
The University of Manchester Research

Environmental Considerations When Measuring Relative
Performance of Graphics Cards

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Goodman, D. (2010). Environmental Considerations When Measuring Relative Performance of Graphics Cards. In
host publication

Published in:
host publication

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:12. Nov. 2022

https://www.research.manchester.ac.uk/portal/en/publications/environmental-considerations-when-measuring-relative-performance-of-graphics-cards(6d962ee1-db72-41b0-9ac9-3592702ef282).html


1

Environmental Considerations When Measuring
Relative Performance of Graphics Cards

Daniel Goodman - Oxford eResearch Centre

Abstract—In this paper we examine some of the environmental
conditions that have to be considered when comparing the per-
formance of GPU’s to CPU’s. The range of these considerations
varies greatly from the differing ages of the hardware used, to the
effects of running the GPU code before the CPU code within the
same binary. The latter of these has some quite surprising effects
on the system as a whole. We then go on to test the different
hardware performance at matrix multiplication using both their
basic linear algebra libraries and hand coded functions. This
is done while respecting the considerations we have described
earlier in the paper, and addressing a problem that with the use
of the Intel MKL library cannot be argued to be unfair to the
CPU.

I. INTRODUCTION

THE advent of CUDA [1] and OpenCL [?] as has made the
programming of graphics cards far more accessible. This

coupled with NVIDIA’s push towards HPC through their Tesla
ranges, has very much pushed General Purpose Graphical
Processing Units (GPGPU’s) into the forefront of scientific
computing. This has resulted in a large number of studies into
the speed up that can be achieved in different applications, and
in this paper we look at some of the issues that relate to getting
acurate performance meausres, most critically demonstrating
how the environment surrounding the CUDA invocations can
have a very direct effect on the CPU code around it.. There is
of course a huge body of work that has gone before in how to
benchmark different computing platforms [2] and we are not
aiming to duplicate this. It is hoped that readers will find this
insightful and useful both when measuring their own projects
and when evaluating other peoples results.

The structure of this paper is a description of some of the
issues that we have identified that GPU’s raise and that need to
be taken into account when evaluating the performance. Then
performance results generated when comparing the CUDA
Blas libraries and SDK codes against the Intel MKL libraries
are discussed before concluding.

II. ISSUES AFFECTING PERFORMANCE WHEN COMPARING
GPU’S AND CPU’S

a) Age and Specification of hardware: The most basic
environmental issue is esuring that the hardware is compa-
rable. This is of course dependant on how you define the
hardwares to be equal the best solution is for them both the
most powerful currently available, though given the variing
release dates of new architecture this is not nessersaraly fair,
likewise measures such as cost make it much harder still to
choose to comparable pieces of hardware. As an example, if
the host computer wass middle of the range 18 months ago,
you could expect a 2 - 4 times speed up for properly threaded
code simply by replacing it with a top of the range model
today. Similarly if experiments with GPU’s are performed
with a new top end card to see just how fast they go, it is
perfectly valid test. However, when reporting speed up against
a CPU, it must be remembered that the specific CPU is not

Fig. 1. Performance statistics for computing signal analysis on astronomical
data. Measured on a dual processor 2.8GHz Harpertown (November 2007)
system and a dual processor 2.8GHz Nehalem (March 2009) system. The
performance gain as CPU’s adjust to provided better bandwidth to the cores
is clearly visible. Data courtesy of Tim Cornwell.

performing as a fast as CPU’s are capable of going. A good
demonstration of this is the improvement demonstrated by
Intel’s latest processors over their last generation, see Figure 1.

b) Optimisation: When constructing CUDA programs,
it is very helpful to have a very basic CPU version which
the results can be checked against to ensure that the code is
producing correct values. As such this has become standard
practice with the CPU program being known as the gold
version. Often this gold version is then also the code that
the performance of the graphics card is measured against.
However, it has to be remembered that the function of this
method was to provide results that with a high degree of
confidence where believed to be correct. As such they tend
to be very naive in their implementation, and generally make
no effort to optimise the computation as this would reduce the
clarity of the code and distract from the task at hand, which
is after all providing a correctness test for code constructed
for the graphics card. This does however mean that they are
not appropriate for accurate performance testing against the
graphics card, as the GPU code will typically be optimised,
making effective use of the different types of memory, and
the algorithm arranged around carefully chosen parameters and
structured memory accesses to ensure optimum efficiency. If a
true test is to be performed, a second version of the CPU code
is required. This version must have been structured to take full
advantage of the cache structures, multiple cores offered by
the CPU, and compiled with the optimisation flags set.

In the same vein, often examples of GPU code are presented
that would require recompiling of the CUDA code to change
the problem parameters. The CPU code on the other hand is
generic, and can be changed from run to run. This difference
however means that while the GPU compiler can pre-evaluate



2

Fig. 2. A graph showing the varying time to execute the CPU Gold code
for the Horn-Schunk calculation on different sized datasets.

parts of the computation, and unwind loops, the CPU compiler
does not have this luxury, and as such is unable to produce
such high performance code.

The choice ofvalue of parameters for tests such as the size
of a kernel in a Gaussian Filter, or the size of a data set
is normaly chosen to optimise the performance of the GPU.
This generates a maximum value for the potential speed up,
but can discise the general case, meaning the performance
for a range of different sizes of problem is more insightful.
Further to this though, as performance vairies for both GPU
and CPU code, using just a single value creates the possibillity
that the value being used is really bad for the CPU code the
GPU is being compared against? Because the CPU code is
often not crafted to the specific architecture that it is built on,
but instead is relying on the generic nature of the hardware
interface, performance can vary dramatically between different
parameter values. To demonstrate this effect, code that was
used as the gold function for an implementation of the Horn-
Schunk method [3], was executed for data sizes from 10 to
300. The test was repeated 5 times to ensure that variations in
timing are as a result of properties of the code and architecture.
The results of this can be seen in Figure 2, these clearly show
that a small change in the size of the dataset can have a huge
change in the time to execute meaning the potential to pick a
value where the CPU performs poorly is high and 180 can be
seen to be a very bad value for the CPU, but it also corresponds
to the largest value that will fit into a 512 MB GPU.

c) Native Data Types: Older GPU’s are only able to
perform 32bit floating point arithmetic, and newer GPU’s
perform 64bit floating point arithmetic at a performance price.
As such it is standard practice to use 32bit floating point
data in GPU applications, and therefore in the CPU code.
Furthermore conventional wisdom would say that the CPU
code should be faster as a result of this lower accuracy and
less data to transfer. However, benchmarking has shown that
modern CPU’s and libraries are more highly optimised for
double precision arithmetic to the extent that it can be up to
ten times as fast as single precision arithmetic. So by choosing
to work in a data type that suits the GPU, the performance of
the CPU code can be harmed.

d) Operating Environment: It is important to ensure that
the operating environment for the GPU and CPU tests do not
interfear with each other. Our experiments have demonstrated

Fig. 3. A graph showing the percentage change in the time to execute
the CPU Gold code for the Horn-Schunk [?] calculation on different sized
datasets when the environmental conditions are changed. The red line
shows the effect of initialising a GPU. The initial speed up as a result of
this we believe is due to the compiler moving code from further down
the computation up to fill the time taken while the card initialises. Once
the problem exceeds a certain size this effect disappears, and the change
becomes less dramatic, but in this second phase, the initialisation can result
in up to an 8% slowdown of the CPU code.

Far more dramatic is the effect of making the memory page locked
using a call from the CUDA API. The blue line shows the directly measured
changes, and the green dashed line shows the changes with the change
caused by initialising the graphics card removed. Aside from the very
large slowdowns if data set happens to be an unlucky size, the variation in
execution time generally falls into the -10% to +15% range.

that there is a clearly measurable and consistent change in the
performance of the CPU code if it is called from code that has
initialised a graphics card beforehand. Furthermore while the
use of page locked memory accelerates the transfer of data to
and from the graphics card, it can have a negative effect on
the performance of CPU code using it. The effects of this can
be seen in Figure 3 where the percentage speed change when
a GPU is initialised and when page locked memory is used to
perform the CPU execution is plotted for a range of problem
sizes. Furthermore, if a GPU kernel has actually been executed
this can slow the CPU code down even further as shown in
Figure 4. As a result of this, if we are to get a true gauge
on how much faster the GPU is than the CPU, the CPU code
must be executed in an environment that is independent of
the environment created to support the GPU. It must also be
remembered that as much of the GPU’s environment is hidden
from the user, this means the executions of separate binaries
should be the preferred method to ensure a truly fair test.

Because the execution of GPU code requires the kernel to
be loaded into the graphics card, the first run of a computation
can be slower than the following ones. As such it can be ben-
eficial to run a warm-up calculation before running the GPU
calculation in order to ensure a true maximum performance is
recorded. However, if this figure is then to be used to measure
against the CPU, it is also necessary to perform a warm up
calculation on the CPU to ensure that the caches are fresh.

III. MATRIX MULTIPLICATION

The performance of matrix multiplication on a Tesla C870,
is compared against a dual processor 2.66 Ghz quad core
Xeon Harpertown system. On the Tesla card both the CUDA
Blas library [4], and the simpler code provided in the CUDA



3

Fig. 4. This graph shows the further change in performance of CPU code
if the GPU kernel is also run before the execution of the code. Note that this
can make the code take almost a third longer to execute.

Fig. 5. Speedup for matrix multiplication.

SDK for matrix multiplication are tested. The code from
the SDK was included to provide an idea of what can be
achieved by a semi skilled user. On the host we user the
double precision matrix multiplication routine included in
the Intel MKL library [5]. This was used as tests showed
it outperformed SGEMM. As a baseline this routine was
executed on a single core, and the speedups are reported as
improvement against this time. The tests were performed on
square matrices, sized between 10 and 7600 in each dimension.
The results can be seen in Figure 5.

When measuring the results with CUDA Blas, the perfor-
mance varied greatly depending on if the size of the problem
is equal to a given value modulo 16, 32 and 64. This change
in performance was expected due to the benefit of coalesced
memory accesses on CUDA devices. As the addition of
padding is not always available it was felt that it was worth
measuring under both circumstances. As such both the best
and worst case scenarios where measured when computing
the result for a given data size, to give an idea of the possible
spread. This same problem was not observable in the MKL
results so they are presented as a single line.

These results show that the MKL code performs slightly

better than the worst case scenario for the CUDA Blas routine,
which is interestingly worse than the simple version from the
CUDA SDK. The CUDA SDK version is able to outperform
the MKL version, though it is hard coded to only accept
problems of the appropriate sizes it does not have to handle the
memory alignment problems that the Blas version is handling.
This shows that GPU’s have sufficent computing power for the
right style of problem to make code written by semi skilled
users out perform some of the most highly optermised CPU
code. The Best case scenario clearly outperforms all the other
versions from problems with dimensions in excess of 500,
however given the results in Figure 1 this gap may be closing.

IV. CONCLUSION

This paper has highlighted a range of environmental factors
that have to be taken into account when comparing the relative
performance of GPU codes against CPU codes. These include
a range of factors that thus far appear not to be taken into
consideration such as the surprising effect that initalising the
GPU has on the surrounding CPU code.

We have then gone on to demonstrate that using library code
provided by the vendors for problems that should parallelise
well onto both architectures, the GPU’s are able to offer a
speedup of approximately 2.1 times over two four core CPU’s.
On a standard desktop machine that only has a single CPU
instead of two, this could increase to approximately 4 times
faster. However, this is the number that the majority of users
are going to be interested in as they are not going to be hand
coding large parts or their work, but are going to be using the
libraries that are provided by others. However, it is interesting
to note that code crafted by a moderately skilled programmer
can be equivalent to or outperform highly optimised Intel code.

Finally, the data used to generate Figure 1 also included
timings for an Nvidia GTX 260 card, this achieved 1594
million grid points per second against the Nehalem’s 1409
million per second, up from Harpertown’s 394 million per
second. This shows that the CPU’s are catching up again,
and for the next few years at least what is truly the fastest
architecture should be very interesting indeed.

ACKNOWLEDGEMENT

The author would like to thank Professor Mike Giles for all
his help and support.

REFERENCES

[1] NVIDIA CUDA Compute Unified Device Architecture Programming
Guide, 2nd ed., NVIDIA Corporation, 2701 San Tomas Expressway,
Santa Clara, CA 95050, June 2008.

[2] R. Damelio, Basics of Benchmarking, 1st ed. 270 Madison Avenue, New
York, NY, 10016, USA: Productivity Press, August 1995.

[3] B. K. Horn and B. G. Schunck, “Determining optical flow,” Massachusetts
Institute of Technology, Cambridge, MA, USA, Tech. Rep., 1980.

[4] CUDA, CUBLAS Library, 2nd ed., NVIDIA Corporation, 2701 San Tomas
Expressway, Santa Clara, CA 95050, March 2008.

[5] Intel Math Kernel Library, Reference Manual, 10th ed., Intel, 2200
Mission College Blvd, Santa Clara, CA, 95054-1549, USA, August 2008.


