate the control signal to the weights of the
selected B-Spline neural network through a dynamical model.
This transferred the problem of the output PDF tracking to the
weights tracking problem. However, this group of methods
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generally require a numerical optimization approach for the
control signal determination. Moreover, numerical control de-
sign methods often suffer from two major disadvantages. First,
the stability and closed loop performance are difficult to assess.
Secondly, such controllers are often difficult to implement
on-line due to their intensive computational load. In order to
overcome these difficulties, fixed-structure controllers such as
Proportional-Integral (PI) and Proportional-Integral-Derivative
(PID) controllers have been applied to the output PDF control
in our previous works ([23], [24]). It has been shown that a
fixed-structure controller simplifies the closed-loop analysis
and also guarantees the closed loop stability of the weight
control system. However, in order to achieve a desired PDF
tracking, a high dimensional time-domain model has to be used
as a set of fixed span elements in the state space. This means
that improving the closed loop tracking performance will be at
a cost of excessive number of B-Spline basis functions. As a
result, the idea of recently developed Iterative Learning Control
(ILC) has been employed in our previous works ([25] and [26])
in order to improve the tracking performance. In this approach,
the parameters of basis functions are used as tuning parameters
of the ILC law and B-Spline basis functions are substituted
for RBF basis functions to achieve a generalized expression of
tuning parameters. In this regard, centers and widths of each
RBF basis function have been treated as tuning parameters.

The objective of this paper is to replace the PI controller in
[26] with the generalized fixed structure controller represented
in a state-space form and then develop an ILC based algorithm
so that the tracking performance of the output PDF can be im-
proved along with the progress of batches. At the same time, the
shape of basis functions will be automatically tuned to achieve
a good fit of the RBF neural networks to the system output
PDFs. In addition, it will be shown that while this generalized
state-space controller can be used to control the output PDF
shape with guaranteed closed loop stability, other controllers in-
cluding state feedback and the PI controller in [26] can be re-
garded as special cases of the proposed controller.

This paper is organized as follows. A general framework of
using ILC techniques to design the output PDF control will be
described in Section II. In Section III, the problem of the output
PDF control and related models (i.e., the RBF neural network
and square-root PDF models along with the relevant dynamic
models) will be introduced, where the general scheme of the ILC
solution to the output PDF tracking control will be described.
In Section IV, the details of the subspace parameter identifica-
tion method will be given. Section V is comprised of the con-
troller design procedure for both constrained and unconstrained
output PDF models along with the conditions of the closed loop
stability. Iterative Learning Control application and its relevant
convergence analysis form the main subjects of the Section VI,
while a set of simulation results of both constrained and uncon-
strained output PDF models will be presented in Section VII.
Finally, concluding remarks will be given in Section VIII.

II. ILC-BASED PDF CONTROL SOLUTION

Iterative Learning control (ILC) paradigm was first developed
in 1984 for a class of systems where the closed-loop system op-
erated similarly in a number of repetitive periods called itera-
tions or batches [27]. Such systems are quite common in cer-

Fig. 2. ILC-based control design scheme.

tain industries including chemical process control and manu-
facturing automation. The key idea is that the control input in
the th batch is determined based on the control input in the

th batch and a correction term which determines the ILC
control type (e.g., P, D, etc). The correction term is related to the
performance of the closed loop system in the th batch as
follows:

(1)

where stands for the time instants satisfying .
denotes the total number of time samples within a batch.
represents a function that is related to the tracking performance
index (e.g., the difference between the desired output and ma-
nipulated variables in the system output), and is a learning
rate which is chosen so that the iterative control law is conver-
gent [28].

This strategy has the advantage of improving the closed-loop
system tracking performance batch-by-batch ([29], [30] and
[31]). In stochastic control research, the ILC approach has been
applied to nonlinear stochastic systems for which the output
tracking, rather than the output PDF tracking, has been devel-
oped [32]. Therefore, effort should be made so that the ILC can
be applied in the design of the output PDF shaping control.

In order to apply the ILC approach in stochastic distribu-
tion control, the control horizon is first divided into a two main
regimes, namely within batches and between any two adjacent
batches as shown in Fig. 2.

As shown in Fig. 2, the control horizon is divided to a number
of identical batches indexed by and these batches
are specified by where is
considered as the batch length, (during which the RBF param-
eters are fixed) and as the time period known as between
adjacent batches. In this case the batch length should be se-
lected large enough so that the system almost reaches the steady
state within each batch.

The process starts with setting initial values to the
dynamic model parameters. Then within batches, i.e.,

, fixed basis func-
tions (see (4) of Section III) are used to generate the required
control. The control signal is applied to the stochastic plant
in such a way that the closed-loop system is stable. Then,
between adjacent batches (i.e., during the time specified by

) the RBF parameters (basis
function centers and widths) are updated so that the measured
output PDF gets closer to the desired PDF within the next batch.
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Fig. 3. Schematic diagram of the ILC-based PDF control.

Then a series of control signal and measured PDF signal are
used to estimate the dynamical system parameters to be used
within the next batch. During period of time the control
law stays the same as that of . This enables the tuning
to be focused on the basis functions and the parameters of the
weights dynamics. In this case, the structure of the proposed
ILC-based PDF control approach with a general state-space
controller will be as shown in Fig. 3. The three stages of
the method proposed can be described as follows. First, the
parameters of the dynamic model describing the output PDF
are identified using a subspace system identification technique
(for the first batch, initial values will be chosen). The identi-
fied parameters will be used within the next batch of control.
Secondly, the general state-space controller is designed using
LMI-based convex optimization technique so as to guarantee
the closed loop Lyapunov stability. Finally, the stored data of
the output PDFs from the previous batches are used to tune the
parameters of the RBFs by using the ILC mechanism. Among
the stages mentioned, the first two are carried out within each
batch and the final stage is performed between any two adjacent
batches, as previously illustrated in Fig. 2. This is different
from existing ILC approaches where the control input is tuned
directly between batches.

In this paper, all matrices have been assumed to have the com-
patible dimensions. In addition, subscripts , , and stand for
the time instance index of control, samples index of the output
stochastic variable, and the number of the current batch of the
system operation, respectively. Identity and zero matrices will
be denoted by and , respectively, and they are supposed to
have compatible dimensions. Whenever used, the norm sign
represents the Euclidean norm of the real vectors and matrices.

III. PROBLEM FORMULATION

As described in Section I, the output PDF is approximated
using a RBF neural network. As such, the PDF model represen-
tation will be expressed as follows. Both linear and square root
models will be demonstrated.

A. Model Representation

Suppose that the random process is the output of
the stochastic system in Fig. 1. Let be the control
signal at the th time instant within the th batch of the control.
Suppose that controls the shape of the PDF of and such

a PDF is represented by . By definition, the output
PDF is expressed as follows:

(2)

where denotes the probability of lying
between and .

1) Dynamic Output PDF Modeling: Similar to the works in
([21]–[26]), we assume that the output PDF is con-
tinuous and bounded within each batch. Then the well-known
RBF neural networks can be used to approximate the output
PDF at the th time instant within the th batch as follows:

(3)
where is the th weight of the RBF neural network at the
th sample time within the th batch. Similar

to [23], the RBF activation functions are expressed as

(4)

where , are the centers and widths of the RBF basis
functions within the th batch, respectively. These centers and
widths will be tuned using iterative learning method between
adjoint batches.

In addition, the output PDF is assumed to be measurable
throughout the paper. This is mainly because the PDF signal is
required for the control, as the weight elements are extracted
based upon the measured output PDF. (see (12) for details).
Practically, there are many systems where the output PDFs can
be measured online. Examples are the paper-making systems
and combustion systems where digital cameras are used online
to take the images such as 2D solid distribution in paper web
([12], [21]–[24]) and flames distribution in combustion cham-
bers, respectively. These images are then transferred into PDF
information through online imaging processing. Also, fast PDF
measurements are now available for particle size distribution
measure in chemical engineering ([13]–[20]).

With these definitions, the dynamic model linking the output
PDF and the RBF neural network weights vector can be ex-
pressed as follows [10]:

(5)

where

are the weight vector and the basis functions row vector within
the th batch. The weight dynamical system (5) is considered
as a linear model augmented with bounded state nonlinearities
defined by function . In fact, the nonlinear bounded
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function serves as noises and uncertainties and is assumed
to satisfy the following Lipschitz condition:

(6)

where is a known matrix. In fact, term in the right
hand side of (3) is the th RBF neural network weight separated
from the first . The reason for splitting the last element
is that since the weights must satisfy the fundamental integral
constraint of the probability (i.e., ),
only the first elements in vector are independent
and thus the th element can be obtained by using the first
weights (as in (7) series of equations). Therefore, the th weight
element is considered as a function of other weight elements
[10]. Such a dimension reduction also affects the representation
of the output PDF as shown in (3).

Integrating the second equation in (5) over the output defini-
tion interval, the following can be verified:

(7)

where it has been denoted that

2) Square-Root Models of the Output PDF: Alternatively,
square-root models can be used in order to avoid the negative
values for the output PDF as addressed in [33] and [10]. The dy-
namic weight model will be the same as that used in (5) with the
exception that the left hand side of the second equation will be
changed to . However, this will add an additional
constraint to the state vectors,(i.e., ) so that the values of
the weight vector remain non-imaginary subject to the PDF in-
tegral constraint (i.e., condition must be
satisfied within each batch). This implies that the resulting con-
straint in state vector will be as follows [10]

(8)

where

in which

It can be shown that is always a positive definite ma-
trix. Also, the function will take different form for the
square root model ([10]). After describing the necessary math-
ematical tools for the development of the method, the details of
the proposed three-stage design procedure will be described in
Sections IV–VII.

IV. SUB-SPACE SYSTEM IDENTIFICATION

Assuming that the output PDF and the control input for all
previous sample times have been measured and the RBF pa-
rameters (i.e., the centers and the widths of the basis functions

) have been updated after the completion of the th
batch, then in response to the tuning of basis functions, dynamic
parameter matrices and should be identified using the
recorded measurements of the control input and the output PDF
before the th batch starts.

From (5), it is obvious that the output equation is nonlinear.
As a result, the subspace LTI system identification methods such
as N4SID [34] and MOESP [35] cannot be applied directly.
However, if a sequence of state vectors can be calcu-
lated, the first equation in (5) would be a linear regression model
with respect to input and the relevant output vectors

. Thus, while a sequence of is measurable, vec-
tors should be calculated.

Considering PDF model as discussed in (5) which is
re-written in the following matrix form:

(9)

By pre-multiplying (9) with the following
equality can be obtained:

(10)

By performing integration on both sides of (10) over , it
can be seen that

(11)

Hence, the weight vector within the th batch can be deter-
mined by using the following operations based on the measured
output PDF.

(12)

where it has been denoted that
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When using square root models, the above formulation is still
valid by simply replacing with in
all the equations.

After the calculation of weight vectors, the well-known least
squares method can be applied for the estimation of and
using a sequence of , . For this purpose, the following
linear regression model can be developed:

(13)

where

...
...

...
...

In the above equations, is the number of inputs, , and
stand for the corresponding elements in the parameter matrices

, and the estimation error, respectively. Using (13), the
Recursive Least Squares (RLS) algorithm can be employed to
obtain matrices and for the th batch.

By choosing a reasonable number of sample points in the
output PDF curve along its definition domain with (

), the following recursive estimation can be applied
for the identification of parameters in (13) in the same way as
shown in [10]

(14)

(15)

(16)

The initial value of the parameter matrix is selected as the last set
values in the previous batch, and is the matrix that is selected
as big as possible initially (e.g., for the first
batch).

V. GENERALIZED CONTROLLER DESIGN

As described in Section I, the following general state-space
controller will be used to realize the closed loop control of
output PDF:

(17)

where stands for the tracking error.
As mentioned before, the controller design procedure is com-
menced after the parameter estimation stage accomplished. The
procedure is repeated once per batch. Corresponding to (5) and

(17), the closed-loop system equation for the weight control
loop in the th batch can be written as

(18)

where

It should be noted that when using the square root modeling
method, the problem of controller design should be considered
with the constraint . First, the case without
state constraints is considered for non-square root models.

A. Un-Constrained Tracking Control Problem

Denoting

(19)
then the following theorem summaries the solvability conditions
of the general state space form controller without state con-
straints.

Theorem 1: Within the th batch and for any initial condition
, if for some given constant the following linear matrix

inequality (LMI)

(20)

is solvable for some positive definite matrix and matrix ,
then

1) the closed loop system (18) is stable;
2) ;

and the controller parameters can be calculated using

(21)

Proof: To prove the stability and tracking performance of
the closed-loop system (18), let us consider the following Lya-
punov function candidate:

(22)

Differentiating the (22) over the time gives
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(23)

where

Using the well-known Schur complement formula, (23) can be
further reduced to

By pre-multiplying with and post multi-
plying it with and also applying Schur comple-
ment, the necessary condition for stability will be as follows:

(24)

Finally, by substituting matrices , , and into (24), can
be obtained.

If (20) holds, a positive scalar exists so that .
Along with (18) it can be verified that

(25)

It is obvious that the right-hand side of the inequality (25)
is a second degree polynomial with respect to .
Thus, denoting and

, it can be shown that
holds if

(26)

which implies (27), shown at the bottom of the page. This means
that the stability of the closed-loop system can be confirmed.

To discuss the system tracking performance, suppose two dif-
ferent trajectories and on (18) corresponding to
fixed initial conditions. Also consider the to be an input. Then
the difference of two trajectories can be expressed as

(28)

It can be shown that variable satisfies the following dynamic
equation:

(29)

Similar to the developments of the closed loop system, the Lya-
punov function can be re-written as

(30)

with the similar difference equation as (23)

(31)

where . As a result, the closed
loop system is asymptotically stable around neighbor-
hood, which means that the tracking performance of the system
has been achieved. After exploring the solvability conditions,
the feasible design procedure can be provided.

In addition, it is obvious that the previously proposed con-
trollers such as PI controller proposed in [26] can be regarded
as a special case of the general state-space form controller, as
represented in this work. Indeed, by fixing and ,
the resulting controller is a PI controller. Moreover, by setting

the resulting controller is a state-feedback
one.

B. Constrained General State Space Controller Design

In order to solve the control design problem for the square
root model of the output PDF, constraint (8) should be satisfied.
Based upon theorem 1, it can be concluded that if is suffi-
ciently large, then the constraint (8) can be guaranteed automat-
ically. However, analysis on conditions under which the con-
straints on partial states can be guaranteed are provided in the
following theorem.

Theorem 2: For initial conditions satisfying constraint
(8), if the LMI (20) holds and the following linear constraint

(32)

is satisfied for a positive ; then within each batch:
• the closed-loop system (18) is exponentially stable;
• tracking error converges to zero, i.e., ;
• state constraint is satisfied;

and the generalized state space controller can be calculated from
(21). In (32), stands for the smallest eigenvalue of the
matrix .

(27)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 12, 2009 at 23:23 from IEEE Xplore.  Restrictions apply.



766 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 4, APRIL 2009

Proof: Using the Lyapunov function chosen as (22), and de-
noting (18), it can be verified that

(33)

Since is guaranteed by (20), there
must exist a positive so that .
Thus, it can be verified that

(34)

where . Then it can be shown that
holds if . In order to satisfy the state

constraint expressed in (8), it can be shown that

(35)

The feasible design procedure for the controller can be sum-
marized as follows.

• Before the beginning of a batch, should be selected as a
given constant.

• Select and apply it to the calculation procedure (20).
• Repeat the stages for the controller design without state

constraints.

VI. ITERATIVE LEARNING CONTROL APPLICATION

Once the th batch is completed, the centers and widths
of the radial basis functions are updated so that the closed-loop
system tracking performance is improved for the th batch. This
forms the main content of this section.

A. Tuning of Radial Basis Functions

For the Radial Basis Functions defined by (4), the following
P-type ILC law is used for the tuning of the parameters in the
basis functions (4) between any two adjacent batches, namely
the th and the th batches

(36)

where the performance indices of the th batch are defined
as follows:

(37)

while stands for the total number of time instants within
a batch. The development of the tuning rules will depend on
the model based on which the output PDF has been modeled.
As such, two formulations should be made, one for the uncon-
strained model and the other for the square root model. For the
unconstrained model of the output PDF, the in (37) can be ex-
pressed as

(38)

which is the performance at the th sampling instant of the
th batch. It is desired that the measured output PDF

will get closer to the desired PDF as the
batches pass, i.e., the measured PDF is matched the desired
PDF as . Furthermore, the learning parameters in (36)
are defined as

(39)

where and are the learning elements and and are the
learning rates to be determined. From (37), it is obvious that all
the elements in are nonnegative, allowing either positive
or negative values for the learning rates. This means that centres
and the width of the radial basis functions can be varied either
to increase or to decrease along the progress of batches. For the
square root models, (38) is modified to read

(40)

while the tuning rules for the basis functions are the same as
those given in (36).

B. Convergence Analysis

The iterative learning algorithm (36) takes place between
th batch and the th batch. It involves two learning rate param-

eter vectors as given in (39). It is therefore important to ensure
that these learning vectors are properly selected to guarantee the
convergence of the updating of the basis functions between two
batches. The key issue is that such tuning vectors should guar-
antee the improvement of the closed loop performance batch by
batch. This can be achieved if the following condition is satis-
fied:

(41)

where

(42)

is the measure of the overall closed loop performance within
the th batch. Since is non-negative, condition (41) would
mean that

(43)
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In the following, convergence conditions will be formulated for
both non-constrained and the square-root models.

1) Convergence Conditions for Unconstrained PDF Models:
Similar to the discussions in [25], the convergence conditions
for unconstrained PDF models can be expressed as (44), shown
at the bottom of the next page, where the learning parameter
vectors should be selected so that the above inequality holds.

2) Convergence Conditions for Square-Root PDF Models:
Discussion for the convergence conditions in square root models
have been provided in [26]. It can be summarized as follows:

(45)
together with

(46)

and

(47)

where

(48)

with notations and .
As a result, the sufficient conditions for the convergence are
summarized as follows.

Iterative tuning rule (36) should be applied with the learning
rates satisfying (44) when the unconstrained PDF models are
used, and with (45) when the square-root models are used. There
are also some constraints on the convergence as listed in the
following.

1) Both and , must be non-negative;
2) Within a batch, is more important than

. Thus, the weight of in (39) should
be more than . This means that

Fig. 4. Initial distribution of RBFs.

and should be both gradually increasing
vectors within the batch.

VII. SIMULATION RESULTS

In this section, a simulation study of the proposed method
will be described. First, the system model and RBF neural net-
work components are introduced and then the performance of
the ILC-based PDF shaping system based on constrained and
unconstrained models will be investigated.

A. Stochastic System Model and Problem Statement

It is assumed that the stochastic system output variable is dis-
tributed over interval , i.e., . In order to approx-
imate the output PDF, a three-layer neural network with three
radial basis activation functions is used. Fig. 4 shows the initial
formation of the RBFs. According to (4), the initial parameters
of activation functions in Fig. 4 are chosen as follows:

This would mean that the output PDF of the stochastic system
will be described as

(44)
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For the case of constrained PDF model, term is
replaced by . The weight vector behaves dynam-
ically as expressed in (5) with the following parameters:

The initial value of the weight vector is set as .
The problem is to find a state space controller to make the output
PDF of the stochastic system follow a desired distribution as
closely as possible. This means that within each batch, param-
eter matrices , , , and must be found so that the closed
loop system is internally stable. In addition, between any two ad-
jacent batches, the RBF parameters , , ( , 2, 3) and
also system parameter matrices and must be trained so
that the ILC cost function (42) takes monotonically decreasing
values along with the progress of batches. The simulation study
begins with the unconstrained PDF model as follows.

B. Results of Unconstrained PDF Model

In this section, all the design stages with regards to the uncon-
strained PDF model will be provided. First, the specific problem
requirements such as set points will be introduced and then each
of the three design stages studied before will be described sep-
arately in detail.

1) Desired PDF Settings: It is desired that the measured
output PDF follows a distribution as described by RBF basis
functions parameters (i.e., centers and width) defined as follows:

In addition, for the unconstrained mode of PDF modeling, the
desired dynamical weights are set to
which results in the dependent weight (calculated by (7)) to
be . Furthermore, 200 samples defined for the
output variable and 50 for the time samples within each batch

. Such parameters will control the desired
unconstrained PDF shape as shown in Fig. 5. Hence, it is
desired that the resulting controlled output PDF have the same
shape as of shown in Fig. 5. In addition to above mentioned
parameters, it must be noted that the total number of 5 batches

have been chosen for the case of uncon-
strained control whereas four batches have been considered for
constrained PDF tracking control.

2) Subspace Parameter Estimation: As mentioned before,
the first batch begins with the initial values chosen for the dy-
namical system parameters and . Initially, the following
values are chosen for above mentioned matrices:

Fig. 5. Desired output PDF.

Also, the initial values to be used in parameter identification al-
gorithms expressed by (14)–(16) are set to and

. It is worth noting that based on the values stored within
the first batch, the parameter estimation system yields the fol-
lowing parameter values to be used within the second batch:

After the end of the fourth batch, the parameter identification
algorithm results in the following values for parameter matrices:

Having set the parameter matrix values, the next step is to cal-
culate the control signal to be applied to the system.

3) Control Signal Calculation: The parameters of the general
state-space controller (17) can be found by solving a feasibility
problem given by (20) and (21). The controller is initially set to

and the MATLAB LMI toolbox is used to
solve the problem to obtain the following controller parameters
for use within the first batch:

with

After having measured the weight vector , the dependent
weight is calculated by (7) resulting the output PDF
take a shape as shown in Fig. 6. This means that the PDF
tracking performance within the initial batch of operation will
be as shown in Fig. 7. It can be seen that although the closed
loop system is internally stable, the dependent weight has taken
some negative values which is due to the application of the
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Fig. 6. Measured Output PDF after the first batch.

Fig. 7. Tracking of desired PDF in the end of first batch.

linear PDF models. In total, five batches are considered. After
the final batch, the parameters of the controller are as follows:

with

As such, the performance of the inner loop (i.e., the weight con-
trol loop) can be illustrated in Fig. 8. Indeed, Fig. 8 implies that
the solution to the corresponding LMI feasibility problem re-
sults in an efficient weight tracking and ensures the stability of
the inner control loop. Using these parameters, the response of
the output PDF resulted after the final batch is shown in Fig. 9.
Also, the PDF tracking performance in the last batch of the oper-
ation is shown in Fig. 10 which represents a satisfactory tracking
performance within the last batch. The connecting point be-
tween figures Figs. 6,7 and 9, 10 is the ILC-based parameter
tuning presented in Section VII-B-IV.

Fig. 8. Weights of the RBF neural network as the end of final batch.

Fig. 9. Output PDF in the end of final batch.

4) ILC-Based Parameter Tuning: For the purpose of ILC-
based RBF parameter tuning previously expressed by (36), the
following learning rate values have been chosen based on (39):

After the final batch is completed, the values for the RBF cen-
ters and width are given by , ,

and . These result in the
tracking performance as shown in Fig. 10. As mentioned before,
for ILC-based PDF control efficiency, the cost function (42)
must be assessed for having monotonically decreasing values.
Fig. 11 illustrates the shape of the ILC performance function
which implies the convergence of the algorithm after the final
batch. However, as it can be observed from the above figures,
the output PDF has taken negative values when it comes to the
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Fig. 10. Tracking of desired PDF in the end of final batch.

Fig. 11. ILC Performance.

dependent weight. To prevent this numerical phenomena, the
square-root model will be used for the output PDF approxima-
tion.

C. Performance of the Square-Root PDF Models

It has been shown that the square root models guarantee the
positiveness of the output PDF at the cost of bringing a new
constraint to the state vector of the system. As a result, the con-
straint should be satisfied throughout the different batches.

1) Desired Square-Rooted PDF Settings: All initial parame-
ters are the same as the unconstrained model except that the de-
sired weights are set to , .
Also, 20 time samples are used instead of 50. As such, the de-
sired output PDF shape will be as shown in Fig. 12. Similar to
unconstrained design, subspace system identification is consid-
ered here.

2) Subspace Parameter Identification-Constrained Model:
Starting with the same initial values as the unconstrained

Fig. 12. Desired output PDF.

model, the subspace parameter estimation results in the fol-
lowing dynamical system matrix values to be used within the
second batch:

Also, in the final batch the system matrices and are iden-
tified to have the following values:

3) Constrained Control Signal Calculation: Similar to the
unconstrained model, controller parameter matrices will be cal-
culated based on (20) and (21) whereas in constrained model
the constraint (32) must be considered. Also, an initial value

has been considered for the weight
vector. The above mentioned equations yield the following con-
troller parameters within the first batch:

By measuring weigh vector and calculating the dependent
weight at the end of the first batch, the output PDF
will be shaped as displayed in Fig. 13. The PDF tracking per-
formance within the first batch shows the difference between
the desired and measured PDFs clearly in Fig. 14. After passing
through the remaining four batches, the control parameters in
the final batch are given by
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Fig. 13. Measured output square-root PDF in the end of first batch.

Fig. 14. Tracking of desired PDF in the end of first batch.

Based upon the designed controller, the weight control perfor-
mance is illustrated in Fig. 15, which shows that a satisfactory
control for the weights of the neural network has been obtained.
The controlled values of the weights should be employed in
forming the PDF values within the final batch. The above men-
tioned values are used to calculate the final output PDF for the
system. Fig. 16 shows the output PDF of the square root model
within the final batch of the ILC. It can be seen from Fig. 17, the
output PDF tracking performance shows a significant improve-
ment in comparison to the performance within the first batch, as
shown in Fig. 7.

Fig. 15. Weights of the RBF neural network in final batch.

Fig. 16. Measured output PDF in the end of final batch.

4) Constrained ILC-Based Parameter Tuning: The learning
rates corresponding to the constrained PDF tracking problem
are chosen as

along with

where . After the final batch is accomplished,
the tuned final parameters of the RBF neural network are ob-
tained as , , and

. Finally, the ILC performance function, which is sup-
posed to be monotonically decreasing along with the advances
of the batches, is shown in Fig. 18. Compared to the uncon-
strained control results, the output PDF tracking performance
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Fig. 17. Square root PDF tracking in the end of final batch.

Fig. 18. Performance function of the ILC law in square root PDF model.

under square root constraint represents a better tracking per-
formance over shorter length of process operation (i.e., fewer
number of batches). Also, the square root model guarantees the
positiveness of the measured output PDF at all control instances.

VIII. CONCLUSION

A generalized state-space form of controller has been devel-
oped for the output PDF control of general stochastic systems.
While the method reduces the problem of the PDF tracking to
the problem of neural network weight tracking, it separates the
control design into two important stages: one carried out in the
space domain and the other in the time domain. At the time do-
main stage, an LMI approach has been applied in order to guar-
antee the closed-loop stability and also to find the parameters
of the generalized state-space controller. At the space domain
stage, a P-type ILC law was employed to tune the parameters
of the RBF neural network. This has resulted in a performance

improvement of the closed loop system along with the advances
of batches. Using the proposed time domain controller, the pre-
viously developed methods such as the PI controller [26], or the
state feedback controllers can be regarded as special cases of the
proposed controller. The method also provides a feasible solu-
tion for the cases where the ordinary PDF modeling leads to
negative values for the output PDF.
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